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Abstract
Recent work has made great progress in verifying the for-
warding correctness of networks [26–28, 35]. However,
these approaches cannot be used to verify networks con-
taining middleboxes, such as caches and firewalls, whose
forwarding behavior depends on previously observed traf-
fic. We explore how to verify reachability properties for
networks that include such “mutable datapath” elements,
both for the original network and in the presence of failures.
The main challenge lies in handling large and complicated
networks. We achieve scaling by developing and lever-
aging the concept of slices, which allow network-wide
verification to only require analyzing small portions of the
network. We show that with slices the time required to
verify an invariant on many production networks is inde-
pendent of the size of the network itself.

1 Introduction
Network operators have long relied on best-guess
configurations and a “we’ll fix it when it breaks” approach.
However, as networking matures as a field, and institutions
increasingly expect networks to provide reachability,
isolation, and other behavioral invariants, there is growing
interest in developing rigorous verification tools that
can check whether these invariants are enforced by the
network configuration.

The first generation of such tools [26–28, 35] check
reachability and isolation invariants in near-real time, but
assume that network devices have “static datapaths, ” i.e.,
their forwarding behavior is set by the control plane and
not altered by observed traffic. This assumption is entirely
sufficient for networks of routers but not for networks that
contain middleboxes with “mutable datapaths” whose for-
warding behavior may depend on the entire packet history
they have seen. Examples of such middleboxes include fire-
walls that allow end hosts to establish flows to the outside
world through “hole punching” and network optimizers
that cache popular content. Middleboxes are prevalent – in
fact, they constitute as much as a third of network devices
in enterprise networks [49] – and expected to become more
so with the rise of Network Function Virtualization (NFV)
because the latter makes it easy to deploy additional middle-

boxes without changes in the physical infrastructure [13].
Given their complexity and prevalence, middleboxes are
the cause of many network failures; for instance, 43% of a
network provider’s failure incidents involved middleboxes,
and between 4% and 15% of these incidents were the
result of middlebox misconfiguration [41].

Our goal is to reduce such misconfigurations by
extending verification to large networks that contain
middleboxes with mutable datapaths. In building our
system for verifying reachability and isolation properties
in mutable networks – which we call VMN (for verifying
mutable networks) – we do not take the direct approach
of attempting to verify middlebox code itself, and then
extend this verification to the network as a whole, for two
reasons. First, such an approach does not scale to large
networks. The state-of-the-art in verification is still far
from able to automatically analyze the source code or
executable of most middleboxes, let alone the hundreds
of interconnected devices that it interacts with [51]. Thus,
verifying middlebox code directly is practically infeasible.

Second, middlebox code does not always work with
easily verified abstractions. For example, some IDSes
attempt to identify suspicious traffic. No method can
possibly verify whether their code is successful in
identifying all suspicious traffic because there is no
accepted definition of what constitutes suspicious. Thus,
verifying such middlebox code is conceptually impossible.

Faced with these difficulties, we return to the problem
operators want to solve. They recognize that there may
be imprecision in identifying suspicious traffic, but they
want to ensure that all traffic that the middlebox identifies
as being suspicious is handled appropriately (e.g., by
being routed to a scrubber for further analysis). The first
problem – perfectly identifying suspicious traffic – is
not only ill-defined, it is not controlled by the operator
(in the sense that any errors in identification are beyond
the reach of the operator’s control). The second problem
– properly handling traffic considered suspicious by a
middlebox – is precisely what an operator’s configuration,
or misconfiguration, can impact.

The question, then is how to abstract away unnecessary
complexity so that we can provide useful answers to
operators. We do so by leveraging two insights. First,
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middlebox functionality can be logically divided into
two parts: forwarding (e.g., forward suspicious and
non-suspicious packets through different output ports)
and packet classification (e.g., whether a packet is
suspicious or not). Verifying this kind of amorphous
packet classification it not our concern. Second, there
exist a large number of different middleboxes, but most
of them belong to a relatively small set of middlebox types
– firewalls, IDS/IPSes, and network optimizers (the latter
police traffic, eliminate traffic redundancy, and cache
popular content) [6]; middleboxes of the same type define
similar packet classes (e.g., “suspicious traffic”) and use
similar forwarding algorithms, but may differ dramatically
in how they implement packet classification.

Hence, we model a middlebox as: a forwarding
model, a set of abstract packet classes, and a set of
oracles that automatically determine whether a packet
belongs to an abstract class – so, the oracle abstracts
away the implementation of packet classification. With
this approach, we do not need a new model for every
middlebox, only one per middlebox type.

This modeling approach avoids the conceptual difficul-
ties, but does not address the practical one of scaling to
large networks. One might argue that, once we abstract
away packet classification, what remains of middlebox
functionality is simple forwarding logic (how to forward
each packet class), hence it should be straightforward
to extend prior tools to handle middleboxes. However,
while checking reachability property in static networks
is PSPACE-complete [2], it is EXPSPACE-complete
when mutable datapaths are considered [56]. Mutable
verification is thus algorithmically more complicated.
Furthermore, recent work has shown that even verifying
such properties in large static networks requires the use of
“reduction techniques”, which allow invariants to be veri-
fied while reasoning about a small part of the network [40].
Applying such techniques to mutable datapaths is more
complex, because parts of the network may effect each
other through state, without explicitly exchanging traffic
– making it hard to partition the network.

To address this, we exploit the fact that, even in
networks with mutable datapaths, observed traffic often
affects only a well-defined subset of future traffic, e.g.,
packets from the same TCP connection or between the
same source and destination. We formalize this behavior
in the form of two middlebox properties: flow-parallelism
and origin-independence; when combined with structural
and policy symmetry, as is often the case in modern
networks [40], these properties enable us to use reduction
effectively and verify invariants in arbitrarily large
networks in a few seconds (§5).

The price we pay for model simplicity and scalability
is that we cannot use our work to check middlebox
implementations and catch interesting middlebox-specific

Listing 1: Model for an example firewall

1 class Firewall (acls:
↪→ Set[(Address, Address)]) {

2 abstract malicious(p: Packet): bool
3 val tainted: Set[Address]
4 def model (p: Packet) = {
5 tainted.contains(p.src)

↪→ => forward(Empty)
6 acls.contains((p.src,

↪→ p.dst)) => forward(Empty)
7 malicious(p)

↪→ => tainted.add(p.src);
↪→ forward(Empty)

8 _ => forward(Seq(p))
9 }

10 }

bugs [10]; however, we argue that it makes sense to develop
separate tools for that purpose, and not unnecessarily
complicate verification of reachability and isolation.

2 Modeling Middleboxes
We begin by looking at how middleboxes are modeled
in VMN. First, we provide a brief overview of how these
models are expressed (§2.1), then we present the rationale
behind our choices (§2.2), and finally we discuss discuss
real-world examples (§2.3).

2.1 Middlebox Models
We illustrate our middlebox models through the example
in Listing 1, which shows the model for a simplified
firewall. The particular syntax is not important to our
technique; we use a Scala-like language, because we found
the syntax to be intuitive for our purpose, and in order to
leverage the available libraries for parsing Scala code. We
limit our modeling language to not support looping (e.g.,
for, while, etc.) and only support branching through
partial functions (Lines 5–7).

A VMN model is a class that implements a model
method (Line 4). It may define oracles (e.g., malicious
on Line 3), which are abstract functions with specified
input (Packet in this case) and output (boolean in this
case) type. It may also define data structures—sets, lists,
and maps—to store state (e.g., tainted on Line 3) or
to accept input that specifies configuration (e.g., acls on
Line 1). Finally, it may access predefined packet-header
fields (e.g., p.src and p.dst on Lines 6 and 7). We
limit function calls to oracles and a few built-in functions
for extracting information from packet-header fields (our
example model does not use the latter).

The modelmethod specifies the middlebox’s forward-
ing behavior. It consists of a set of variable declarations,
followed by a set of guarded forwarding rules (Lines 5–8).
Each rule must be terminated by calling the forward
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function with a set of packets to forward (which could be
the empty set). In our example, the first three rules (Line
5–7) drop packets by calling forwardwith an empty set,
while the last one (Line 8) forwards the received packet p.

Putting it all together, the model in Listing 1 captures the
following middlebox behavior: On receiving a new packet,
first check if the packet’s source has previously contributed
malicious packets, in which case drop the packet (Line
5). Otherwise, check if the packet is prohibited by the
provided access control list (ACL), in which case drop
the packet (Line 6). Otherwise, checks if the packet
is malicious, in which case record the packet’s source
and drop the packet (Line 7). Finally, if none of these
conditions are triggered, forwards the packet (Line 8).

The model in Listing 1 does not capture how the firewall
determines whether a packet is malicious or not; that
part of its functionality is abstracted away through the
malicious oracle. We determine what classification
choices are made by an oracle (e.g., malicious) and
what are made as a part of the forwarding model (e.g., our
handling of ACLs) based on whether the packet can be
fully classified by just comparing header fields to known
values (these values might have been set as a part of
processing previous packets) – as is the case with checking
ACLs and whether a flow is tainted – or does it require
more complex logic (e.g., checking the content, etc.) – as
is required to mark a packet as malicious.

2.2 Rationale and Implications
Why did we choose to model middleboxes as a forwarding
model which can call a set of oracles?

First, we wanted to express middlebox behavior in the
same terms as those used by network operators to express
reachability and isolation invariants. Network operators
typically refer to traffic they wish to allow or deny in
two different ways: in terms of packet-header fields that
have semantic meaning in their network (e.g., a packet’s
source IP address indicates the particular end host or
user that generated that packet), or in terms of semantic
labels attached to packets or flows by middleboxes (e.g.,
“contains exploits,” “benign,” or “malicious”). This is why
a VMN model operates based on two kinds of information
for each incoming packet: predefined header fields and
abstract packet classes defined by the model itself, which
represent semantic labels.

Second, like any modeling work, we wanted to strike a
balance between capturing relevant behavior and abstract-
ing away complexity. Two elements guided us: first, the
middlebox configuration that determines which semantic
labels are attached to each packet is typically not written
by network operators: it is either embedded in middlebox
code, or provided by third parties, e.g., Emerging Threats
rule-set [12] or vendor provided virus definitions [52].
Second, the middlebox code that uses such rulesets

and/or virus definitions is typically sophisticated and
performance-optimized, e.g., IDSes and IPSes typically
extract the packet payload, reconstruct the byte stream,
and then use regular expression engines to perform pattern
matches. So, the part of middlebox functionality that maps
bit patterns to semantic labels (e.g., determines whether
a packet sequence is “malicious”) is hard to analyze, yet
unlikely to be of interest to an operator who wants to check
whether they configured their network as intended. This
is why we chose to abstract away this part with the oracles
– and model each middlebox only in terms of how it treats a
packet based on the packet’s headers and abstract classes.

Mapping low-level packet-processing code to seman-
tic labels is a challenge that is common to network-
verification tools that handle middleboxes. We address it by
explicitly abstracting such code away behind the oracles.
Buzz [14] provides ways to automatically derive models
from middlebox code, yet expects the code to be written in
terms of meaningful semantics like addresses. In practice,
this means that performance-optimized middleboxes (e.g.,
ones that build on DPDK [22] and rely on low level bit
fiddling) need to be hand-modeled for use with BUZZ. Sim-
ilarly, SymNet [51] claims to closely matches executable
middlebox code. However, SymNet also requires that code
be written in terms of access to semantic fields; in addition,
it allows only limited use of state and limits loops. In reality,
therefore, neither Buzz nor SymNet can model the behavior
of general middleboxes (e.g., IDSes and IPSes). We rec-
ognize that modeling complex classification behavior, e.g.,
from IDSes and IPSes, either by expressing these in a mod-
eling language or deriving them from code is impractical,
and of limited practical use when verifying reachability and
isolation. Therefore rather than ignoring IDSes and IPSes
(as done explicitly by SymNet, and implicitly by Buzz),
we use oracles to abstract away classification behavior.
How many different models? We need one model per
middlebox type, i.e., one model for all middleboxes
that define the same abstract packet classes and use the
same forwarding algorithm. A 2012 study showed that,
in enterprise networks, most middleboxes belong to a
small number of types: firewalls, IDS/IPS, and network
optimizers [49]. As long as this trend continues, we will
also need a small number of models.
Who will write the models? Because we need only a
few models, and they are relatively simple, they can
come from many sources. Operators might provide
them as part of their requests for bids, developers of
network-configuration checkers (e.g., Veriflow Inc. [57]
and Forward Network [15]) might develop them as part
of their offering, and middlebox manufactures might
provide them to enable reliable configuration of networks
which deploy their products. The key point is that one can
write a VMN model without access to the corresponding
middlebox’s source code or executable; all one needs is
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the middlebox’s manual—or any document that describes
the high-level classification performed by the middlebox
defines, whether and how it modifies the packets of a given
class, and whether it drops or forwards them.
What happens to the models as middleboxes evolve?
There are two ways in which middleboxes evolve: First,
packet-classification algorithms change, e.g., what
constitutes “malicious” traffic evolves over time. This
does not require any update to VMN models, as they
abstract away packet-classification algorithms. Second
semantic labels might change (albeit more slowly), e.g.,
an operator may label traffic sent by a new applications.
A new semantic label requires updating a model with a
new oracle and a new guided forwarding rule.
Limitations: Our approach cannot help find bugs in
middlebox code—e.g., in regular expression matching or
flow lookup—that would cause a middlebox to forward
packets it should be dropping or vice versa. In our opinion,
it does not make sense to incorporate such functionality in
our tool: such debugging is tremendously simplified with
access to middlebox code, while it does not require access
to the network topology where the middlebox will be
placed. Hence, we think it should be targeted by separate
debugging tools, to be used by middlebox developers,
not network operators trying to figure out whether they
configured their network as they intended.

2.3 Real-world Examples
Next, we present some examples of how existing mid-
dleboxes can be modeled in VMN. For brevity, we show
models for firewalls and intrusion prevention systems in
this section. We include other examples including NATs
(from iptables and pfSense), gateways, load-balancers
(HAProxy and Maglev [11]) and caches (Squid, Apache
Web Proxy) in Appendix A. We also use Varnish [20], a
protocol accelerator to demonstrate VMN’s limitations.

Firewalls We examined two popular open-source
firewalls, iptables [42] and pfSense [38], written by
different developers and for different operating systems
(iptables targets Linux, while pfSense requires
FreeBSD). These tools also provide NAT functions, but
for the moment we concentrate on their firewall functions.

For both firewalls, the configuration consists of a list
of match-action rules. Each action dictates whether a
matched packet should be forwarded or dropped. The
firewall attempts to match these rules in order, and packets
are processed according to the first rule they match.
Matching is done based on the following criteria:
• Source and destination IP prefixes.
• Source and destination port ranges.
• The network interface on which the packet is received

and will be sent.
• Whether the packet belongs to an established con-

nection, or is “related” to an established connection.

The two firewalls differ in how they identify related
connections: iptables relies on independent, protocol-
specific helper modules [32]. pfSense relies on a variety of
mechanisms: related FTP connections are tracked through
a helper module, related SIP connections are expected to
use specific ports, while other protocols are expected to
use a pfSense proxy and connections from the same proxy
are treated as being related.

Listing 2 shows a VMN model that captures the
forwarding behavior of both firewalls—and, to the best of
our knowledge, any shipping IP firewall. The configuration
input is a list of rules (Line 12). The related oracle
abstracts away the mechanism for tracking related connec-
tions (Line 13). Theestablished set tracks established
connections (Line 14). The forwarding model searches for
the first rule that matches each incoming packet (Lines 17–
26); if one is found and it allows the packet, then the packet
is forwarded (Line 27), otherwise it is dropped (Line 28).

Listing 2: Model for iptables and pfSense

1 case class Rule (
2 src: Option[(Address, Address)],
3 dst: Option[(Address, Address)],
4 src_port: Option[(Int, Int)],
5 dst_port: Option[(Int, Int)],
6 in_iface: Option[Int],
7 out_iface: Option[Int],
8 conn: Option[Bool],
9 related: Option[Bool],

10 accept: Bool
11 )
12 class Firewall (acls: List[Rule]) {
13 abstract related (p: Packet): bool
14 val established: Set[Flow]
15 def model (p: Packet) = {
16 val f = flow(p);
17 val match = acls.findFirst(
18 acl => (acl.src.isEmpty ||
19 acl.src._1 <=

↪→ p.src && p.src
↪→ < acl.src._2) &&

20 ...
21 (acl.conn.isEmpty ||
22 acl.conn ==

↪→ established(f))&&
23 (acl.related.isEmpty ||
24 acl.related

↪→ == related(f)));
25 match.isDefined && match.accept

↪→ => forward(Seq(p))
↪→ // We found
↪→ a match which said the
↪→ packet should be forwarded

26 _ => forward(Empty)
↪→ // Drop all other packets

27 }
28 }
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Intrusion Prevention Systems We considered two
kinds: general systems like Snort [45], which detect a
variety of attacks by performing signature matching on
packet payloads, and web application firewalls like Mod-
Security [44] and IronBee [43], which detect attacks on
web applications by analyzing HTTP requests and bodies
sent to a web server. Both kinds accept as configuration
“rulesets” that specify suspicious payload strings and other
conditions, e.g., TCP flags, connection status, etc., that
indicate malicious traffic. Network operators typically
rely on community maintained rulesets, e.g., Emerging
Threats [12] (with approximately 20,000 rules) and Snort
rulesets (with approximately 3500 rules) for Snort; and
OWASP [24] for ModSecurity and IronBee.

Listing 3: Model for IPS

1 class IPS {
2 abstract malicious(p: Packet): bool
3 val infected: Set[Flow]
4 def model (p: Packet) = {
5 infected.contains(flow(p))

↪→ => forward(Empty)
6 malicious(p)

↪→ => infected.add(flow(p);
↪→ forward(Empty)

7 _ => forward(Seq(p))
8 }
9 }

Listing 3 shows a VMN model that captures the
forwarding behavior of these systems. The malicious
oracle abstracts away how malicious packets are identified
(Line 2). The infected set keeps track of connections
that have contributed malicious packets (Line 3). The
forwarding model simply drops a packet if the connection
is marked as infected (Line 5) or is malicious according to
the oracle (Line 6). It may seem counter-intuitive that this
model is simpler than that of a firewall (Listing 2), because
we tend to think of IDS/IPSes as more complex devices;
however, a firewall has more sophisticated forwarding
behavior, which is what we model, whereas the complexity
of an IDS/IPS lies in packet classification, which is what
we abstract away.

Programmable web accelerators The Varnish
cache [20] demonstrates the limits of our approach.
Varnish allows the network operator to specify, in detail,
the handling of each HTTP(S) request, e.g., building
dynamic pages that reference static cached content, or even
generating simple dynamic pages. Varnish’s configuration
therefore acts more like a full-fledged program – and it
is hard to separate out “configuration” from forwarding
implementation. We can model Varnish by either develop-
ing a model for each configuration or abstracting away the
entire configuration. The former impedes reuse, while the
later is imprecise and neither is suitable for verification.

3 Modeling Networks
Having described VMN’s middlebox models, we turn to
how VMN models an entire network of middleboxes and
how we scale verification to large networks. Here we build
on existing work on static network verification [27,28]. For
scalability, which is one of our key contributions, we iden-
tify small network subsets—slices—where we can check
invariants efficiently. For some common middleboxes we
can find slices whose size is independent of network size.

3.1 Network Models
Veriflow [28] and header-space analysis [27] (HSA) sum-
marize network behavior as a network transfer function.
This builds on the concept of a located packet, i.e., a packet
augmented with the input port on which it is received. A
network transfer function takes as input a located packet
and produces a set of located packets. The transfer function
ensures that output packets are located at feasible ports,
i.e., at ports physically connected to the input location.

VMN models a network as a collection of end hosts and
middleboxes connected by a network transfer function.
More formally, we define a network N = (V,E,P) to be
a set of nodes V , a set of links (edges) E connecting the
nodes, and a possibly infinite set of packets P. Nodes
include both end hosts and middleboxes. For notational
convenience, each packet p ∈ P includes its network
location (port), which is given by p.loc. For such a
network N, we define the network transfer function NT as

NT :p→P′⊆P,
where p∈P is a packet and P′⊆P is a set of packets.

Given a network, we treat all end hosts and middleboxes
as endpoints from which packets can be sent and at which
they can be received; we then use Veriflow to generate a
transfer function for this network, and we turn the resulting
output into a form that can be accepted by an SMT
solver. This essentially transforms the network into one
where all packets sent from end hosts traverse a sequence
of middleboxes before being delivered to their final
destination. Our verification then just focuses on checking
whether the sequence of middleboxes encountered by
a packet correctly enforces any desired reachability
invariant. Note that, if a reachability invariant is enforced
merely by static-datapath—e.g., router—configuration,
we do successfully detect that, i.e., VMN’s verification
is a generalization of static network verification.

Veriflow and HSA cannot verify networks with
forwarding loops, and we inherit this limitation; we check
to ensure that the network does not have any forwarding
loop and raise an error whenever one is found.

3.2 Scaling Verification: Slicing
While network transfer functions reduce the number of
distinct network elements that need to be considered
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in verification, this reduction is often insufficient. For
example, Microsoft’s Chicago Datacenter [8] contains
over 224,000 servers running virtual machines connected
over virtual networks. In such an environment, each server
typically acts as a middlebox, resulting in a network
with several 100,000 middleboxes, e.g., firewalls, load
balancers, SSL proxies, etc.. We want to be able to check
invariants in such large networks within a few minutes,
however, typically verifying such large instances is
infeasible or takes several days.

Our approach to achieving this goal is to identify subnet-
works which can be used to efficiently verify invariants. We
provide a brief overview of our techniques in this section,
and deal a more complete treatment to Appendix C.

First, we formally define a subnetwork: Given a network
N = (V,E,P) with network transfer function NT , a sub-
network Ω of N is a subgraph of N consisting of: a subset
of the nodes in V ; all links in E that connect this subset
of nodes; and all packets in P whose location, source and
destination are in Ω. We say that a packet’s source (des-
tination) is in Ω, if and only if a node in Ω has the right to
use the packet’ source (destination) address.1 We compute
a restricted transfer function NT |Ω for subnetwork Ω by
modifying NT such that its domain and range are restricted
to packets in Ω. We say that subnetwork Ω is closed under
forwarding, if, for any packet p in Ω, NT |Ω(p) =NT (p),
i.e., the packet is not forwarded out of Ω.

A slice is a special kind of subnetwork. We treat the net-
work as a state machine whose state is defined by the set of
packet that have been delivered, the set of packets pending
delivery and the state of all middleboxes (see Appendix C
for details). State transitions in this model represent the
creation of a new packet at an endhost or the delivery and
processing of a pending packet at a node. We say that a
state S is reachable in the network, if and only if there is a
valid sequence of transitions starting from an initial state2

that results in the network being in state S. A subnetwork
Ω is closed under state, if and only if (a) it is closed under
forwarding and (b) every state that is reachable in the entire
network has an equivalent reachable state in Ω (i.e., a sur-
jection exists between the network state and subnetwork’s
state). A slice is a subnetwork that is closed under state.

In our formalism, an invariant I is a predicate on the
state of a network, and an invariant is violated if and
only if the predicate does not hold for a reachable state.
We say an invariant is evaluable on a subnetwork Ω, if
the corresponding predicate refers only to packets and
middlebox state contained within Ω. As we show in
Appendix C, any invariant evaluable on some slice Ω of
network N, holds in Ω if and only if it also holds in N.

1We assume that we are provided with a mapping from each node
to the set of addresses that it can use.

2The initial state represents a network where no packets have been
created or delivered.

The remaining challenge is to identify such a slice
given a network N and an invariant I, and we do so by
taking advantage of how middleboxes update and use
state. We identify two types of middleboxes: flow-parallel
middlebox, whose state is partitioned such that two
distinct flows cannot affect each other; and origin-agnostic
middleboxes whose behavior is not affected by the origin
(i.e., sequence of transitions) of its current state. If all
middleboxes in the network have one of these properties,
then invariants can be verified on slices whose size is
independent of the size of the network.

3.2.1 Flow-Parallel Middleboxes

Several common middleboxes partition their state by flows
(e.g., TCP connections), such that the handling of a packet
is dictated entirely by its flow and is independent of any
other flows in the network. Examples of such middleboxes
include firewalls, NATs, IPSes, and load balancers. For
analysis, such middleboxes can be decomposed into a set
of middleboxes, each of which processes exactly one flow
without affect network behavior. From this observation
we deduce that any subnetwork that is closed under
forwarding and contains only flow-parallel middleboxes
is also closed under state, and is therefore a slice.

Therefore, , if a network N contains only flow-parallel
middleboxes, then we can find a slice on which invariant I is
evaluable by picking the smallest subnetwork Ω on which I
is evaluable (which always exists) and adding the minimal
set of nodes from network N required to ensure that it
is closed under forwarding. This minimal set of nodes is
precisely the set of all middleboxes that appear on any path
connecting hosts in Ω. Since path lengths in a network are
typically independent of the size of the network, the size of
a slice is generally independent of the size of the network.
We present an example using slices comprised of flow-
parallel middleboxes, and evaluate its efficiency in §5.1.

3.2.2 Origin Agnostic Middleboxes

Even when middleboxes, e.g., caches, must share state
across flows, their behavior is often dependent only on
the state of a middlebox not on the sequence of transitions
leading up to that state, we call such middleboxes
origin-agnostic. Examples of origin-agnostic middleboxes
include caches—whose behavior depends only on whether
some content is cached or not; IDSes, etc. We also observe
that network policy commonly partitions end hosts into
policy equivalence classes, i.e., into set of end hosts
to which the same policy applies and whose packets
are treated equivalently. In this case, any subnetwork
that is closed under forwarding, and contains only
origin-agnostic (or flow-parallel) middleboxes, and has an
end host from each policy equivalence class in the network
is also closed under state, hence, it is a slice.

Therefore, given a network N containing only flow-
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parallel and origin-agnostic middleboxes and an invariant
I, we can find a slice on which I is evaluable by using a
procedure similar to the one for flow-parallel middleboxes.
This time round, the slice must contain an end host from
each policy equivalence class, and hence the size of the
slice depends on the number of such classes in the network.
Networks with complex policy are harder to administer,
and generally scaling a network does not necessitate adding
more policy classes. Therefore, the size of slices in this case
is also independent of the size of the network. We present
an example using slices comprised of origin-agnostic mid-
dleboxes, and evaluate its efficiency in §5.2.

3.3 Scaling Verification: Symmetry
Slicing allows us to verify an individual invariant in an arbi-
trarily large network. However, the correctness of an entire
network depends on several invariants holding simultane-
ously, and the number of invariants needed to prove that
an entire network is correct grows with the size of the net-
work. Therefore, to scale verification to the entire network
we must reduce the number of invariants that need to be
checked. For this we turn to symmetry; we observe that net-
works (especially as modeled in VMN) have a large degree
of symmetry, with traffic between several end host pairs
traversing the same sequence of middlebox types, with
identical configurations. Based on this observation, and on
our observation about policy equivalence classes we can
identify invariants which are symmetric; we define two in-
variants I1 and I2 to be symmetric if I1 holds in the network
N if and only if I2 also holds in the network. Symmetry can
be determined by comparing the smallest slices in which
each invariant can be evaluated, and seeing if the graphs
are isomorphic up to the type and configuration of individ-
ual middleboxes. When possible VMN uses symmetry to
reduce the number of invariants that need to be verified,
enabling correctness to be checked for the entire network.

4 Checking Reachability
VMN accepts as input a set of middlebox models connected
through a network transfer function representing a slice of
the original network, and one or more invariants; it then
runs a decision procedure to check whether the invariants
hold in the given slice or are violated. In this section we first
describe the set of invariants supported by VMN (§4.1) and
then describe the decision procedure used by VMN (§4.2).

4.1 Invariants
VMN focuses on checking isolation invariants, which
are of the form “do packets (or data) belonging to some
class reach one or more end hosts, given certain conditions
hold?” We say that an invariant holds if and only if
the answer to this question is no. We verify this fact
assuming worse-case behavior from the oracles. We
allow invariants to classify packet or data using (a) header

fields (source address, destination address, ports, etc.);
(b) origin, indicating what end host originally generated
some content; (c) oracles e.g., based on whether a packet is
infected, etc.; or (d) any combination of these factors, i.e.,
we can choose packets that belong to the intersection of
several classes (using logical conjunction), or to the union
of several classes (using disjunction). Invariants can also
specify temporal conditions for when they should hold,
e.g., invariants in VMN can require that packets (in some
class) are blocked until a particular packet is sent. We now
look at a few common classes of invariants in VMN.

Simple Isolation Invariants are of the form “do
packets belonging to some class reach destination node
d?” This is the class of invariants supported by stateless
verification tools e.g., Veriflow and HSA. Concrete
examples include “Do packets with source address a reach
destination b?”, “Do packets sent by end host a reach
destination b?”, “Are packets deemed mallicious by Snort
delivered to server s?”, etc.

Flow Isolation Invariants extend simple isolation
invariants with temporal constraints. This includes
invariants like “Can a receive a packet from b without
previously opening a connection?”

Data Isolation Invariants make statements about
what nodes in the network have access to some data, this
is similar to invariants commonly found in information
flow control [59] systems. Examples include “Can data
originating at server s be accessed by end host b?’

Pipeline Invariants ensure that packets of a certain
class have passed through a particular middlebox.
Examples include “Do all packets marked as suspicious by
a light IDS pass through a scrubber before being delivered
to end host b?”

4.2 Decision Procedure
VMN’s verification procedure builds on Z3 [9], a modern
SMT solver. Z3 accepts as input logical formulae (written
in first-order logic with additional “theories” that can
be used to express functions, integers and other objects)
which are expressed in terms of variables, and returns
whether there exists a satisfying assignment of values to
variables, i.e., whether their exists an assignment of values
to variables that render all of the formulae true. Z3 returns
an example of a satisfying assignment when the input
formulae are satisfiable, and labels them unsatisfiable
otherwise. Checking the satisfiability of first-order logic
formuals is undecidable in general, and even determining
whether satisfiablity can be successfully checked for a
particular input is undecidable. As a result Z3 relies on
timeouts to ensure termination, and reports unknown when
a timeout is triggered while checking satifiability.

The input to VMN’s verification procedure is comprised
of a set of invariants and a network slice. The network slice
is expressed as a set of middlebox models, a set of middle-
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Figure 1: Topology for a datacenter network with
middleboxes from [41]. The topology contains firewalls
(FW), load balancers (LB) and intrusion detection and
prevention systems (IDPS).
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Figure 3: Time taken to verify all network invariants as a
function of policy complexity for §5.1. The plot presents
minimum, maximum, 5th, 50th and 95th percentile time
for each.

box instances, a set of end hosts and a network transfer func-
tion connecting these nodes. VMN converts this input into
a set of first order formulae, which we refer to as the slice
model. We give details of our logical models in Appendix B,
but at a high-level: VMN first adds formulas for each mid-
dlebox instance, this formula is based on the provided
models; next it compiles the network transfer function into
a logical formula; finally it adds formula for each end host.

In VMN, invariants are expressed as logical formula, and
we provide convenience functions designed to simplify the
task of writing such invariants. As is standard in verifica-
tion the logical formula representing an invariant is a nega-
tion of the invariant itself, and as a result the logical formu-
lation is satisfiable if and only if the invariants is violated.

VMN checks invariants by invoking Z3 to check
whether the conjunction of the slice model and invariants
is satisfiable. We report that the invariant holds if and only
if Z3 proves this formal to be unsatisfiable, and report the
invariant is vilated when a satisfying assignment is found.
A convenient feature of such a mechanism is that when a
violation is found we can use the satisfying assignment to
generate an example where the invariant is violated. This
is useful for diagnosing and fixing the configuration error
that led to the violation.

Finally, as shown in Appendix D, the formulae gener-
ated by VMN lie in a fragment of first order logic called
EPR-F, which is an extension of “Effectively Propositional
Reasoning” (EPR) [39] a decidable fragment of first-order
logic. The logical models produced by VMN are therefore
decidable, however when verifying invariants on large
network slices Z3 might timeout, and thus VMN may not
always be able to determine whether an invariant holds
or is violated in a network. In our experience, verification
of invariants generally succeeds for slices with up to a few
hundred middleboxes.

5 Evaluation
To evaluate VMN we first examine how it would deal with
several real-world scenarios and then investigate how it
scales to large networks. We ran our evaluation on servers
running 10-core, 2.6GHz Intel Xeon processors with 256
GB of RAM. We report times taken when verification is
performed using a single core. Verification can be trivially

parallelized over multiple invariants. We used Z3 version
4.4.2 for our evaluation. SMT solvers rely on randomized
search algorithms, and their performance can vary widely
across runs. The results reported here are generated from
100 runs of each experiment.

5.1 Real-World Evaluation
A previous measurement study [41] looked at more than
10 datacenters over a 2 year period, and found that con-
figuration bugs (in both middleboxes and networks) are a
frequent cause of failure. Furthermore, the study analyzed
the use of redundant middleboxes for fault tolerance, and
found that redundancy failed due to misconfiguration
roughly 33% of the time. Here we show how VMN can
detect and prevent the three most common classes of con-
figuration errors, including errors affecting fault tolerance.
For our evaluation we use a datacenter topology (Figure 1)
containing 1000 end hosts and three types of middleboxes:
stateful firewalls, load balancers and intrusion detection
and prevention systems (IDPSs). We use redundant
instances of these middleboxes for fault tolerance. We use
load balancers to model the effect of faults (i.e., the load
balancer can non-deterministically choose to send traffic to
a redundant middlebox). For each scenario we report time
taken to verify a single invariant (Figure 2), and time taken
to verify all invariants (Figure 3); and show how these
times grow as a function of policy complexity (as measured
by the number of policy equivalence classes). Each box
and whisker plot shows minimum, 5th percentile, median,
95th percentile and maximum time for verification.

Incorrect Firewall Rules: According to [41], 70% of
all reported middlebox misconfiguration are attributed
to incorrect rules installed in firewalls. To evaluate this
scenario we begin by assigning each end host to one of
a few policy groups.3 We then add firewall rules to prevent
end hosts in one group from communicating with end
hosts in any other group. We introduce misconfiguration
by deleting a random set of these firewall rules. We use
VMN to identify for which end hosts the desired invariant

3Note, policy groups are distinct from policy equivalence class; a
policy group signifies how a network administrator might group end
hosts while configuring the network, however policy equivalence classes
are assigned based on the actual network configuration.
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Figure 5: Time taken to verify all data isolation invariants in the
network described in §5.2.

holds (i.e., that end hosts can only communicate with other
end hosts in the same group). Note that all middleboxes
in this evaluation are flow-parallel, and hence the size of
a slice on which invariants are verified is independent of
both policy complexity and network size. In our evaluation,
we found that VMN correctly identified all violations,
and did not report any false positives. The time to verify
a single invariant is shown in Figure 2 under Rules. When
verifying the entire network, we only need to verify as
many invariants as policy equivalence classes; end hosts
affected by misconfigured firewall rules fall in their own
policy equivalence class, since removal of rules breaks
symmetry. Figure 3 (Rules) shows how whole network
verification time scales as a function of policy complexity.

Misconfigured Redundant Firewalls Redundant
firewalls are often misconfigured so that they do not
provide fault tolerance. To show that VMN can detect such
errors we took the networks used in the preceding simu-
lations (in their properly configured state) and introduced
misconfiguration by removing rules from some of the
backup firewall. In this case invariant violation would only
occur when middleboxes fail. We found VMN correctly
identified all such violations, and we show the time taken
for each invariant in Figure 2 under “Redundant”, and
time taken for the whole network in Figure 3.

Misconfigured Redundant Routing Another way that
redundancy can be rendered ineffective by misconfigura-
tion is if routing (after failures) allows packets to bypass
the middleboxes specified in the pipeline invariants. To test
this we considered, for the network described above, an
invariant requiring that all packet in the network traverse
an IDPS before being delivered to the destination end host.
We changed a randomly selected set of routing rules so that
some packets would be routed around the redundant IDPS
when the primary had failed. VMN correctly identified
all such violations, and we show times for individual and
overall network verification under “Traversal” in Figures 2
and 3.

We can thus see that verification, as provided by
VMN, can be used to prevent many of the configuration
bugs reported to affect today’s production datacenters.

Moreover, the verification time scales linearly with the
number of policy equivalence classes (with a slope of
about three invariants per second). We now turn to more
complicated invariants involving data isolation.

5.2 Data Isolation
Modern data centers also run storage services such as
S3 [46], AWS Glacier [19], and Azure Blob Store [3].
These storage services must comply with legal and
customer requirements [37] limiting access to this
data. Operators often add caches to these services to
improve performance and reduce the load on the storage
servers themselves, but if these caches are misplaced or
misconfigured then the access policies could be violated.
VMN can verify these data isolation invariants.

To evaluate this functionality, we used the topology (and
correct configuration) from §5.1 and added a few content
caches by connecting them to top of rack switches. We also
assume that each policy group contains separate servers
with private data (only accessible within the policy group),
and servers with public data (accessible by everyone). We
then consider a scenario where a network administrator
inserts caches to reduce load on these data servers. The
content cache is configured with ACL entries4 that can
implement this invariant. Similar to the case above, we
introduce configuration errors by deleting a random set
of ACLs from the content cache and firewalls.

We use VMN to verify data isolation invariants in this
network (i.e., ensure that private data is only accessible
from within the same policy group, and public data is
accessible from everywhere). VMN correctly detects
invariant violations, and does not report any false positives.
Content caches are origin agnostic, and hence the size of a
slice used to verify these invariants depends on policy com-
plexity. Figure 4 shows how time taken for verifying each
invariant varies with the number of policy equivalence
classes. In a network with 100 different policy equivalence
classes, verification takes less than 4 minutes on average.
Also observe that the variance for verifying a single invari-

4This is a common feature supported by most open source and
commercial caches.
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Figure 6: Topology for enterprise network used in
§5.3.1, containing a firewall (FW) and a gateway (GW).
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Figure 8: Average verification time for each invariant
in a multi-tenant datacenter (§5.3.2) as a function of
number of tenants. Each tenant has 10 end hosts. The
left of the vertical line shows time taken to verify a slice,
which is independent of the number of tenants.

ant grows with the size of slices used. This shows one of the
reasons why the ability to use slices and minimize the size
of the network on which an invariant is verified is impor-
tant. Figure 5 shows time taken to verify the entire network
as we increase the number of policy equivalence classes.

5.3 Other Network Scenarios
We next apply VMN to several other scenarios that
illustrate the value of slicing (and symmetry) in reducing
verification time.

5.3.1 Enterprise Network with Firewall

First, we consider a typical enterprise or university
network protected by a stateful firewall, shown in Figure 6.
The network interconnects three types of end hosts:

1. Hosts in public subnets should be allowed to both
initiate and accept connections with the outside world.

2. Hosts in private subnets should be flow-isolated (i.e.,
allowed to initiate connections to the outside world, but
never accept incoming connections).

3. Hosts in quarantined subnets should be node-
isolated (i.e., not allowed to communicate with the outside
world).
We vary the number of subnets keeping the proportion of
subnet types fixed; a third of the subnets are public, a third
are private and a third are quarantined.

We configure the firewall so as to enforce the target
invariants correctly: with two rules denying access (in
either direction) for each quarantined subnet, plus one rule
denying inbound connections for each private subnet. The
results we present below are for the case where all the target
invariants hold. Since this network only contains a firewall,
using slices we can verify invariants on a slice whose size
is independent of network size and policy complexity. We
can also leverage the symmetry in both network and policy
to reduce the number of invariants that need to be verified
for the network. In contrast, when slices and symmetry
are not used, the model for verifying each invariant grows
as the size of the network, and we have to verify many
more invariants. In Figure 7 we show time taken to verify
the invariant using slices (Slice) and how verification time
varies with network size when slices are not used.

5.3.2 Multi-Tenant Datacenter

Next, we consider how VMN can be used by a cloud
provider (e.g., Amazon) to verify isolation in a multi-tenant
datacenter. We assume that the datacenter implements the
Amazon EC2 Security Groups model [1]. For our test we
considered a datacenter with 600 physical servers (which
each run a virtual switch) and 210 physical switches (which
implement equal cost multi-path routing). Tenants launch
virtual machines (VMs), which are run on physical servers
and connect to the network through virtual switches. Each
virtual switch acts as a stateful firewall, and defaults to
denying all traffic (i.e., packets not specifically allowed by
an ACL are dropped). To scale policy enforcement, VMs
are organized in security groups with associated accept/-
deny rules. For our evaluation, we considered a case where
each tenant organizes their VMs into two security groups:

1. VMs that belong to the public security group are
allowed to accept connections from any VMs.

2. VMs that belong to the private security group are
flow-isolated (i.e., they can initiate connections to other
tenants’ VMs, but can only accept connections from this
tenant’s public and private VMs).

We also assume that firewall configuration is specified
in terms of security groups (i.e., on receiving a packet the
firewall computes the security group to which the sender
and receiver belong and applies ACLs appropriately). For
this evaluation, we configured the network to correctly
enforce tenant policies. We added two ACL rules for each
tenant’s public security group allowing incoming and
outgoing packets to anyone, while we added three rules
for private security groups; two allowing incoming and
outgoing traffic from the tenant’s VM, and one allowing
outgoing traffic to other tenants. For our evaluation we
consider a case where each tenant has 10 VMs, 5 public
and 5 private, which are spread across physical servers.
These rules result in flow-parallel middleboxes, so we can
use fixed size slices to verify each invariant. The number of
invariants that need to be verified grow as a function of the
number of tenants. In Figure 8 we show time taken to verify
one instance of the invariant when slices are used (Slice)
and how verification time varies with network size when
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Figure 9: (a) shows the pipeline at each peering point for an ISP; (b) distribution of time to verify each invariant given this pipeline when the ISP peers with other networks
at 5 locations; (c) average time to verify each invariant when the ISP has 75 subnets. In both cases, to the left of the black line we show time to verify on a slice (which is
independent of network size) and vary sizes to the right.

slices are not used. The invariants checked are: (a) private
hosts in one group cannot reach private hosts in another
group (Priv-Priv), (b) public hosts in one group cannot
reach private hosts in another group (Priv-Pub), and (c)
private hosts in one group can reach public hosts in another.

5.3.3 ISP with Intrusion Detection

Finally, we consider an Internet Service Provider (ISP)
that implements an intrusion detection system (IDS). We
model our network on the SWITCHlan backbone [53],
and assume that there is an IDS box and a stateful firewall
at each peering point (Figure 9(a)). The ISP contains
public, private and quarantined subnets (with policies
as defined in §5.3.1) and the stateful firewalls enforce
the corresponding invariants. Additionally, each IDS
performs lightweight monitoring (e.g., based on packet or
byte counters) and checks whether a particular destination
prefix (e.g., a customer of the ISP) might be under attack;
if so, all traffic to this prefix is rerouted to a scrubbing
box that performs more heavyweight analysis, discards
any part of the traffic that it identifies as “attack traffic,”
and forwards the rest to the intended destination. This
combination of multiple lightweight IDS boxes and one
(or a few) centralized scrubbing boxes is standard practice
in ISPs that offer attack protection to their customers.5

To enforce the target invariants (for public, private, and
quarantined subnets) correctly, all inbound traffic must
go through at least one stateful firewall. We consider a
misconfiguration where traffic rerouted by a given IDS box
to the scrubbing box bypasses all stateful firewalls. As a
result, any part of this rerouted traffic that is not discarded
by the scrubbing box can reach private or quarantined
subnets, violating the (simple or flow-) isolation of the
corresponding end hosts.

When verifying invariants in a slice we again take
advantage of the fact that firewalls and IDSes are
flow-parallel. For each subnet, we can verify invariants
in a slice containing a peering point, a end host from
the subnet, the appropriate firewall, IDS and a scrubber.

5This setup is preferred to installing a separate scrubbing box at each
peering point because of the high cost of these boxes, which can amount
to several million dollars for a warranteed period of 3 years.

Furthermore, since all subnets belong to one of three
policy equivalence classes, and the network is symmetric,
we only need run verification on three slices.

We begin by evaluating a case where the ISP, similar
to the SWITCHlan backbone has 5 peering points with
other networks. We measure verification time as we vary
the number of subnets (Figure 9(b)), and report time
taken, on average, to verify each invariant. When slices
are used, the median time for verifying an invariant is
0.21 seconds, by contrast when verification is performed
on the entire network, a network with 250 subnets takes
approximately 6 minutes to verify. Furthermore, when
verifying all invariants, only 3 slices need to be verified
when we account for symmetry, otherwise the number of
invariants verified grows with network size.

In Figure 9(c) we hold the number of subnets constant
(at 75) and show verification time as we vary the number
of peering points. In this case the complexity of verifying
the entire network grows more quickly (because the IDS
model is more complex leading to a larger increase in prob-
lem size). In this case, verifying correctness for a network
with 50 peering points, when verification is performed on
the whole entire network, takes approximately 10 minutes.
Hence, being able to verify slices and use symmetry is
crucial when verifying such networks.

6 Related Work
Next, we discuss related work in network verification and
formal methods.
Testing Networks with Middleboxes The work most
closely related to us is Buzz [14], which uses symbolic
execution to generate sequences of packets that can be used
to test whether a network enforces an invariant. Testing,
as provided by Buzz, is complimentary to verification.
Our verification process does not require sending traffic
through the network, and hence provides a non-disruptive
mechanism for ensuring that changes to a network (i.e.,
changing middlebox or routing configuration, adding new
types of middleboxes, etc.) do not result in invariant vi-
olation. Verification is also useful when initially designing
a network, since designs can be evaluated to ensure they
uphold desirable invariants. However, as we have noted,
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our verification results hold if and only if middlebox imple-
mentations are correct, i.e., packets are correctly classified,
etc. Combining a verification tool like VMN with a testing
tool such as Buzz allows us to circumvent this problem,
when possible (i.e., when the network is not heavily
utilized, or when adding new types of middleboxes), Buzz
can be used to test if invariants hold. This is similar to
the relationship between ATPG (testing) and HSA (ver-
ification), and more generally to the complimentary use
of verification and testing in software development today.

Beyond the difference of purpose, there are some other
crucial difference between Buzz and VMN: (a) in contrast
to VMN, Buzz’s middlebox models are specialized to
a context and cannot be reused across networks, and (b)
Buzz does not use techniques such as slicing, limiting its
applicability to networks with only several 100 nodes. We
believe our slicing techniques can be adopted to Buzz.

Similarly, SymNet [51] proposes the use of symbolic
execution for verifying network reachability. They rely on
models written in a symbolic execution friendly language
SEFL where models are supposed to closely resemble
middlebox code. However, to ensure feasibility for sym-
bolic execution, SEFL does not allow unbounded loops,
or pointer arithmetic and limits access to semantically
meaningful packet fields. These models are therefore very
different from the implementation for high performance
middleboxes. Furthermore, due to these limitations SEFL
cannot model middleboxes like IDSes and IPSes, and is
limited to modeling flow-parallel middleboxes.
Verifying Forwarding Rules Recent efforts in network
verification [2, 5, 17, 27, 28, 35, 48, 50] have focused on
verifying the network dataplane by analyzing forwarding
tables. Some of these tools including HSA [26], Libra [60]
and VeriFlow [28] have also developed algorithms to
perform near real-time verification of simple properties
such as loop-freedom and the absence of blackholes.
Recent work [40] has also shown how techniques similar
to slicing can be used to scale these techniques. Our
approach generalizes this work by accounting for state and
thus extends verification to mutable datapaths.
Verifying Network Updates Another line of network
verification research has focused on verification during
configuration updates. This line of work can be used
to verify the consistency of routing tables generated
by SDN controllers [25, 55]. Recent efforts [34] have
generalized these mechanisms and can determine what
parts of configuration are affected by an update, and verify
invariants on this subset of the configuration. This work
does not consider dynamic, stareful datapath elements
with more frequent state updates.
Verifying Network Applications Other work has looked
at verifying the correctness of control and data plane
applications. NICE [5] proposed using static analysis
to verify the correctness of controller programs. Later

extensions including [31] have looked at improving the
accuracy of NICE using concolic testing [47] by trading
away completeness. More recently, Vericon [4] has looked
at sound verification of a restricted class of controllers.

Recent work [10] has also looked at using symbolic
execution to prove properties for programmable datapaths
(middleboxes). This work in particular looked at verifying
bounded execution, crash freedom and that certain packets
are filtered for stateless or simple stateful middleboxes
written as pipelines and meeting certain criterion. The
verification technique does not scale to middleboxes like
content caches which maintain arbitrary state.
Finite State Model Checking Finite state model check-
ing has been applied to check the correctness of many
hardware and software based systems [5, 7, 27]. Here the
behavior of a system is specified as a transition relation be-
tween finite state and a checker can verify that all reachable
states from a starting configuration are safe (i.e., do not
cause any invariant violation). However these techniques
scale exponentially with the number of states and for even
moderately large problems one must choose between being
able to verify in reasonable time and completeness. Our
use of SMT solvers allows us to reason about potentially
infinite state and our use of simple logic allows verification
to terminate in a decidable manner for practical networks.
Language Abstractions Several recent works in software-
defined networking [16, 21, 29, 36, 58] have proposed
the use of verification friendly languages for controllers.
One could similarly extend this concept to provide a
verification friendly data plane language however our
approach is orthogonal to such a development: we aim at
proving network wide properties rather than properties
for individual middleboxes

7 Conclusion
In this paper we presented VMN, a system for verifying
isolation invariants in networks with middleboxes. The
key insights behind our work is that abstract middleboxes
are well suited to verifying network configuration; and
the use of slices which allow invariants to be verified on
a subset of the network is essential to scaling.
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A Real-world Models
Here we provide models for real world middleboxes, in
addition to the ones listed in §2.3.

NATs We also examined the NAT functions of
iptables and pfSense. Each of them provides both a
“source NAT” (SNAT) function, which allows end-hosts
with private addresses to initiate Internet connections, and
a “destination NAT” (DNAT) function, which allows end-
hosts with private addresses to accept Internet connections.

Listing 4 shows a VMN model for both SNATs. The con-
figuration input is the box’s public address (Line 1). The
remapped port oracle returns an available port to be
used for a new connection, abstracting away the details of
how the port is chosen (Line 2); during verification, we as-
sume that the oracle may return any port. Theactive and
reverse maps associate private addresses to ports and
vice versa (Lines 3–4). The forwarding model: on receiving
a packet that belongs to an established connection, the nec-
essary state is retrieved from either the reversemap—
when the packet comes from the public network (Lines 6–
10)—or the activemap—when the packet comes from
the private network (Lines 11–14); on receiving a packet
from the private network that is establishing a new connec-
tion, the oracle is consulted to obtain a new port (Line 19)
and the relevant state is recorded in the maps (Lines 20–21)
before the packet is forwarded appropriately (Line 22). To
model a SNAT that uses a pool of public addresses (as op-
posed to a single address), we instantiate one SNAT object
(as defined in Listing 4) per address and define an oracle
that returns which SNAT object to use for each connection.

Listing 4: Model for a Source NAT

1 class SNAT (nat_address: Address){

2 abstract
↪→ remapped_port (p: Packet): int

3 val active : Map[Flow, int]
4 val reverse

↪→ : Map[port, (Address, int)]
5 def model (p: Packet) = {
6 dst(p) == nat_address =>
7 (dst, port)

↪→ = reverse[p.dst_port];
8 p.dst = dst;
9 p.dst_port = port;

10 forward(Seq(p))
11 active.contains(flow(p)) =>
12 p.src = nat_address;
13 p.src_port = active(flow(p));
14 forward(Seq(p))
15 _ =>
16 address = p.src;
17 port = p.src_port
18 p.src = nat_address;
19 p.src_port = remapped_port(p);
20 active(flow(p)) = p.src_port;
21 reverse(p.src_port)

↪→ = (address, port);
22 forward(Seq(p))
23 }
24 }

Listing 5 shows a VMN model for both DNATs. The
configuration input is a map associating public address/-
port pairs to private ones (Line 1). There are no oracles.
Thereversemap associates private address/port pairs to
public ones (Line 2). The forwarding model: on receiving,
from the public network, a packet whose destination
address/port were specified in the configuration input,
the packet header is updated accordingly and the original
destination address/port pair recorded in the reverse
map (Lines 3–9); conversely, on receiving, from the private
network, a packet that belongs to an established connec-
tion, the necessary state is retrieved from the reverse
map and the packet updated accordingly (Lines 10–13);
any other received packets pass through unchanged.

Listing 5: Model for a Destination NAT

1 class DNAT(translations:
↪→ Map[(Address,
↪→ int), (Address, int)]) {

2 val reverse:
↪→ Map[Flow, (Address, int)]

3 def model (p: Packet) = {
4 translations.contains((p.dst,

↪→ p.dst_port)) =>
5 dst = p.dst;
6 dst_port = p.dst_port;
7 p.dst = translations[(p.dst,

↪→ p.dst_port)]._1;
8 p.dst_port

↪→ = translations[(p.dst,
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↪→ p.dst_port)]._2;
9 reverse[flow(p)]

↪→ = (dst, dst_port);
10 forward(Seq(p))
11 reverse.contains(flow(p)) =>
12 p.src = reverse[flow(p)]._1;
13 p.src_port

↪→ = reverse[flow(p)]._2;
14 forward(Seq(p))
15 _ => forward(Seq(p))
16 }
17 }

Gateways A network gateway often performs firewall,
NAT, and/or IDS/IPS functions organized in a chain. In fact,
both iptables and pfSense are modular gateways that
consist of configurable chains of such functions (e.g., in
iptables one can specify a CHAIN parameter for NAT
rules). To model such a modular gateway, we have written
a script that reads the gateway’s configuration and creates
a pipeline of models, one for each specified function.

Listing 6: Model for a Load Balancer

1 class LoadBalancer(backends:
↪→ List[Address]) {

2 val assigned: Map[Flow, Address]
3 abstract

↪→ pick_backend(p: Packet): int
4 def model (p: Packet) = {
5 assigned.contains(flow(p)) =>
6 p.dst = assigned[flow(p)]
7 forward(Seq(p))
8 _ =>
9 assigned[flow(p)] =

↪→ backends[pick_backend(p)]
10 p.dst = assigned[flow(p)]
11 forward(Seq(p))
12 }
13 }

Load-balancers A load-balancer performs a concep-
tually simple function: choose the backend server that
will handle each new connection and send to it all packets
that belong to the connection. We considered two kinds:
systems like HAProxy [54], which control the backend
server that will handle a packet by rewriting the packet’s
destination address, and systems like Maglev [11], which
control the backend server through the packet’s output
network interface. Both kinds accept as configuration the
set of available backend servers (either their addresses
or the network interface of the load balancer that leads to
each server). Our load-balancer (Listing 6) uses an oracle
to determine which server handles a connection, during
verification the decission process can therefore choose
from any of the available servers.

Listing 7: Model for a simple cache

1 class Cache(address: Address, acls:
↪→ Set[(Address, Address)]) {

2 abstract request(p: Packet): int
3 abstract response(p: Packet): int
4 abstract new_port(p: Packet): int
5 abstract cacheable(int): bool
6 val outstanding_requests:

↪→ Map[Flow, int]
7 val outstanding_conns:

↪→ Map[Flow, Flow]
8 val cache_origin: Map[int, Host]
9 val origin_addr: Map[int, Address]

10 val cached: Map[int, int]
11 def model (p: Packet) = {
12 val p_flow = flow(p);
13 outstanding_request.contains(p_flow)

↪→ &&
14 cacheable(
15 outstanding_request[p_flow]) =>
16 cached[outstanding_request[p_flow]]
17 = response(p);
18 ...
19 p.src =
20 outstanding_conns[p_flow].src;
21 p.dst =
22 outstanding_conns[p_flow].dst;
23 ...
24 forward(Seq(p))
25 outstanding_request.contains(p_flow)

↪→ &&
26 !cacheable(
27 outstanding_request[p_flow]] =>
28 p.src =
29 outstanding_conns[p_flow].src;
30 ...
31 forward(Seq(p))
32 cached.contains(request(p)) &&
33 !acls.contains(
34 p.src, origin_addr[request(p)]) =>
35 p.src = p_flow.dst;
36 ...
37 p.origin =

↪→ cache_origin[request(p)];
38 forward(Seq(p))
39 !acls.contains(p.src, p.dst) =>
40 p.src = address;
41 p.src_port = new_port(p);
42 outstanding_conns[flow(p)]

↪→ = p_flow;
43 outstanding_requests[flow(p)]

↪→ = request(p)
44 forward(Seq(p))
45 _ =>
46 forward(Empty)
47 }
48 }

Caches We examined two caches: Squid [18] and
Apache Web Proxy. These systems have a rich set of config-
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uration parameters that control, e.g., the duration for which
a cached object is valid, the amount of memory that can be
used, how DNS requests are handled, etc. However, most
of them are orthogonal to our invariants. We therefore con-
sider only a small subset of the configuration parameters,
in particular, those that determine whether a request should
be cached or not, and who has access to cached content.

Listing 7 shows a model that captures both caches.
Configuration input is a list of rules specifying which
hosts have access to content originating at particular
servers (Line 1). We define four oracles, among them
cacheable, which determines whether policy and
cache-size limits allow a response to be cached (Line 5).
The forwarding model captures the following behavior:
on receiving a request for content that is permitted by con-
figuration, we check whether this content has been cached
(Line 32–38); if so, we respond to the request, otherwise
we forward the request to the corresponding server (Line
39–44); on receiving a response from a server, we check
if the corresponding content is cacheable, if so, we cache it
(Line 15–24); and regardless of its cacheability forward the
response to the client who originally requested this content.

We treat each request and response as a single packet,
whereas, in reality, they may span multiple packets.
This greatly simplifies the model and—since we do not
check performance-related invariants—does not affect
verification results.

B Logical Models

We model network behavior in discrete timesteps. During
each timestep a previously sent packet can be delivered
to a node (middlebox or host), a host can generate a new
packet that enters the network, or a middlebox can process
a previously received packet. We do not attempt to model
the likely order of these various events, but instead consider
all such orders in search of invariant violations. In this case
Z3 acts as a scheduling oracle that assigns an event to each
timestep, subject to the standard causality constraints, i.e.,
we ensure that packets cannot be received before being
sent, and packets sent on the same link are not reordered.

VMN models middleboxes and networks using quan-
tified logical formula, which are axioms describing how
received packets are treated. Oracles in VMN are modeled
as uninterpreted function, i.e., Z3 can assign any (con-
vinient) value to a given input to an oracle. We also provide
Z3 with the negation of the invariant to be verified, which is
specified in terms of sets of packets (or data) that are sent or
received. Finding a satisfiable assignment to these formu-
lae is equivalent to Z3 finding a set of oracle behaviors that
result in the invariant being violated, and proving the for-
mulae unsatisfiable is equivalent to showing that no orac-
ular behavior can result in the invariants being violated.

Symbol Meaning
Events

rcv(d,s,p) Destination d receives packet p from
source s.

snd(s,d,p) Source s sends packet p to destination
d.

Logical Operators
�P Condition P holds at all times.
♦P Event P occurred in the past.
¬P Condition P does not hold (or event P

does not occur).
P1∧P2 Both conditions P1 and P2 hold.
P1∨P2 Either condition P1 or P2 holds.

Table 1: Logical symbols and their interpretation.

B.1 Notation
We begin by presenting the notation used in this section.
We express our models and invariants using a simplified
form of linear temporal logic (LTL) [33] of events, with
past operators. We restrict ourselves to safety properties,
and hence only need to model events occurring in the past
or events that hold globally for all of time. We use LTL
for ease of presentation; VMN converts LTL formulae
to first-order formulas (required by Z3) by explicitly
quantifying over time. Table 1 lists the symbols used to
express formula in this section.

Our formulas are expressed in terms of three events:
snd(s,d,p), the event where a node (end host, switch or
middlebox) s sends packet p to node d; and rcv(d,s,p), the
event where a node d receives a packet p from node s, and
f ail(n), the event where a node n has failed. Each event
happens at a timestep and logical formulas can refer either
to events that occurred in the past (represented using ♦)
or properties that hold at all times (represented using �).
For example,

∀d,s,p : �(rcv(d,s,p) =⇒♦snd(s,d,p))
says that at all times, any packet p received by node d from
node s must have been sent by s in the past.

Similarly,
∀p : �¬rcv(d,s,p)

indicates that d will never receive any packet from s.
Header fields and oracles are represented using

functions, e.g., src(p) and dst(p) represent the source and
destination address for packet p, and mallicious(p) acts
as the mallicious oracle from Listing 1.

B.2 Reachability Invariants
Reachability invariants can be be generally specifies as:

∀n,p : �¬(rcv(d,n,p)∧predicate(p)),
which says that node d should never receive a packet p that
matches predicate(p). The predicate can be expressed
in terms of packet-header fields, abstract packet classes
and past events, this allows us to express a wide variety
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Listing 8: Model for a learning firewall

1 class LearningFirewall (acl:
↪→ Set[(Address, Address)]) {

2 val established : Set[Flow]
3 def model (p: Packet) = {
4 established.contains(flow(p)) =>
5 forward (Seq(p))
6 acl.contains((p.src, p.dest)) =>
7 established += flow(p)
8 forward(Seq(p))
9 _ =>

10 forward(Seq.empty)
11 }
12 }

of network properties as reachability invariants, e.g.,:
• Simple isolation: node d should never receive a

packet with source address s. We express this invariant
using the src function, which extracts the source IP address
from the packet header:

∀n,p :�¬(rcv(d,n,p)∧src(p)=s).
• Flow isolation: node d can only receive packets

from s if they belong to a previously established flow.
We express this invariant using the f low function, which
computes a flow identifier based on the packet header:
∀n0,p0,n1,p1 :�¬(rcv(d,n0,p0)∧src(p0)=s∧

¬(♦snd(d,n1,p1)∧ f low(p1)= f low(p0))).

• Data isolation: node d cannot access any data orig-
inating at server s, this requires that d should not access
data either by directly contacting s or indirectly through
network elements such as content cache. We express
this invariant using an origin function, that computes the
origin of a packet’s data based on the packet header (e.g.,
using the x-http-forwarded-for field in HTTP):

∀n,p :�¬(rcv(d,n,p)∧origin(p)=s).

B.3 Modeling Middleboxes

Middleboxes in VMN are specified using a high-level loop-
free, event driven language. Restricting the language so it is
loop free allows us to ensure that middlebox models are ex-
pressible in first-order logic (and can serve as input to Z3).
We use the event-driven structure to translate this code to
logical formulae (axioms) encoding middlebox behavior.

VMN translates these high-level specifications into a
set of parametrized axioms (the parameters allow more
than one instance of the same middlebox to be used in a
network). For instance, Listing 8 results in the following
axioms:

established( f low(p)) =⇒ (♦((¬ f ail(f))∧(♦rcv(f,p))))
∧acl(src(p),dst(p))

send(f,p) =⇒ (♦rcv(f,p))
∧(acl(src(p),dst(p))

∨established( f low(p)))
The bold-faced terms in this axiom are parameters: for
each stateful firewall that appears in a network, VMN adds
a new axiom by replacing the terms f, acl and established
with a new instance specific term. The first axiom says that
the established set contains a flow if a packet permitted
by the firewall policy (acl) has been received by f since
it last failed. The second one states that packets sent by f
must have been previously received by it, and are either
pr emitted by the acl’s for that firewall, or belong to a
previously established connection.

We translate models to formulas by finding the set of
packets appearing in the forward function appearing
at the end of each match statement, and translating the
statement so that the middlebox sending that set of packet
implies that (a) previously a packet matching an appro-
priate criterion was received; and (b) middlebox state was
appropriately updated. We combine all branches where the
same set of packets are updated using logical conjunction,
i.e., implying that one of the branches was taken.

B.4 Modeling Networks

VMN uses transfer functions to specify a network’s
forwarding behavior. The transfer function for a network
is a function from a located packet to a set of located
packets indicating where the packets are next sent. For
example, the transfer function for a network with 3 hosts
A (with IP address a), B (with IP address b) and C (with
IP address c) is given by:

f (p,port)≡


(p,A) if dst(p)=a
(p,B) if dst(p)=b
(p,C) if dst(p)=c

VMN translates such a transfer function to axioms by
introducing a single pseudo-node (Ω) representing the
network, and deriving a set of axioms for this pseudo-node
from the transfer function and failure scenario. For
example, the previous transfer function is translated to the
following axioms ( f ail(X) here represents the specified
failure model).
∀n,p :� f ail(X)∧...snd(A,n,p) =⇒ n=Ω

∀n,p :� f ail(X)∧...snd(Ω,n,p)∧dst(p)=a

=⇒ n=A∧♦∃n′ :rcv(n′,Ω,p)
In addition to the axioms for middlebox behavior and

network behavior, VMN also adds axioms restricting the
oracles’ behavior, e.g., we add axioms to ensure that any
packet delivery event scheduled by the scheduling oracle
has a corresponding packet send event, and we ensure that
new packets generated by hosts are well formed.
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C Formal Definition of Slices

Given a network N = (V,E,P), with network transfer
function NT , we define a subnetwork Ω to be the network
formed by taking a subset V |Ω⊆Ω of nodes, all the links
connecting nodes in V |Ω and a subset of packets P|Ω⊆P
from the original network. We define a subnetwork Ω to
be a slice if and only if Ω is closed under forwarding and
state, and P|Ω is maximal. We define P|Ω to be maximal if
and only if P|Ω includes all packets from P whose source
and destination are in V |Ω.

We define a subnetwork to be closed under forwarding if
and only if (a) all packets p∈P|Ω are located inside Ω, i.e.,
p.loc∈V |Ω∀p∈P|Ω; and (b) the network transfer function
forwards packets within Ω, i.e., NT (p)⊆P|Ω∀p∈P|Ω.

The definition for being closed under state is a bit more
involved, informally it states that all states reachable by
a middlebox in the network is also reachable in the slice.
More formally, associate with the network a set of states
S where each state s ∈ S contains a multiset of pending
packets s.Π and the state of each middlebox (s.m0 for
middlebox m0). Given this associated set of states we can
treat the network as a state machine, where each transition
is a result of one of two actions:
• An end host e ∈V generates a packet p ∈ P, in this

case the system transitions to the state where all
packets in NT (p) (where NT is the network transfer
function defined above) are added to the multiset of
pending packets.
• A packet p contained in the pending state is delivered

to p.loc. In cases where p.loc is an end host, this
merely results in a state where one p is removed from
the multiset of pending packets. If however, p.loc is
a middlebox we transition to the state gotten by (a)
removing p from pending packets, (b) updating the
state for middlebox p.loc and (c) for all packets p′

forwarded by the middlebox, adding NT (p′) to the
set of pending packets.

In this model, invariants are predicates on states, an
invariant is violated if and only if the system transitions
to a state where the invariant is true.

Observe that this definition of state machines can be
naturally restricted to apply to a subnetwork Ω that is
closed under forwarding, by associating a set of states
SΩ containing the state only for those middleboxes in Ω.
Finally, given some subnetwork Ω we define a restriction
function σΩ that relates the state space for the whole
network S to SΩ the state space for the subnetwork. For
any state s∈S, σ simply drops all packets not in P|Ω and
drops the state for all middleboxes m 6∈V |Ω.

Finally, we define some state s∈S as reachable in N if
and only if there exists a sequence of actions starting from
the initial state (where there are no packets pending and all
middleboxes are set to their initial state) that results in net-

work N getting to state s. A similar concept of reachability
of course also applies to the state machine for Ω. Finally,
we define a subnetwork Ω to be closed under state if and
only if SΩ, the set of states reachable in Ω is the same as
the projection of the set of states reachable in the network,
more formally SΩ={σΩ(s), s∈S, s reachable in N}.

When a subnetwork Ω is closed under forwarding
and state, one can establish a bisimulation between the
slice and the network N; informally this implies that one
can find a relation such that when we restrict ourselves
to packets in p ∈ P|Ω then all transitions in N have a
corresponding transition in Ω, corresponding here implies
that the states in N are the same as the states in Ω after
projection. Since by definition for any slice P|Ω the set of
packets is maximal, this means that every state reachable
in N has an equivalent projection in Ω.

Finally, we define an invariant I to be evaluable in
a subnetwork Ω if and only if for all states s1, s2 ∈ S
σΩ(s1) = σΩ(s2) =⇒ I(s1) = I(s2), i.e., if the invariant
does not depend on any state not captured by Ω. As a result
of the bisimulation between network N and slice Ω, it is
simple to see that an invariant I evaluable in Ω holds in net-
work N if and only if it also holds in Ω. Thus once a slice is
found, we can verify any invariants evaluable on it and triv-
ially transfer the verification results to the whole network.

Note, that we can always find a slice of the network on
which an invariant can be verified, this is trivially true since
the network itself is its own slice. The challenge therefore
lies in finding slices that are significantly smaller than the
entire network, and of sizes that do not grow as more de-
vices are added to the network. The nodes that are included
in a slice used to verify an invariant trivially depend on the
invariant being verified, since we require that the invariant
be evaluable on the slice. However, since slices must be
closed under state, their size is also dependent on the types
of middleboxes present in the network. Verification for
network where all middleboxes are such that their state can
be partitioned (based on any criterion, e.g., flows, policy
groups, etc.) are particularly amenable to this approach for
scaling. We present two concrete classes of middleboxes
that contain all of the examples we have listed previously
in §2.3 that allow verification to be performed on slices
whose size is independent of the network’s size.

D Decidability
As noted in §4.2, first-order logic is undecidable. Further,
verifying a network with mutable datapaths is undecidable
in general, such networks are Turing complete. However,
we believe that we can express networks obeying the
following restrictions in a decidable fragment of first-order
logic:

1. All middleboxes used in the network are passive, i.e.,
they send packets only in response to packets received by
them. In particular this means that every packet sent by
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a middlebox is causally related to some packet previously
sent by an end-host.

2. A middlebox sends a finite number of packets in
response to any packets it receives.

3. All packet processing pipelines are loop free, i.e.,
any packets that enter the network are delivered or dropped
in a finite number of steps.

We now show that we can express middleboxes
and networks meeting this criterion in a logic built by
extending “effectively propositional logic” (EPR). EPR is
a fundamental, decidable fragment of first-order logic [39],
where all axioms are of the form ∃∗∀∗, and the invariant
is of the form ∀∗∃∗. Neither axioms nor invariants in this
logic can contain function symbols. EPR-F extends EPR
to allow some unary functions. To guarantee decidability,
EPR-F requires that there exist a finite set of compositions
of unary functions U , such that any composition of unary
functions can be reduced to a composition in U . For exam-
ple, when a single unary function f is used, we require that
there exist k such that f k(x)= f k−1(x) for all k. Function
symbols that go from one type to another are allowed, as
long as their inverse is not used [30] (e.g., we can use src in
our formulas since it has no inverse). Prior work [23] has
discussed mechanisms to reduce EPR-F formulas to EPR.

We can translate our models to EPR-F by:
1. Reformulate our assertions with “event variables”

and functions that assign properties like time, source and
destination to an event. We use predicate function to mark
events as either being sends or receives.

2. Replace ∀∃ formulas with equivalent formulas that
contain Skolem functions instead of symbols.

For example the statement
∀d,s,p :rcv(d,s,p) =⇒♦snd(s,d,p)

is translated to the formula
∀e :rcv(e)⇒snd(cause(e))∧...∧t(cause(e))< t(e)

We also add the axiom, ∀e : snd(e)⇒cause(e)=e which
says that a snd event has no cause, ensuring idempotency.

To show that our models are expressible in EPR-F, we
need to show that all unary functions introduced during
this conversion meet the required closure properties.
Intuitively, all function introduced by us track the causality
of network events. Our decidability criterion imply
that every network event has a finite causal chain. This
combined with the axiom that cause(e) is idempotent
implies that the functions meet the closure properties.
However, for Z3 to guarantee termination, explicit axioms
guaranteeing closure must be provided. Generating
these axioms from a network is left to future work. In
our experience, Z3 terminates on networks meeting our
criterion even in the absence of closure axioms.
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