
This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).
March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked

 Systems Design and Implementation
is sponsored by USENIX.

Gaia: Geo-Distributed Machine Learning
Approaching LAN Speeds

Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R. Ganger, and Phillip B. Gibbons, Carnegie Mellon University;

Onur Mutlu, ETH Zurich and Carnegie Mellon University

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh

Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds

Kevin Hsieh† Aaron Harlap† Nandita Vijaykumar† Dimitris Konomis†

Gregory R. Ganger† Phillip B. Gibbons† Onur Mutlu§†

†Carnegie Mellon University §ETH Zürich

Abstract
Machine learning (ML) is widely used to derive useful
information from large-scale data (such as user activities,
pictures, and videos) generated at increasingly rapid rates,
all over the world. Unfortunately, it is infeasible to move
all this globally-generated data to a centralized data center
before running an ML algorithm over it—moving large
amounts of raw data over wide-area networks (WANs) can
be extremely slow, and is also subject to the constraints
of privacy and data sovereignty laws. This motivates the
need for a geo-distributed ML system spanning multiple
data centers. Unfortunately, communicating over WANs
can significantly degrade ML system performance (by as
much as 53.7× in our study) because the communication
overwhelms the limited WAN bandwidth.

Our goal in this work is to develop a geo-distributed
ML system that (1) employs an intelligent communication
mechanism over WANs to efficiently utilize the scarce
WAN bandwidth, while retaining the accuracy and cor-
rectness guarantees of an ML algorithm; and (2) is generic
and flexible enough to run a wide range of ML algorithms,
without requiring any changes to the algorithms.

To this end, we introduce a new, general geo-distributed
ML system, Gaia, that decouples the communication
within a data center from the communication between
data centers, enabling different communication and con-
sistency models for each. We present a new ML syn-
chronization model, Approximate Synchronous Parallel
(ASP), whose key idea is to dynamically eliminate in-
significant communication between data centers while
still guaranteeing the correctness of ML algorithms. Our
experiments on our prototypes of Gaia running across
11 Amazon EC2 global regions and on a cluster that
emulates EC2 WAN bandwidth show that Gaia provides
1.8–53.5× speedup over two state-of-the-art distributed
ML systems, and is within 0.94–1.40× of the speed of
running the same ML algorithm on machines on a local
area network (LAN).

1. Introduction
Machine learning (ML) is very widely used across a
variety of domains to extract useful information from
large-scale data. It has many classes of applications such
as image or video classification (e.g., [24,39,65]), speech
recognition (e.g., [4]), and topic modeling (e.g., [10]).
These applications analyze massive amounts of data from
user activities, pictures, videos, etc., which are generated
at very rapid rates, all over the world. Many large
organizations, such as Google [28], Microsoft [51], and
Amazon [7], operate tens of data centers globally to

minimize their service latency to end-users, and store
massive quantities of data all over the globe [31, 33, 36,
41, 57, 58, 71–73, 76].

A commonly-used approach to run an ML application
over such rapidly generated data is to centralize all data
into one data center over wide-area networks (WANs)
before running the ML application [9,12,44,68]. However,
this approach can be prohibitively difficult because: (1)
WAN bandwidth is a scarce resource, and hence moving all
data can be extremely slow [12,57]. Furthermore, the fast
growing rate of image and video generation will eventually
saturate the total WAN bandwidth, whose growth has
been decelerating for many years [67, 73]. (2) Privacy
and data sovereignty laws in some countries prohibit
transmission of raw data across national or continental
borders [12, 72, 73].

This motivates the need to distribute an ML system
across multiple data centers, globally. In such a system,
large amounts of raw data are stored locally in different
data centers, and the ML algorithms running over the
distributed data communicate between data centers using
WANs. Unfortunately, existing large-scale distributed ML
systems [5, 13, 45, 47, 50, 77] are suitable only for data
residing within a single data center. Our experiments using
three state-of-the-art distributed ML systems (Bösen [74],
IterStore [17], and GeePS [18]) show that operating these
systems across as few as two data centers (over WANs)
can cause a slowdown of 1.8–53.7× (see Section 2.3 and
Section 6) relative to their performance within a data
center (over LANs). Existing systems that do address
challenges in geo-distributed data analytics [12, 33, 36,
41, 57, 58, 71–73] do not consider the broad class of
important, sophisticated ML algorithms commonly run
on ML systems — they focus instead on other types of
computation, e.g., map-reduce or SQL.

Our goal in this work is to develop a geo-distributed
ML system that (1) minimizes communication over WANs,
so that the system is not bottlenecked by the scarce WAN
bandwidth; and (2) is general enough to be applicable to
a wide variety of ML algorithms, without requiring any
changes to the algorithms themselves.

To achieve these goals, such a system needs to address
two key challenges. First, to efficiently utilize the limited
(and heterogeneous) WAN bandwidth, we need to find
an effective communication model that minimizes com-
munication over WANs but still retains the correctness
guarantee for an ML algorithm. This is difficult because
ML algorithms typically require extensive communication
to exchange updates that keep the global ML model suffi-
ciently consistent across data centers. These updates are

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 629

required to be timely, irrespective of the available network
bandwidth, to ensure algorithm correctness. Second, we
need to design a general system that effectively handles
WAN communication for ML algorithms without requir-
ing any algorithm changes. This is challenging because
the communication patterns vary significantly across dif-
ferent ML algorithms [37, 54, 60, 64, 66, 69]. Altering
the communication across systems can lead to different
tradeoffs and consequences for different algorithms [83].

In this work, we introduce Gaia, a new general,
geo-distributed ML system that is designed to effi-
ciently operate over a collection of data centers. Gaia
builds on the widely used parameter server architecture
(e.g., [5, 6, 13, 16, 17, 20, 34, 45, 74, 77]) that provides ML
worker machines with a distributed global shared memory
abstraction for the ML model parameters they collectively
train until convergence to fit the input data. The key idea
of Gaia is to maintain an approximately-correct copy of
the global ML model within each data center, and dynam-
ically eliminate any unnecessary communication between
data centers. Gaia enables this by decoupling the synchro-
nization (i.e., communication/consistency) model within
a data center from the synchronization model between
different data centers. This differentiation allows Gaia
to run a conventional synchronization model [19, 34, 74]
that maximizes utilization of the more-freely-available
LAN bandwidth within a data center. At the same time,
across different data centers, Gaia employs a new synchro-
nization model, called Approximate Synchronous Parallel
(ASP), which makes more efficient use of the scarce and
heterogeneous WAN bandwidth. By ensuring that each
ML model copy in different data centers is approximately
correct based on a precise notion defined by ASP, we
guarantee ML algorithm convergence.

ASP is based on a key finding that the vast majority of
updates to the global ML model parameters from each ML
worker machine are insignificant. For example, our study
of three classes of ML algorithms shows that more than
95% of the updates produce less than a 1% change to the
parameter value. With ASP, these insignificant updates
to the same parameter within a data center are aggregated
(and thus not communicated to other data centers) until the
aggregated updates are significant enough. ASP allows the
ML programmer to specify the function and the threshold
to determine the significance of updates for each ML
algorithm, while providing default configurations for
unmodified ML programs. For example, the programmer
can specify that all updates that produce more than a
1% change are significant. ASP ensures all significant
updates are synchronized across all model copies in a
timely manner. It dynamically adapts communication
to the available WAN bandwidth between pairs of data
centers and uses special selective barrier and mirror clock
control messages to ensure algorithm convergence even
during a period of sudden fall (negative spike) in available
WAN bandwidth.

In contrast to a state-of-the-art communication-efficient

synchronization model, Stale Synchronous Parallel
(SSP) [34], which bounds how stale (i.e., old) a parameter
can be, ASP bounds how inaccurate a parameter can be,
in comparison to the most up-to-date value. Hence, it
provides high flexibility in performing (or not performing)
updates, as the server can delay synchronization indefi-
nitely as long as the aggregated update is insignificant.

We build two prototypes of Gaia on top of two state-
of-the-art parameter server systems, one specialized for
CPUs [17] and another specialized for GPUs [18]. We
deploy Gaia across 11 regions on Amazon EC2, and on
a local cluster that emulates the WAN bandwidth across
different Amazon EC2 regions. Our evaluation with three
popular classes of ML algorithms shows that, compared
to two state-of-the-art parameter server systems [17, 18]
deployed on WANs, Gaia: (1) significantly improves
performance, by 1.8–53.5×, (2) has performance within
0.94–1.40× of running the same ML algorithm on a LAN
in a single data center, and (3) significantly reduces the
monetary cost of running the same ML algorithm on
WANs, by 2.6–59.0×.

We make three major contributions:
• To our knowledge, this is the first work to propose

a general geo-distributed ML system that (1) differ-
entiates the communication over a LAN from the
communication over WANs to make efficient use of
the scarce and heterogeneous WAN bandwidth, and
(2) is general and flexible enough to deploy a wide
range of ML algorithms while requiring no change
to the ML algorithms themselves.

• We propose a new, efficient ML synchronization
model, Approximate Synchronous Parallel (ASP), for
communication between parameter servers across data
centers over WANs. ASP guarantees that each data
center’s view of the ML model parameters is approx-
imately the same as the “fully-consistent” view and
ensures that all significant updates are synchronized
in time. We prove that ASP provides a theoretical
guarantee on algorithm convergence for a widely used
ML algorithm, stochastic gradient descent.

• We build two prototypes of our proposed system on
CPU-based and GPU-based ML systems, and we
demonstrate their effectiveness over 11 globally dis-
tributed regions with three popular ML algorithms.
We show that our system provides significant perfor-
mance improvements over two state-of-the-art dis-
tributed ML systems [17,18], and significantly reduces
the communication overhead over WANs.

2. Background and Motivation
We first introduce the architectures of widely-used dis-
tributed ML systems. We then discuss WAN bandwidth
constraints and study the performance implications of
running two state-of-the-art ML systems over WANs.

2.1. Distributed Machine Learning Systems
While ML algorithms have different types across different
domains, almost all have the same goal—searching for

630 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the best model (usually a set of parameters) to describe
or explain the input data [77]. For example, the goal of
an image classification neural network is to find the pa-
rameters (of the neural network) that can most accurately
classify the input images. Most ML algorithms iteratively
refine the ML model until it converges to fit the data. The
correctness of an ML algorithm is thus determined by
whether or not the algorithm can accurately converge to
the best model for its input data.

As the input data to an ML algorithm is usually enor-
mous, processing all input data on a single machine can
take an unacceptably long time. Hence, the most common
strategy to run a large-scale ML algorithm is to distribute
the input data among multiple worker machines, and
have each machine work on a shard of the input data
in parallel with other machines. The worker machines
communicate with each other periodically to synchronize
the updates from other machines. This strategy, called
data parallelism [14], is widely used in many popular
ML systems (e.g., [1, 2, 5, 13, 45, 47, 50, 77]).

There are many large-scale distributed ML systems,
such as ones using the MapReduce [14] abstraction (e.g.,
MLlib [2] and Mahout [1]), ones using the graph abstrac-
tion (e.g., GraphLab [47] and PowerGraph [26]), and ones
using the parameter server abstraction (e.g., Petuum [77]
and TensorFlow [5]). Among them, the parameter server
architecture provides a performance advantage1 over other
systems for many ML applications and has been widely
adopted in many ML systems.

Figure 1a illustrates the high-level overview of the
parameter server (PS) architecture. In such an architecture,
each parameter server keeps a shard of the global model
parameters as a key-value store, and each worker machine
communicates with the parameter servers to READ and
UPDATE the corresponding parameters. The major benefit
of this architecture is that it allows ML programmers to
view all model parameters as a global shared memory, and
leave the parameter servers to handle the synchronization.

……
Worker

Machine 1

Data 1
Worker

Machine N

Data N

Parameter
Server

Parameter
Server

Global Model

(a) Basic PS architecture

……Worker
Machine 1

Data	1
Worker

Machine N

Data	N

Parameter
Server

Parameter
Server

Global Model

Data Center 1 Data Center 2

LANLAN
WAN

(b) Simple PS on WANs
Figure 1: Overview of the parameter server architecture

Synchronization among workers in a distributed ML
system is a critical operation. Each worker needs to see
other workers’ updates to the global model to compute
more accurate updates using fresh information. However,
synchronization is a high-cost operation that can signif-

1For example, a state-of-the-art parameter server, IterStore [17], is
shown to outperform PowerGraph [26] by 10× for Matrix Factorization.
In turn, PowerGraph is shown to match the performance of GraphX [27],
a Spark [79] based system.

icantly slow down the workers and reduce the benefits
of parallelism. The trade-off between fresher updates
and communication overhead leads to three major syn-
chronization models: (1) Bulk Synchronous Parallel
(BSP) [70], which synchronizes all updates after each
worker goes through its shard of data; all workers need to
see the most up-to-date model before proceeding to the
next iteration, (2) Stale Synchronous Parallel (SSP) [34],
which allows the fastest worker to be ahead of the slowest
worker by up to a bounded number of iterations, so the
fast workers may proceed with a bounded stale (i.e., old)
model, and (3) Total Asynchronous Parallel (TAP) [59],
which removes the synchronization between workers com-
pletely; all workers keep running based on the results of
best-effort communication (i.e., each sends/receives as
many updates as possible). Both BSP and SSP guarantee
algorithm convergence [19, 34], while there is no such
guarantee for TAP. Most state-of-the-art parameter servers
implement both BSP and SSP (e.g., [5,16–18,34,45,77]).

As discussed in Section 1, many ML applications
need to analyze geo-distributed data. For instance, an
image classification system would use pictures located at
different data centers as its input data to keep improving
its classification using the pictures generated continuously
all over the world. Figure 1b depicts the straightforward
approach to achieve this goal. In this approach, the worker
machines in each data center (i.e., within a LAN) handle
the input data stored in the corresponding data center. The
parameter servers are evenly distributed across multiple
data centers. Whenever the communication between
a worker machine and a parameter server crosses data
centers, it does so on WANs.

2.2. WAN Network Bandwidth and Cost
WAN bandwidth is a very scarce resource [42, 58, 73]
relative to LAN bandwidth. Moreover, the high cost of
adding network bandwidth has resulted in a deceleration
of WAN bandwidth growth. The Internet capacity growth
has fallen steadily for many years, and the annual growth
rates have lately settled into the low-30 percent range [67].

To quantify the scarcity of WAN bandwidth between
data centers, we measure the network bandwidth between
all pairs of Amazon EC2 sites in 11 different regions
(Virginia, California, Oregon, Ireland, Frankfurt, Tokyo,
Seoul, Singapore, Sydney, Mumbai, and São Paulo). We
use iperf3 [23] to measure the network bandwidth of
each pair of different regions for five rounds, and then
calculate the average bandwidth. Figure 2 shows the
average network bandwidth between each pair of different
regions. We make two observations.

First, the WAN bandwidth between data centers is 15×
smaller than the LAN bandwidth within a data center on
average, and up to 60× smaller in the worst case (for
Singapore Ö São Paulo). Second, the WAN bandwidth
varies significantly between different regions. The WAN
bandwidth between geographically-close regions (e.g.,
Oregon Ö California or Tokyo Ö Seoul) is up to 12× of
the bandwidth between distant regions (e.g., Singapore

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 631

Virginia
California
Oregon
Ireland
Frankfurt
Tokyo
Seoul
Singapore
Sydney
Mumbai
São Paulo

0
100
200
300
400
500
600
700
800
900

1000

Ne
tw

or
k
Ba

nd
wi
dt

h
(M
b/
s)

Figure 2: Measured network bandwidth between Amazon
EC2 sites in 11 different regions

Ö São Paulo). As Section 2.3 shows, the scarcity and
variation of the WAN bandwidth can significantly degrade
the performance of state-of-the-art ML systems.

Another important challenge imposed by WANs is
the monetary cost of communication. In data centers,
the cost of WANs far exceeds the cost of a LAN and
makes up a significant fraction of the overall cost [29].
Cloud service providers, such as Amazon EC2, charge
an extra fee for WAN communication while providing
LAN communication free of charge. The cost of WAN
communication can be much higher than the cost of
the machines themselves. For example, the cost of two
machines in Amazon EC2 communicating at the rate of
the average WAN bandwidth between data centers is up to
38× of the cost of renting these two machines [8]. These
costs make running ML algorithms on WANs much more
expensive than running them on a LAN.

2.3. ML System Performance on WANs
We study the performance implications of deploying dis-
tributed ML systems on WANs using two state-of-the-art
parameter server systems, IterStore [17] and Bösen [74].
Our experiments are conducted on our local 22-node
cluster that emulates the WAN bandwidth between Ama-
zon EC2 data centers, the accuracy of which is validated
against a real Amazon EC2 deployment (see Section 5.1
for details). We run the same ML application, Matrix
Factorization [25] (Section 5.2), on both systems.

For each system, we evaluate both BSP and SSP as the
synchronization model (Section 2.1), with four deploy-
ment settings: (1) LAN, deployment within a single data
center, (2) EC2-ALL, deployment across 11 aforemen-
tioned EC2 regions, (3) V/C WAN, deployment across two
data centers that have the same WAN bandwidth as that
between Virginia and California (Figure 2), representing
a distributed ML setting within a continent, and (4) S/S
WAN, deployment across two data centers that have the
same WAN bandwidth as that between Singapore and São
Paulo, representing the lowest WAN bandwidth between
any two Amazon EC2 regions.

Figure 3 shows the normalized execution time until al-
gorithm convergence across the four deployment settings.
All results are normalized to IterStore using BSP on a
LAN. The data label on each bar represents how much
slower the WAN setting is than its respective LAN setting

3.7X 3.5X

23.8X

2.7X 2.3X

13.7X

5.9X 4.4X

24.2X

4.9X 4.3X

26.8X

0

5

10

15

20

25

LAN EC2-ALL V/C WAN S/S WAN LAN EC2-ALL V/C WAN S/S WAN

BSP SSP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

un
til

 C
on

ve
rg

en
ce

IterStore Bӧsen

Figure 3: Normalized execution time until ML algo-
rithm convergence when deploying two state-of-the-art dis-
tributed ML systems on a LAN and WANs

for the given system, e.g., Bösen-BSP on EC2-ALL is
5.9× slower than Bösen-BSP on LAN.

As we see, both systems suffer significant performance
degradation when deployed across multiple data centers.
When using BSP, IterStore is 3.5× to 23.8× slower on
WANs than it is on a LAN, and Bösen is 4.4× to 24.2×
slower. While using SSP can reduce overall execution
times of both systems, both systems still show significant
slowdown when run on WANs (2.3× to 13.7× for Iter-
Store, and 4.3× to 26.8× for Bösen). We conclude that
simply running state-of-the-art distributed ML systems
on WANs can seriously slow down ML applications, and
thus we need a new distributed ML system that can be
effectively deployed on WANs.

3. Our Approach: Gaia
We introduce Gaia, a general ML system that can be effec-
tively deployed on WANs to address the increasing need
to run ML applications directly on geo-distributed data.
We identify two key challenges in designing such a system
(Section 3.1). We then introduce the system architecture
of Gaia, which differentiates the communication within
a data center from the communication between different
centers (Section 3.2). Our approach is based on the key
empirical finding that the vast majority of communication
within an ML system results in insignificant changes to
the state of the global model (Section 3.3). In light of
this finding, we design a new ML synchronization model,
called Approximate Synchronous Parallel (ASP), which
can eliminate the insignificant communication while en-
suring the convergence and accuracy of ML algorithms.
We describe ASP in detail in Section 3.4. Finally, Sec-
tion 3.5 summarizes our theoretical analysis of how ASP
guarantees algorithm convergence for a widely-used ML
algorithm, stochastic gradient descent (SGD) (the full
proof is in Appendix A).

3.1. Key Challenges
There are two key challenges in designing a general and
effective ML system on WANs.

Challenge 1. How to effectively communicate over
WANs while retaining algorithm convergence and ac-
curacy? As we see above, state-of-the-art distributed
ML systems can overwhelm the scarce WAN bandwidth,
causing significant slowdowns. We need a mechanism
that significantly reduces the communication between
data centers so that the system can provide competitive
performance. However, reducing communication can
affect the accuracy of an ML algorithm. A poor choice

632 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of synchronization model in a distributed ML system can
prevent the ML algorithm from converging to the optimal
point (i.e., the best model to explain or fit the input data)
that one can achieve when using a proper synchronization
model [11, 59]. Thus, we need a mechanism that can
reduce communication intensity while ensuring that the
communication occurs in a timely manner, even when the
network bandwidth is extremely stringent. This mecha-
nism should provably guarantee algorithm convergence
irrespective of the network conditions.

Challenge 2. How to make the system generic and work
for ML algorithms without requiring modification? Devel-
oping an effective ML algorithm takes significant effort
and experience, making it a large burden for the ML algo-
rithm developers to change the algorithm when deploying
it on WANs. Our system should work across a wide variety
of ML algorithms, preferably without any change to the
algorithms themselves. This is challenging because differ-
ent ML algorithms have different communication patterns,
and the implication of reducing communication can vary
significantly among them [37, 54, 60, 64, 66, 69, 83].

3.2. Gaia System Overview
We propose a new ML system, Gaia, that addresses the
two key challenges in designing a general and effec-
tive ML system on WANs. Gaia is built on top the
popular parameter server architecture, which is proven
to be effective on a wide variety of ML algorithms
(e.g., [5, 6, 13, 16, 17, 20, 34, 45, 74, 77]). As discussed
in Section 2.1, in the parameter server architecture, all
worker machines synchronize with each other through
parameter servers to ensure that the global model state is
up-to-date. While this architecture guarantees algorithm
convergence, it also requires substantial communication
between worker machines and parameter servers. To
make Gaia effective on WANs while fully utilizing the
abundant LAN bandwidth, we design a new system ar-
chitecture to decouple the synchronization within a data
center (LANs) from the synchronization across different
data centers (WANs).

Figure 4 shows an overview of Gaia. In Gaia, each data
center has some worker machines and parameter servers.
Each worker machine processes a shard of the input
data stored in its data center to achieve data parallelism
(Section 2.1). The parameter servers in each data center
collectively maintain a version of the global model copy
(¶), and each parameter server handles a shard of this
global model copy. A worker machine only READs and
UPDATEs the global model copy in its data center.

To reduce the communication overhead over WANs,
the global model copy in each data center is only ap-
proximately correct. This design enables us to eliminate
the insignificant, and thus unnecessary, communication
across different data centers. We design a new synchro-
nization model, called Approximate Synchronous Parallel
(ASP ·), between parameter servers across different data
centers to ensure that each global model copy is approx-
imately correct even with very low WAN bandwidth.

Parameter
Server

Data Center 1

❸

Parameter
Server

Worker
Machine

Data
Shard

BSP/SSP

Global Model Copy❶

Parameter
Server

Parameter
Server

…

ASP❷

Data Center 2

Worker
Machine

Data
Shard

Worker
Machine

Data
Shard

…

Global Model Copy

Figure 4: Gaia system overview

Section 3.4 describes the details of ASP. On the other
hand, worker machines and parameter servers within a
data center synchronize with each other using the con-
ventional BSP (Bulk Synchronous Parallel) or SSP (Stale
Synchronous Parallel) models (¸). These models allow
worker machines to quickly observe fresh updates that
happen within a data center. Furthermore, worker ma-
chines and parameter servers within a data center can
employ more aggressive communication schemes such
as sending updates early and often [19,74] to fully utilize
the abundant (and free) network bandwidth on a LAN.

3.3. Study of Update Significance
As discussed above, Gaia reduces the communication
overhead over WANs by eliminating insignificant com-
munication. To understand the benefit of our approach,
we study the significance of the updates sent from worker
machines to parameter servers. We study three classes of
popular ML algorithms: Matrix Factorization (MF) [25],
Topic Modeling (TM) [10], and Image Classification
(IC) [43] (see Section 5.2 for descriptions). We run all
the algorithms until convergence, analyze all the updates
sent from worker machines to parameter servers, and
compare the change they cause on the parameter value
when the servers receive them. We define an update to be
significant if it causes S% change on the parameter value,
and we vary S, the significance threshold, between 0.01
and 10. Figure 5 shows the percentage of insignificant
updates among all updates, for different values of S.

0%
20%
40%
60%
80%

100%

10% 5% 1% 0.5% 0.1% 0.05% 0.01%

Pe
rc

en
ta

ge
 o

f
In

sig
ni

fic
an

t
U

pd
at

es

Threshold of Significant Updates (S)

Matrix Factorization Topic Modeling Image Classification

Figure 5: Percentage of insignificant updates

As we see, the vast majority of updates in these al-
gorithms are insignificant. Assuming the significance
threshold is 1%, 95.2% / 95.6% / 97.0% of all updates
are insignificant for MF / TM / IC. When we relax the
significance threshold to 5%, 98.8% / 96.1% / 99.3% of
all updates are insignificant. Thus, most of the communi-
cation changes the ML model state only very slightly.

It is worth noting that our finding is consistent with
the findings of prior work [21, 22, 40, 47, 80] on other

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 633

ML algorithms, such as PageRank and Lasso. These
works observe that in these ML algorithms, not all model
parameters converge to their optimal value within the
same number iterations — a property called non-uniform
convergence [78]. Instead of examining the convergence
rate, we quantify the significance of updates with var-
ious significance thresholds, which provides a unique
opportunity to reduce the communication over WANs.

3.4. Approximate Synchronous Parallel
The goal of our new synchronization model, Approxi-
mate Synchronous Parallel (ASP), is to ensure that the
global model copy in each data center is approximately
correct. In this model, a parameter server shares only
the significant updates with other data centers, and ASP
ensures that these updates can be seen by all data centers
in a timely fashion. ASP achieves this goal by using three
techniques: (1) the significance filter, (2) ASP selective
barrier, and (3) ASP mirror clock. We describe them in
order.

The significance filter. ASP takes two inputs from an
ML programmer to determine whether or not an update
is significant. They are: (1) a significance function and
(2) an initial significance threshold. The significance
function returns the significance of each update. We
define an update as significant if its significance is larger
than the threshold. For example, an ML programmer can
define the significance function as the update’s magnitude
relative to the current value (|U pdate

Value |), and set the initial
significance threshold to 1%. The significance function
can be more sophisticated if the impact of parameter
changes to the model is not linear, or the importance of
parameters is non-uniform (see Section 4.3). A parameter
server aggregates updates from the local worker machines
and shares the aggregated updates with other data centers
when the aggregated updates become significant. To
ensure that the algorithm can converge to the optimal point,
ASP automatically reduces the significance threshold over
time (specifically, if the original threshold is v, then the
threshold at iteration t of the ML algorithm is v/

√
t).

ASP selective barrier. While we can greatly reduce
the communication overhead over WANs by sending only
the significant updates, the WAN bandwidth might still
be insufficient for such updates. In such a case, the
significant updates can arrive too late, and we might
not be able to bound the deviation between different
global model copies. ASP handles this case with the
ASP selective barrier (Figure 6a) control message. When
a parameter server receives the significant updates (¶)
at a rate that is higher than the WAN bandwidth can
support, the parameter server first sends the indexes of
these significant updates (as opposed to sending both
the indexes and the update values together) via an ASP
selective barrier (·) to the other data centers. The receiver
of an ASP selective barrier blocks its local worker from
reading the specified parameters until it receives the
significant updates from the sender of the barrier. This
technique ensures that all worker machines in each data

center are aware of the significant updates after a bounded
network latency, and they wait only for these updates.
The worker machines can make progress as long as they
do not depend on any of these parameters.
Data Center 1

Parameter
Server

Data Center 2

Barrier
❶

❷

Parameter
Server

Significant
Updates

(a) ASP selective barrier

Data Center 1 Data Center 2

Clock N❸ Clock N + DS❹

Parameter
Server

Parameter
Server

(b) Mirror clock
Figure 6: The synchronization mechanisms of ASP

Mirror clock. The ASP select barrier ensures that
the latency of the significant updates is no more than
the network latency. However, it assumes that 1) the
underlying WAN bandwidth and latency are fixed so
that the network latency can be bounded, and 2) such
latency is short enough so that other data centers can
be aware of them in time. In practice, WAN bandwidth
can fluctuate over time [35], and the WAN latency can
be intolerably high for some ML algorithms. We need
a mechanism to guarantee that the worker machines are
aware of the significant updates in time, irrespective of
the WAN bandwidth or latency.

We use the mirror clock (Figure 6b) to provide this
guarantee. When each parameter server receives all the
updates from its local worker machines at the end of a
clock (e.g., an iteration), it reports its clock to the servers
that are in charge of the same parameters in the other
data centers. When a server detects its clock is ahead
of the slowest server that shares the same parameters
by a predefined threshold DS (data center staleness), the
server blocks its local worker machines from reading
its parameters until the slowest mirror server catches up.
In the example of Figure 6b, the server clock in Data
Center 1 is N, while the server clock in Data Center 2
is (N +DS). As their difference reaches the predefined
limit, the server in Data Center 2 blocks its local worker
from reading its parameters. This mechanism is similar
to the concept of SSP [34], but we use it only as the last
resort to guarantee algorithm convergence.

3.5. Summary of Convergence Proof
In this section, we summarize our proof showing that a
popular, broad class of ML algorithms are guaranteed to
converge under our new ASP synchronization model. The
class we consider are ML algorithms expressed as convex
optimization problems that are solved using distributed
stochastic gradient descent.

The proof follows the outline of prior work on SSP [34],
with a new challenge, i.e., our new ASP synchronization
model allows the synchronization of insignificant updates
to be delayed indefinitely. To prove algorithm conver-
gence, our goal is to show that the distributed execution
of an ML algorithm results in a set of parameter values
that are very close (practically identical) to the values
that would be obtained under a serialized execution.

634 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Let f denote the objective function of an optimization
problem, whose goal is to minimize f . Let x̃xxt denote the
sequence of noisy (i.e., inaccurate) views of the parameters,
where t = 1,2, ...,T is the index of each view over time.
Let xxx∗ denote the value that minimizes f . Intuitively, we
would like ft(x̃xxt) to approach f (xxx∗) as t → ∞. We call
the difference between ft(x̃xxt) and f (xxx∗) regret. We can
prove ft(x̃xxt) approaches f (xxx∗) as t→ ∞ by proving that
the average regret, R[X]

T → 0 as T → ∞.
Mathematically, the above intuition is formulated with

Theorem 1. The details of the proof and the notations
are in Appendix A.

Theorem 1. (Convergence of SGD under ASP). Suppose
that, in order to compute the minimizer x∗ of a convex
function f (xxx) =∑

T
t=1 ft(xxx), with ft , t = 1,2, . . . ,T , convex,

we use stochastic gradient descent on one component
∇ ft at a time. Suppose also that 1) the algorithm is
distributed in D data centers, each of which uses P
machines, 2) within each data center, the SSP protocol is
used, with a fixed staleness of s, and 3) a fixed mirror clock
difference ∆c is allowed between any two data centers.
Let uuut = −ηt∇ ft(x̃xxt), where the step size ηt decreases
as ηt =

η√
t and the significance threshold vt decreases

as vt =
v√
t . If we further assume that: ‖∇ ft(xxx)‖ ≤ L,

∀xxx ∈ dom(ft) and max(D(xxx,xxx′))≤ ∆2,∀xxx,xxx′ ∈ dom(ft).
Then, as T →∞, the regret R[X] = ∑

T
t=1 ft(x̃xxt)− f (xxx∗) =

O(
√

T) and therefore limT→∞
R[X]

T → 0.

4. Implementation
We introduce the key components of Gaia in Section 4.1,
and discuss the operation and design of individual com-
ponents in the remaining sections.

4.1. Gaia System Key Components
Figure 7 presents the key components of Gaia. All of
the key components are implemented in the parameter
servers, and can be transparent to the ML programs and
the worker machines. As we discuss above, we decouple
the synchronization within a data center (LANs) from
the synchronization across different data centers (WANs).
The local server (¶) in each parameter server handles
the synchronization between the worker machines in the
same data center using the conventional BSP or SSP
models. On the other hand, the mirror server (·) and the
mirror client (¸) handle the synchronization with other
data centers using our ASP model. Each of these three
components runs as an individual thread.

Local
Server

Gaia Parameter
ServerWorker

Machine

Significance
Filter

Parameter Store

Worker
Machine

Worker
Machine

Mirror
Server

Mirror
Client

Data Center Boundary

Control
Queue

Data
Queue

Gaia Parameter Server

…

❶

❸

❷

❹

❺ ❻

❼
Figure 7: Key components of Gaia

4.2. System Operations and Communication
We present a walkthrough of major system operations
and communication.
UPDATE from a worker machine. When a local server

(¶) receives a parameter update from a worker machine,
it updates the parameter in its parameter store (¹), which
maintains the parameter value and its accumulated update.
The local server then invokes the significance filter (º)
to determine whether or not the accumulated update of
this parameter is significant. If it is, the significance filter
sends a MIRROR UPDATE request to the mirror client (¸)
and resets the accumulated update for this parameter.

Messages from the significance filter. The signifi-
cance filter sends out three types of messages. First, as
discussed above, it sends a MIRROR UPDATE request to
the mirror client through the data queue (¼). Second,
when the significance filter detects that the arrival rate of
significant updates is higher than the underlying WAN
bandwidth that it monitors at every iteration, it first sends
an ASP Barrier (Section 3.4) to the control queue (»)
before sending the MIRROR UPDATE. The mirror client (¸)
prioritizes the control queue over the data queue, so that
the barrier is sent out earlier than the update. Third, to
maintain the mirror clock (Section 3.4), the significance
filter also sends a MIRROR CLOCK request to the control
queue at the end of each clock in the local server.

Operations in the mirror client. The mirror client
thread wakes up when there is a request from the control
queue or the data queue. Upon waking up, the mirror client
walks through the queues, packs together the messages
to the same destination, and sends them.

Operations in the mirror server. The mirror server
handles above messages (MIRROR UPDATE, ASP BARRIER,
and MIRROR CLOCK) according to our ASP model. For
MIRROR UPDATE, it applies the update to the correspond-
ing parameter in the parameter store. For ASP BARRIER,
it sets a flag in the parameter store to block the corre-
sponding parameter from being read until it receives the
corresponding MIRROR UPDATE. For MIRROR CLOCK, the
mirror server updates its local mirror clock state for each
parameter server in other data centers, and enforces the
predefined clock difference threshold DS (Section 3.4).

4.3. Advanced Significance Functions
As we discuss in Section 3.4, the significance filter allows
the ML programmer to specify a custom significance
function to calculate the significance of each update. By
providing an advanced significance function, Gaia can be
more effective at eliminating the insignificant communica-
tion. If several parameters are always referenced together
to calculate the next update, the significance function can
take into account the values of all these parameters. For
example, if three parameters a, b, and c are always used
as a ·b ·c in an ML algorithm, the significance of a, b,
and c can be calculated as the change on a ·b ·c. If one
of them is 0, any change in another parameter, however
large it may be, is insignificant. Similar principles can
be applied to model parameters that are non-linear or

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 635

non-uniform. For unmodified ML programs, the system
applies default significance functions, such as the relative
magnitude of an update for each parameter.

4.4. Tuning of Significance Thresholds
The user of Gaia can specify two different goals for Gaia:
(1) speed up algorithm convergence by fully utilizing the
available WAN bandwidth and (2) minimize the commu-
nication cost on WANs. In order to achieve either of these
goals, the significance filter maintains two significance
thresholds and dynamically tunes these thresholds. The
first threshold is the hard significance threshold. The
purpose of this threshold is to guarantee ML algorithm
convergence. As we discuss in our theoretical analysis
(Section 3.5), the initial threshold is provided by the ML
programmer or a default system setting, and the signif-
icance filter reduces it over time. Every update whose
significance is above the hard threshold is guaranteed to
be sent to other data centers. The second threshold is the
soft significance threshold. The purpose of it is to use
underutilized WAN bandwidth to speed up convergence.
This threshold is tuned based on the arrival rate of the
significant updates and the underlying WAN bandwidth.
When the user chooses to optimize the first goal (speed
up algorithm convergence), the system lowers the soft sig-
nificance threshold whenever there is underutilized WAN
bandwidth. The updates whose significance is larger than
the soft significance threshold are sent in a best-effort
manner. On the other hand, if the goal of the system
is to minimize the WAN communication costs, the soft
significance threshold is not activated.

While the configuration of the initial hard threshold
depends on how error tolerant each ML algorithm is, a
simple and conservative threshold (such as 1%–2%) is
likely to work in most cases. This is because most ML
algorithms initialize their parameters with random values,
and make large changes to their model parameters at
early phases. Thus, they are more error tolerant at the
beginning. As Gaia reduces the threshold over time, its
accuracy loss is limited. An ML expert can choose a
more aggressive threshold based on domain knowledge
of the ML algorithm.

4.5. Overlay Network and Hub
While Gaia can eliminate the insignificant updates, each
data center needs to broadcast the significant updates to
all the other data centers. This broadcast-based communi-
cation could limit the scalability of Gaia when we deploy
Gaia to many data centers. To make Gaia more scalable
with more data centers, we use the concept of overlay
networks [48].

As we discuss in Section 2.2, the WAN bandwidth
between geographically-close regions is much higher
than that between distant regions. In light of this, Gaia
supports having geographically-close data centers form a
data center group. Servers in a data center group send
their significant updates only to the other servers in the
same group. Each group has hub data centers that are in

charge of aggregating all the significant updates within
the group, and sending to the hubs of the other groups.
Similarly, a hub data center broadcasts the aggregated
significant updates from other groups to the other data
centers within its group. Each data center group can
designate different hubs for communication with different
data center groups, so the system can utilize more links
within a data center group. For example, the data centers
in Virginia, California, and Oregon can form a data center
group and assign the data center in Virginia as the hub
to communicate with the data centers in Europe and the
data center in Oregon as the hub to communicate with the
data centers is Asia. This design allows Gaia to broadcast
the significant updates with lower communication cost.

5. Methodology
5.1. Experiment Platforms
We use three different platforms for our evaluation.

Amazon-EC2. We deploy Gaia to 22 machines spread
across 11 EC2 regions as we show in Figure 2. In each
EC2 region we start two instances of type c4.4xlarge
or m4.4xlarge [8], depending on their availability. Both
types of instances have 16 CPU cores and at least 30GB
RAM, running 64-bit Ubuntu 14.04 LTS (HVM). In all,
our deployment uses 352 CPU cores and 1204 GB RAM.

Emulation-EC2. As the monetary cost of running all
experiments on EC2 is too high, we run some experiments
on our local cluster that emulates the computation power
and WAN bandwidth of EC2. We use the same number
of machines (22) in our local cluster. Each machine is
equipped with a 16-core Intel Xeon CPU (E5-2698), an
NVIDIA Titan X GPU, 64GB RAM, a 40GbE NIC, and
runs the same OS as above. The computation power and
the LAN speeds of our machines are higher than the
ones we get from EC2, so we slow down the CPU and
LAN speeds to match the speeds on EC2. We model
the measured EC2 WAN bandwidth (Figure 2) with the
Linux Traffic Control tool [3]. As Section 6.1 shows,
our emulation platform gives very similar results to the
results from our real EC2 deployment.

Emulation-Full-Speed. We run some of our experi-
ments on our local cluster that emulates the WAN band-
width of EC2 at full speed. We use the same settings as
Emulation-EC2 except we do not slow down the CPUs
and the LAN. We use this platform to show the results
of deployments with more powerful nodes.

5.2. Applications
We evaluate Gaia with three popular ML applications.

Matrix Factorization (MF) is a technique commonly
used in recommender systems, e.g., systems that recom-
mend movies to users on Netflix (a.k.a. collaborative
filtering) [25]. Its goal is to discover latent interactions
between two entities, such as users and movies, via matrix
factorization. For example, input data can be a partially
filled matrix X , where every entry is a user’s rating for
a movie, each row corresponding to a user, and each
column corresponding to a specific movie. Matrix factor-

636 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ization factorizes X into factor matrices L and R such that
their product approximates X (i.e., X ≈ LR). Like other
systems [17,32,83], we implement MF using the stochas-
tic gradient descent (SGD) algorithm. Each worker is
assigned a portion of the known entries in X . The L
matrix is stored locally in each worker, and the R matrix
is stored in parameter servers. Our experiments use the
Netflix dataset, a 480K-by-18K sparse matrix with 100M
known entries. They are configured to factor the matrix
into the product of two matrices, each with rank 500.

Topic Modeling (TM) is an unsupervised method for
discovering hidden semantic structures (topics) in an
unstructured collection of documents, each consisting of a
bag (multi-set) of words [10]. TM discovers the topics via
word co-occurrence. For example, “policy” is more likely
to co-occur with “government” than “bacteria”, and thus
“policy” and “government” are categorized to the same
topic associated with political terms. Further, a document
with many instances of “policy” would be assigned a topic
distribution that peaks for the politics-related topics. TM
learns the hidden topics and the documents’ associations
with those topics jointly. Common applications for TM
include community detection in social networks and news
categorizations. We implement our TM solver using
collapsed Gibbs sampling [30]. We use the Nytimes
dataset [53], which has 100M words in 300K documents
with a vocabulary size of 100K. Our experiments classify
words and documents into 500 topics.

Image Classification (IC) is a task to classify im-
ages into categories, and the state-of-the-art approach is
using deep learning and convolutional neural networks
(CNNs) [43]. Given a set of images with known cate-
gories (training data), the ML algorithm trains a CNN
to learn the relationship between the image features and
their categories. The trained CNN is then used to predict
the categories of another set of images (test data). We use
GoogLeNet [65], one of the state-of-the-art CNNs as our
model. We train GoogLeNet using stochastic gradient
descent with back propagation [61]. As training a CNN
with a large number of images requires substantial compu-
tation, doing so on CPUs can take hundreds of machines
over a week [13]. Instead, we use distributed GPUs with
a popular deep learning framework, Caffe [38], which
is hosted by a state-of-the-art GPU-specialized param-
eter server system, GeePS [18]. Our experiments use
the ImageNet Large Scale Visual Recognition Challenge
2012 (ILSVRC12) [62] dataset, which consists of 1.3M
training images and 50K test images. Each image is
labeled as one of the 1,000 pre-defined categories.

5.3. Performance Metrics and Algorithm Conver-
gence Criteria

We use two performance metrics to evaluate the effective-
ness of a globally distributed ML system. The first metric
is the execution time until algorithm convergence. We
use the following algorithm convergence criterion, based
on guidance from our ML experts: if the value of the
objective function (the objective value) in an algorithm

changes by less than 2% over the course of 10 iterations,
we declare that the algorithm has converged [32]. In
order to ensure that each algorithm accurately converges
to the optimal point, we first run each algorithm on our
local cluster until it converges, and we record the absolute
objective value. The execution time of each setting is the
time it takes to converge to this absolute objective value.
The second metric is the cost of algorithm convergence.
We calculate the cost based on the cost model of Amazon
EC2 [8], including the cost of the server time and the
cost of data transfer on WANs. We provide the details of
the cost model in Appendix C.

6. Evaluation Results
We evaluate the effectiveness of Gaia by evaluating three
types of systems/deployments: (1) Baseline, two state-
of-the-art parameter server systems (IterStore [17] for
MF and TM, GeePS [18] for IC) that are deployed across
multiple data centers. Every worker machine handles the
data in its data center, while the parameter servers are
distributed evenly across all the data centers; (2) Gaia,
our prototype systems based on IterStore and GeePS,
deployed across multiple data centers; and (3) LAN, the
baseline parameter servers (IterStore and GeePS) that are
deployed within a single data center (also on 22 machines)
that already hold all the data, representing the ideal case
of all communication on a LAN. For each system, we
evaluate two ML synchronization models: BSP and SSP
(Section 2.1). For Baseline and LAN, BSP and SSP are
used among all worker machines, whereas for Gaia, they
are used only within each data center. Due to limited
space, we present the results for BSP in this section and
leave the results for SSP to Appendix B.

6.1. Performance on EC2 Deployment
We first present the performance of Gaia and Baseline
when they are deployed across 11 EC2 data centers. Fig-
ure 8 shows the normalized execution time until conver-
gence for our ML applications, normalized to Baseline
on EC2. The data label on each bar is the speedup
over Baseline for the respective deployment. As Sec-
tion 5.1 discusses, we run only MF on EC2 due to the
high monetary cost of WAN data transfer. Thus, we
present the results of MF on all three platforms, while
we show the results of TM and IC only on our emulation
platforms. As Figure 8a shows, our emulation platform
(Emulation-EC2) matches the execution time of our real
EC2 deployment (Amazon-EC2) very well. We make two
major observations.

First, we find that Gaia significantly improves the
performance of Baseline when deployed globally across
many EC2 data centers. For MF, Gaia provides a speedup
of 2.0× over Baseline. Furthermore, the performance of
Gaia is very similar to the performance of LAN, indicating
that Gaia almost attains the performance upper bound
with the given computation resources. For TM, Gaia
delivers a similar speedup (2.0×) and is within 1.25× of
the ideal speed of LAN. For IC, Gaia provides a speedup

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 637

2.0X 2.0X1.8X 1.8X

3.8X 3.7X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Amazon-EC2

Emulation-EC2
Emulation-Full-Speed

(a) Matrix Factorization (MF)

2.0X
2.5X

3.7X 4.8X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Emulation-EC2
Emulation-Full-Speed

(b) Topic Modeling (TM)

5.6X 7.5X6.0X 8.5X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Emulation-EC2
Emulation-Full-Speed

(c) Image Classification (IC)
Figure 8: Normalized execution time until convergence when deployed across 11 EC2 regions and our emulation cluster

of 5.6× over Baseline, which is within 1.32× of the
LAN speed, indicating that Gaia is also effective on a
GPU-based ML system. The gap between Baseline and
LAN is larger for IC than for the other two applications.
This is because the GPU-based ML system generates
parameter updates at a higher rate than the CPU-based
one, and therefore the limited WAN bandwidth slows it
down more significantly.

Second, Gaia provides a higher performance gain when
deployed on a more powerful platform. As Figure 8 shows,
the performance gap between Baseline and LAN signifi-
cantly increases on Emulation-Full-Speed compared to
the slower platform Emulation-EC2. This is expected
because the WAN bandwidth becomes a more critical
bottleneck when the computation time reduces and the
LAN bandwidth increases. Gaia successfully mitigates
the WAN bottleneck in this more challenging Emulation-
Full-Speed setting, and improves the system performance
by 3.8× for MF, 3.7× for TM, and 6.0× for IC over
Baseline, approaching the speedups provided by LAN.

6.2. Performance and WAN Bandwidth
To understand how Gaia performs under different amounts
of WAN bandwidth, we evaluate two settings where
Baseline and Gaia are deployed across two data centers
with two WAN bandwidth configurations: (1) V/C WAN,
which emulates the WAN bandwidth between Virginia
and California, representing a setting within the same
continent; and (2) S/S WAN, which emulates the WAN
bandwidth between Singapore and São Paulo, representing
the lowest WAN bandwidth between any two Amazon
EC2 sites. All the experiments are conducted on our
emulation platform at full speed. Figures 9 and 10 show
the results. Three observations are in order.

3.7X 3.5X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Matrix Factorization

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

3.7X 3.9X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Topic Modeling

Baseline Gaia LAN

7.4X 7.4X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Image Classification

Baseline Gaia LAN

Figure 9: Normalized execution time until convergence
with the WAN bandwidth between Virginia and California

First, Gaia successfully matches the performance of
LAN when WAN bandwidth is high (V/C WAN). As Fig-
ure 9 shows, Gaia achieves a speedup of 3.7× for MF,
3.7× for TM, and 7.4× for IC. For all three ML applica-
tions, the performance of Gaia on WANs is almost the
same as LAN performance.

25X 24X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Matrix Factorization

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

14X 17X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Topic Modeling

Baseline Gaia LAN

54X 54X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Image Classification

Baseline Gaia LAN

Figure 10: Normalized execution time until convergence
with the WAN bandwidth between Singapore and São Paulo

Second, Gaia still performs very well when WAN
bandwidth is low (S/S WAN, Figure 10): Gaia provides a
speedup of 25.4× for MF, 14.1× for TM, and 53.5× for
IC, and successfully approaches LAN performance. These
results show that our design is robust for both CPU-based
and GPU-based ML systems, and it can deliver high
performance even under scarce WAN bandwidth.

Third, for MF, the performance of Gaia (on WANs) is
slightly better than LAN performance. This is because we
run ASP between different data centers, and the workers
in each data center need to synchronize only with each
other locally in each iteration. As long as the mirror
updates on WANs are timely, each iteration of Gaia can
be faster than that of LAN, which needs to synchronize
across all workers. While Gaia needs more iterations than
LAN due to the accuracy loss, Gaia can still outperform
LAN due to the faster iterations.

6.3. Cost Analysis
Figure 11 shows the monetary cost of running ML ap-
plications until convergence based on the Amazon EC2
cost model, normalized to the cost of Baseline on 11
EC2 regions. Cost is divided into three components: (1)
the cost of machine time spent on computation, (2) the
cost of machine time spent on waiting for networks, and
(3) the cost of data transfer across different data centers.
As we discuss in Section 2.2, there is no cost for data
transfer within a single data center in Amazon EC2. The
data label on each bar shows the factor by which the
cost of Gaia is cheaper than the cost of each respective
Baseline. We evaluate all three deployment setups that
we discuss in Sections 6.1 and 6.2. We make two major
observations.

First, Gaia is very effective in reducing the cost of
running a geo-distributed ML application. Across all
the evaluated settings, Gaia is 2.6× to 59.0× cheaper
than Baseline. Not surprisingly, the major cost saving
comes from the reduction of data transfer on WANs
and the reduction of machine time spent on waiting for
networks. For the S/S WAN setting, the cost of waiting
for networks is a more important factor than the other

638 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.2X 6.0X 28.5X
0

0.5
1

1.5
2

2.5

Baseline Gaia Baseline Gaia Baseline Gaia

EC2-ALL V/C WAN S/S WAN

N
or

m
lia

ed
 C

os
t Machine Cost (Compute)

Machine Cost (Network)
Communication Cost

(a) Matrix Factorization (MF)

2.6X
5.7X 18.7X

0
0.5

1
1.5

2
2.5

Baseline Gaia Baseline Gaia Baseline Gaia

EC2-ALL V/C WAN S/S WAN

N
or

m
lia

ed
 C

os
t Machine Cost (Compute)

Machine Cost (Network)
Communication Cost

(b) Topic Modeling (TM)

8.5X 10.7X 59.0X
0

0.5
1

1.5
2

2.5
3

3.5
4

Baseline Gaia Baseline Gaia Baseline Gaia

EC2-ALL V/C WAN S/S WAN

N
or

m
lia

ed
 C

os
t Machine Cost (Compute)

Machine Cost (Network)
Communication Cost

(c) Image Classification (IC)
Figure 11: Normalized monetary cost of Gaia vs. Baseline

two settings, because it takes more time to transfer the
same amount of data under low WAN bandwidth. As
Gaia significantly improves system performance and
reduces data communication overhead, it significantly
reduces both cost sources. We conclude that Gaia is a
cost-effective system for geo-distributed ML applications.

Second, Gaia reduces data transfer cost much more
when deployed on a smaller number of data centers. The
reason is that Gaia needs to broadcast the significant
updates to all data centers, so communication cost is
higher as the number of data centers increases. While
we employ network overlays (Section 4.5) to mitigate
this effect, there is still more overhead with more than
two data centers. Nonetheless, the cost of Gaia is still
much cheaper (4.2×/2.6×/8.5×) than Baseline even
when deployed across 11 data centers.

6.4. Comparisons with Centralized Data
Gaia obtains its good performance without moving any
raw data, greatly reducing WAN costs and respecting
privacy and data sovereignty laws that prohibit raw data
movement. For settings in which raw data movement is al-
lowed, Table 1 summarizes the performance and cost com-
parisons between Gaia and the centralized data approach
(Centralized), which moves all the geo-distributed data
into a single data center and then runs the ML application
over the data. We make Centralized very cost efficient
by moving the data into the cheapest data center in each
setting, and we use low cost machines (m4.xlarge [8])
to move the data. We make two major observations.

Table 1: Comparison between Gaia and Centralized

Application Setting Gaia Speedup
over Centralized

Gaia cost /
Centralized cost

MF
EC2-ALL 1.11 3.54
V/C WAN 1.22 1.00
S/S WAN 2.13 1.17

TM
EC2-ALL 0.80 6.14
V/C WAN 1.02 1.26
S/S WAN 1.25 1.92

IC
EC2-ALL 0.76 3.33
V/C WAN 1.12 1.07
S/S WAN 1.86 1.08

First, Gaia outperforms Centralized for most set-
tings, except for TM and IC in the EC2-ALL setting.
Other than these two cases, Gaia provides a 1.02–2.13×
speedup over Centralized. This is because Gaia does
not need to wait for data movement over WANs, and the
performance of Gaia is very close to that of LAN. On the
other hand, Centralized performs better when there is
a performance gap between Gaia and LAN, especially in
the setting of all 11 data centers for TM and IC. The data
movement overhead of Centralized is smaller in this

setting because each data center has only a small fraction
of the data, and Centralized moves the data from all
data centers in parallel.

Second, Centralized is more cost-efficient than Gaia,
but the gap is small in the two data centers setting. This
is because the total WAN traffic of Gaia is still larger
than the size of the training data, even though Gaia
significantly reduces the communication overhead over
Baseline. The cost gap is larger in the setting of 11
data centers (3.33–6.14×) than in two data centers (1.00–
1.92×), because the WAN traffic of Gaia is positively
correlated with the number of data centers (Section 4.5).

6.5. Effect of Synchronization Mechanisms
One of the major design considerations of ASP is to en-
sure that the significant updates arrive in a timely manner
to guarantee algorithm convergence. To understand the
effectiveness of our proposed synchronization mecha-
nisms (i.e., ASP selective barrier and mirror clock), we
run MF and TM on Gaia with both mechanisms disabled
across 11 EC2 regions. Figure 12 shows the progress
toward algorithm convergence with the synchronization
mechanisms enabled (Gaia) and disabled (Gaia_Async).
For MF, lower object value is better, while for TM, higher
is better.

0E+00
1E+08
2E+08
3E+08
4E+08
5E+08
6E+08
7E+08
8E+08
9E+08
1E+09

0 50 100 150 200 250 300 350

O
bj

ec
tiv

e v
al

ue

Time (Seconds)

Gaia
Gaia_Async

convergence value

(a) Matrix Factorization (MF)

-1.5E+09
-1.4E+09
-1.3E+09
-1.2E+09
-1.1E+09
-1.0E+09
-9.0E+08

0 250 500 750 1000

O
bj

ec
tiv

e v
al

ue

Time (Seconds)

Gaia
Gaia_Async

convergence Value

(b) Topic Modeling (TM)
Figure 12: Progress toward algorithm convergence with
and without Gaia’s synchronization mechanisms

As Figure 12 shows, Gaia steadily reaches algo-
rithm convergence for both applications. In contrast,
Gaia_Async diverges from the optimum point at ~100
seconds for MF. For TM, Gaia_Async looks like it makes
faster progress at the beginning of execution because it
eliminates the synchronization overhead. However, it
makes very slow progress after ~200 seconds and does
not reach the value that results in convergence until 1100
seconds. It may take a long time for Gaia_Async to reach
that point, if ever. Thus, the lack of synchronization leads
to worse model quality than that achieved by using proper
synchronization mechanisms. Both results demonstrate
that the synchronization mechanisms we introduce in
ASP are effective and vital for deploying ML algorithms
on Gaia on WANs.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 639

7. Related Work
To our knowledge, this is the first work to propose a
globally distributed ML system that is (1) designed to run
effectively over WANs while ensuring the convergence
and accuracy of an ML algorithm, and (2) generic and
flexible to run a wide range of ML algorithms without
requiring modification. In this section, we discuss related
works on 1) WAN-aware data analytics and ML systems,
2) distributed ML systems, 3) non-uniform convergence
in ML algorithms, 4) communication-efficient ML algo-
rithms, and 5) approximate queries on distributed data,
all of which are related to our proposed system.

WAN-aware Data Analytics and ML Systems. Prior
work establishes the emerging problem of analyzing the
globally-generated data in the context of data analytics
systems (e.g., [33, 36, 41, 57, 58, 71–73]). These works
show very promising WAN bandwidth reduction and/or
system performance improvement with a WAN-aware
data analytics framework. However, their goal is not to
run an ML system effectively on WANs, which has very
different challenges from a data analytics system. Cano
et al. [12] first discuss the problem of running an ML
system on geo-distributed data. They show that a geo-
distributed ML system can perform significantly better
by leveraging a communication-efficient algorithm [49]
for logistic regression models. This solution requires the
ML programmer to change the ML algorithm, which is
challenging and algorithm-specific. In contrast, our work
focuses on the design of communication-efficient mecha-
nisms at the system level and requires no modification to
the ML algorithms.

Distributed ML Systems. There are many distributed
ML systems that aim to enable large-scale ML applica-
tions (e.g., [1, 2, 5, 6, 13, 16–18, 20, 34, 40, 45–47, 74, 77]).
These systems successfully demonstrate their effective-
ness on a large number of machines by employing various
synchronization models and system optimizations. How-
ever, all of them assume that the network communication
happens within a data center and do not tackle the chal-
lenges of scarce WAN bandwidth. As our study shows,
state-of-the-art parameter server systems suffer from sig-
nificant performance degradation and data transfer cost
when deployed across multiple data centers on WANs. We
demonstrate our idea on both CPU-based and GPU-based
parameter server systems [17, 18], and we believe our
proposed general solution can be applied to all distributed
ML systems that use the parameter server architecture.

Non-uniform Convergence in ML Algorithms. Prior
work observes that, in many ML algorithms, not all model
parameters converge to their optimal value within the same
number of computation iterations [21,22,40,47,80]. Sev-
eral systems exploit this property to improve the algorithm
convergence speed, e.g., by prioritizing the computation
of important parameters [40, 47, 80], communicating the
important parameters more aggressively [74], or sending
fewer updates with user-defined filters [45, 46].

Among these, the closest to our work is Li et al.’s

proposal for a communication-efficient parameter server
system [45, 46], which employs various filters to reduce
communication between worker machines and parameter
servers. In contrast to our work, this work 1) does not
differentiate the communication on LANs from the com-
munication on WANs, and thus it cannot make efficient
use of the abundant LAN bandwidth or the scarce and
heterogeneous WAN bandwidth, and 2) does not propose
a general synchronization model across multiple data
centers, a key contribution of our work.

Communication-Efficient ML Algorithms. A large
body of prior work proposes ML algorithms to reduce
the dependency on intensive parameter updates to enable
more efficient parallel computation (e.g., [37, 52, 63, 66,
81, 82, 84]). These works are largely orthogonal to our
work, as we focus on a generic system-level solution that
does not require any changes to ML algorithms. These
ML algorithms can use our system to further reduce
communication overhead over WANs.

Approximate Queries on Distributed Data. In the
database community, there is substantial prior work that
explores the trade-off between precision and performance
for queries on distributed data over WANs (e.g., [15, 55,
56, 75]). The idea is to reduce communication overhead
of moving up-to-date data from data sources to a query
processor by allowing some user-defined precision loss
for the queries. At a high level, our work bears some
resemblance to this idea, but the challenges we tackle
are fundamentally different. The focus of distributed
database systems is on approximating queries (e.g., simple
aggregation) on raw data. In contrast, our work focuses
on retaining ML algorithm convergence and accuracy by
using approximate ML models during training.

8. Conclusion
We introduce Gaia, a new ML system that is designed
to efficiently run ML algorithms on globally-generated
data over WANs, without any need to change the ML
algorithms. Gaia decouples the synchronization within a
data center (LANs) from the synchronization across differ-
ent data centers (WANs), enabling flexible and effective
synchronization over LANs and WANs. We introduce a
new synchronization model, Approximate Synchronous
Parallel (ASP), to efficiently utilize the scarce and hetero-
geneous WAN bandwidth while ensuring convergence of
the ML algorithms with a theoretical guarantee. Using
ASP, Gaia dynamically eliminates insignificant, and thus
unnecessary, communication over WANs. Our evaluation
shows that Gaia significantly outperforms two state-of-
the-art parameter server systems on WANs, and is within
0.94–1.40× of the speed of running the same ML al-
gorithm on a LAN. Gaia also significantly reduces the
monetary cost of running the same ML algorithm on
WANs, by 2.6–59.0×. We conclude that Gaia is a prac-
tical and effective system to enable globally-distributed
ML applications, and we believe the ideas behind Gaia’s
system design for communication across WANs can be
applied to many other large-scale distributed ML systems.

640 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We thank our shepherd, Adam Wierman, and the review-
ers for their valuable suggestions. We thank the SAFARI
group members and Garth A. Gibson for their feedback.
Special thanks to Henggang Cui for his help on IterStore
and GeePS, Jinliang Wei for his help on Bösen, and their
feedback. We thank the members and companies of the
PDL Consortium (including Broadcom, Citadel, EMC,
Facebook, Google, HP Labs, Hitachi, Intel, Microsoft
Research, MongoDB, NetApp, Oracle, Samsung, Seagate,
Tintri, Two Sigma, Uber, Veritas, and Western Digital)
for their interest, insights, feedback, and support. We ac-
knowledge the support of our industrial partners: Google,
Intel, NVIDIA, Samsung and VMWare. This work is
supported in part by NSF grant 1409723, Intel STC on
Cloud Computing (ISTC-CC), Intel STC on Visual Cloud
Systems (ISTC-VCS), and the Dept of Defense under con-
tract FA8721-05-C-0003. Dimitris Konomis is partially
supported by Onassis Foundation.

References
[1] “Apache Mahout.” http://mahout.apache.org/
[2] “Apache Spark MLlib.” http://spark.apache.org/

mllib/
[3] “Linux Traffic Control.” http://tldp.org/HOWTO/

Traffic-Control-HOWTO/intro.html
[4] “Deep neural networks for acoustic modeling in

speech recognition: The shared views of four re-
search groups,” IEEE Signal Process. Mag., 2012.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org.
http://tensorflow.org/

[6] A. Ahmed, M. Aly, J. Gonzalez, S. M. Narayana-
murthy, and A. J. Smola, “Scalable inference in
latent variable models,” in WSDM, 2012.

[7] Amazon, “AWS global infrastructure.” https://aws.
amazon.com/about-aws/global-infrastructure/

[8] Amazon, “Amazon EC2 pricing,” Janurary 2017.
https://aws.amazon.com/ec2/pricing/

[9] A. Auradkar, C. Botev, S. Das, D. D. Maagd,
A. Feinberg, P. Ganti, L. Gao, B. Ghosh,
K. Gopalakrishna, B. Harris, J. Koshy, K. Krawez,
J. Kreps, S. Lu, S. Nagaraj, N. Narkhede, S. Pachev,
I. Perisic, L. Qiao, T. Quiggle, J. Rao, B. Schul-
man, A. Sebastian, O. Seeliger, A. Silberstein,
B. Shkolnik, C. Soman, R. Sumbaly, K. Surlaker,
S. Topiwala, C. Tran, B. Varadarajan, J. Westerman,

Z. White, D. Zhang, and J. Zhang, “Data infrastruc-
ture at LinkedIn,” in ICDE, 2012.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent
Dirichlet allocation,” JMLR, 2003.

[11] J. K. Bradley, A. Kyrola, D. Bickson, and
C. Guestrin, “Parallel coordinate descent for L1-
regularized loss minimization,” in ICML, 2011.

[12] I. Cano, M. Weimer, D. Mahajan, C. Curino, and
G. M. Fumarola, “Towards geo-distributed machine
learning,” CoRR, 2016.

[13] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalya-
naraman, “Project Adam: Building an efficient and
scalable deep learning training system,” in OSDI,
2014.

[14] C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. R. Bradski, A. Y.
Ng, and K. Olukotun, “Map-Reduce for machine
learning on multicore,” in NIPS, 2006.

[15] G. Cormode, M. N. Garofalakis, S. Muthukrishnan,
and R. Rastogi, “Holistic aggregates in a networked
world: Distributed tracking of approximate quan-
tiles,” in SIGMOD, 2005.

[16] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Ku-
mar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons,
G. A. Gibson, and E. P. Xing, “Exploiting bounded
staleness to speed up big data analytics,” in USENIX
ATC, 2014.

[17] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai,
J. Haber-Kucharsky, Q. Ho, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing, “Ex-
ploiting iterative-ness for parallel ML compu-
tations,” in SoCC, 2014, software available at
https://github.com/cuihenggang/iterstore.

[18] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons,
and E. P. Xing, “GeePS: Scalable deep learning on
distributed GPUs with a GPU-specialized parame-
ter server,” in EuroSys, 2016, software available at
https://github.com/cuihenggang/geeps.

[19] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson,
and E. P. Xing, “Analysis of high-performance dis-
tributed ML at scale through parameter server con-
sistency models,” in AAAI, 2015.

[20] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior,
P. A. Tucker, K. Yang, and A. Y. Ng, “Large scale
distributed deep networks,” in NIPS, 2012.

[21] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani,
“Least angle regression,” in The Annals of Statistics,
2004.

[22] G. Elidan, I. McGraw, and D. Koller, “Residual
belief propagation: Informed scheduling for asyn-
chronous message passing,” in UAI, 2006.

[23] ESnet and Lawrence Berkeley National Laboratory,
“iperf3.” http://software.es.net/iperf/

[24] A. Frome, G. S. Corrado, J. Shlens, S. Bengio,
J. Dean, M. Ranzato, and T. Mikolov, “DeViSE:

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 641

A deep visual-semantic embedding model,” in NIPS,
2013.

[25] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis,
“Large-scale matrix factorization with distributed
stochastic gradient descent,” in SIGKDD, 2011.

[26] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin, “PowerGraph: Distributed graph-
parallel computation on natural graphs,” in OSDI,
2012.

[27] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica, “GraphX: Graph pro-
cessing in a distributed dataflow framework,” in
OSDI, 2014.

[28] Google, “Google data center loca-
tions.” https://www.google.com/about/datacenters/
inside/locations/index.html

[29] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and
P. Patel, “The cost of a cloud: research problems in
data center networks,” Computer Communication
Review, 2009.

[30] T. L. Griffiths and M. Steyvers, “Finding scientific
topics,” Proceedings of the National Academy of
Sciences of the United States of America, 2004.

[31] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan,
K. Lai, S. Wu, S. G. Dhoot, A. R. Kumar, A. Agi-
wal, S. Bhansali, M. Hong, J. Cameron, M. Siddiqi,
D. Jones, J. Shute, A. Gubarev, S. Venkataraman,
and D. Agrawal, “Mesa: Geo-replicated, near real-
time, scalable data warehousing,” PVLDB, 2014.

[32] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing, “Address-
ing the straggler problem for iterative convergent
parallel ML,” in SoCC, 2016.

[33] B. Heintz, A. Chandra, and R. K. Sitaraman, “Op-
timizing grouped aggregation in geo-distributed
streaming analytics,” in HPDC, 2015.

[34] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B.
Gibbons, G. A. Gibson, G. R. Ganger, and E. P.
Xing, “More effective distributed ML via a stale
synchronous parallel parameter server,” in NIPS,
2013.

[35] C. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer, “Achiev-
ing high utilization with software-driven WAN,” in
SIGCOMM, 2013.

[36] C. Hung, L. Golubchik, and M. Yu, “Scheduling
jobs across geo-distributed datacenters,” in SoCC,
2015.

[37] M. Jaggi, V. Smith, M. Takác, J. Terhorst,
S. Krishnan, T. Hofmann, and M. I. Jordan,
“Communication-efficient distributed dual coordi-
nate ascent,” in NIPS, 2014.

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. B. Girshick, S. Guadarrama, and T. Dar-
rell, “Caffe: Convolutional architecture for fast fea-
ture embedding,” CoRR, 2014.

[39] A. Karpathy, G. Toderici, S. Shetty, T. Leung,
R. Sukthankar, and F. F. Li, “Large-scale video clas-
sification with convolutional neural networks,” in
CVPR, 2014.

[40] J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A.
Gibson, and E. P. Xing, “STRADS: a distributed
framework for scheduled model parallel machine
learning,” in EuroSys, 2016.

[41] K. Kloudas, R. Rodrigues, N. M. Preguiça, and
M. Mamede, “PIXIDA: optimizing data parallel jobs
in wide-area data analytics,” PVLDB, 2015.

[42] N. Laoutaris, M. Sirivianos, X. Yang, and P. Ro-
driguez, “Inter-datacenter bulk transfers with net-
stitcher,” in SIGCOMM, 2011.

[43] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. E. Hubbard, and L. D. Jackel,
“Backpropagation applied to handwritten zip code
recognition,” Neural Computation, 1989.

[44] G. Lee, J. J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy,
“The unified logging infrastructure for data analytics
at Twitter,” PVLDB, 2012.

[45] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su, “Scaling distributed machine learning with
the parameter server,” in OSDI, 2014.

[46] M. Li, D. G. Andersen, A. J. Smola, and K. Yu,
“Communication efficient distributed machine learn-
ing with the parameter server,” in NIPS, 2014.

[47] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein, “Distributed
GraphLab: A framework for machine learning in
the cloud,” VLDB, 2012.

[48] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and
S. Lim, “A survey and comparison of peer-to-peer
overlay network schemes,” IEEE Communications
Surveys and Tutorials, 2005.

[49] D. Mahajan, S. S. Keerthi, S. Sundararajan, and
L. Bottou, “A functional approximation based dis-
tributed learning algorithm,” CoRR, 2013.

[50] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “MLlib:
Machine learning in Apache Spark,” CoRR, 2015.

[51] Microsoft, “Azure regions.” https://azure.microsoft.
com/en-us/region

[52] W. Neiswanger, C. Wang, and E. P. Xing, “Asymp-
totically exact, embarrassingly parallel MCMC,” in
UAI, 2014.

[53] “New York Times dataset,” http://www.ldc.upenn.
edu/.

[54] D. Newman, A. U. Asuncion, P. Smyth, and
M. Welling, “Distributed algorithms for topic mod-
els,” JMLR, 2009.

642 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[55] C. Olston, J. Jiang, and J. Widom, “Adaptive filters
for continuous queries over distributed data streams,”
in SIGMOD, 2003.

[56] C. Olston and J. Widom, “Offering a precision-
performance tradeoff for aggregation queries over
replicated data,” in VLDB, 2000.

[57] Q. Pu, G. Ananthanarayanan, P. Bodík, S. Kandula,
A. Akella, P. Bahl, and I. Stoica, “Low latency geo-
distributed data analytics,” in SIGCOMM, 2015.

[58] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J.
Freedman, “Aggregation and degradation in Jet-
Stream: Streaming analytics in the wide area,” in
NSDI, 2014.

[59] B. Recht, C. Ré, S. J. Wright, and F. Niu, “Hogwild:
A lock-free approach to parallelizing stochastic gra-
dient descent,” in NIPS, 2011.

[60] P. Richtárik and M. Takác, “Distributed coordinate
descent method for learning with big data,” CoRR,
2013.

[61] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning representations by back-propagating er-
rors,” Cognitive modeling, 1988.

[62] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet large scale visual recognition challenge,”
IJCV, 2015.

[63] O. Shamir, N. Srebro, and T. Zhang,
“Communication-efficient distributed optimization
using an approximate Newton-type method,” in
ICML, 2014.

[64] A. J. Smola and S. M. Narayanamurthy, “An archi-
tecture for parallel topic models,” VLDB, 2010.

[65] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in CVPR,
2015.

[66] M. Takác, A. S. Bijral, P. Richtárik, and N. Srebro,
“Mini-batch primal and dual methods for SVMs,” in
ICML, 2013.

[67] TeleGeography, “Global Internet geography.”
https://www.telegeography.com/research-services/
global-internet-geography/

[68] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur,
N. Jain, J. S. Sarma, R. Murthy, and H. Liu, “Data
warehousing and analytics infrastructure at Face-
book,” in SIGMOD, 2010.

[69] K. I. Tsianos, S. F. Lawlor, and M. G. Rabbat, “Com-
munication/computation tradeoffs in consensus-
based distributed optimization,” in NIPS, 2012.

[70] L. G. Valiant, “A bridging model for parallel com-
putation,” Commun. ACM, 1990.

[71] R. Viswanathan, A. Akella, and G. Anantha-
narayanan, “Clarinet: WAN-aware optimization for
analytics queries,” in OSDI, 2016.

[72] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos,
and G. Varghese, “WANalytics: Analytics for a geo-
distributed data-intensive world,” in CIDR, 2015.

[73] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut,
J. Padhye, and G. Varghese, “Global analytics in the
face of bandwidth and regulatory constraints,” in
NSDI, 2015.

[74] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R.
Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing,
“Managed communication and consistency for fast
data-parallel iterative analytics,” in SoCC, 2015.

[75] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang,
“Moving objects databases: Issues and solutions,” in
SSDBM, 1998.

[76] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett,
and H. V. Madhyastha, “SPANStore: Cost-effective
geo-replicated storage spanning multiple cloud ser-
vices,” in SOSP, 2013.

[77] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu, “Petuum:
A new platform for distributed machine learning on
big data,” in SIGKDD, 2015.

[78] E. P. Xing, Q. Ho, P. Xie, and W. Dai, “Strategies
and principles of distributed machine learning on
big data,” CoRR, 2015.

[79] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in
NSDI, 2012.

[80] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “PrIter: A
distributed framework for prioritized iterative com-
putations,” in SoCC, 2011.

[81] Y. Zhang, J. C. Duchi, and M. J. Wainwright,
“Communication-efficient algorithms for statistical
optimization,” JMLR, 2013.

[82] Y. Zhang and X. Lin, “DiSCO: Distributed optimiza-
tion for self-concordant empirical loss,” in ICML,
2015.

[83] M. Zinkevich, A. J. Smola, and J. Langford, “Slow
learners are fast,” in NIPS, 2009.

[84] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li,
“Parallelized stochastic gradient descent,” in NIPS,
2010.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 643

Appendix
A. Convergence Proof of SGD under ASP
Stochastic Gradient Descent is a very popular algorithm,
widely used for finding the minimizer/maximizer of a
criterion (sum of differentiable functions) via iterative
steps. The intuition behind the algorithm is that we
randomly select an initial point xxx0 and keep moving
toward the negative direction of the gradient, producing
a sequence of points xxxi, i = 1, ...n until we detect that
moving further decreases (increases) the minimization
(maximization, respectively) criterion only negligibly.

Formally, step t of the SGD algorithm is defined as:

xxxt = xxxt−1−ηt∇ ft(xxxt) = xxxt−1−ηtgggt = xxxt−1 +uuut (1)

where ηt is the step size at step t, ∇ ft(xxxt) or gggt is the
gradient at step t, and uuut = ηtgggt is the update of step t.

Let us define an order of the updates up to step t.
Suppose that the algorithm is distributed in D data centers,
each of which uses P machines, and the logical clocks
that mark progress start at 0. Then,

uuut = uuud,p,c = uuub t
P c mod D, t mod P, b t

DP c
(2)

represents a mapping that loops through clocks (c =
b t

DPc) and for each clock loops through data centers
(d = b t

Pc mod D) and for each data center loops through
its workers (p = t mod P).

We now define a reference sequence of states that a
single machine serial execution would go through if the
updates were observed under the above ordering:

xxxt = xxx0 +
t

∑
t ′=1

uuut ′ (3)

Let ∆c denote the threshold of mirror clock difference
between different data centers. At clock c, let Ad,c denote
the (c−∆c)-width window of updates at data center d:
Ad,c = [0,P−1]× [0,c−∆c−1]. Also, let Kd,c denote the
subset of Ad,c of significant updates (i.e., those broadcast
to other data centers) and Ld,c denote the subset of Ad,c
of the insignificant updates (not broadcast) from this data
center. Clearly, Kd,c and Ld,c are disjoint and their union
equals Ad,c.

Let s denote a user-chosen staleness threshold for SSP.
Let x̃xxt denote the sequence of noisy (i.e., inaccurate) views
of the parameters xxxt . Let Bd,c denote the 2s-width window
of updates at data center d: Bd,c = [0,P−1]× [c− s,c+
s−1]. A worker p in data center d will definitely see its
own updates and may or may not see updates from other
workers that belong to this window. Then, Md,c denotes
the set of updates that are not seen in x̃xxttt and are seen in
xxxt , whereas Nd,c denotes the updates that are seen in x̃xxttt
and not seen in xxxt . The sets Md,c and Nd,c are disjoint
and their union equals the set Bd,c.

We define the noisy view x̃xxttt using the above mapping:

x̃xxd,p,c =
P−1

∑
p′=0

c−s−1

∑
c′=0

uuud,p′,c′ +
c−1

∑
c′=c−s

uuud,p,c′

+ ∑
(p′,c′)∈B′d,c⊂Bd,c

uuud,p′,c′ + ∑
d′ 6=d

[
∑

(p′,c′)∈Kd′ ,c′

uuud′,p′,c′
]

(4)

The difference between the reference view xxxt and the
noisy view x̃xxttt becomes:

x̃xxt − xxxt = x̃xxd,p,c− xxxt = x̃xxb t
P c mod D,t mod P,b t

DP c
− xxxt =

− ∑
i∈Md,c

uuui + ∑
i∈Nd,c

uuui− ∑
d′ 6=d

∑
i∈Ld′ ,c

uuui

+ ∑
d′ 6=d

[
− ∑

i∈Md′ ,c

uuui + ∑
i∈Nd′ ,c

uuui

]
(5)

Finally, let D(xxx,xxx′′′) denote the distance between points
xxx,xxx′′′ ∈ Rn:

D(xxx,xxx′′′) =
1
2
‖xxx− xxx′′′‖2

. (6)

We now prove the following lemma:

Lemma. For any xxx∗, x̃xxt ∈ Rn,

〈x̃xxt − xxx∗, g̃ggt〉=
1
2

ηt‖g̃ggt‖
2 +

D(xxx∗,xxxt)−D(xxx∗,xxxt+1)

ηt

+
[
− ∑

i∈Md,c

ηi〈g̃ggi, g̃ggt〉+ ∑
i∈Nd,c

ηi〈g̃ggi, g̃ggt〉
]

+ ∑
d′ 6=d

[
− ∑

i∈Ld′ ,c

ηi〈g̃ggi, g̃ggt〉
]

+ ∑
d′ 6=d

[
− ∑

i∈Md′ ,c

ηi〈g̃ggi, g̃ggt〉+ ∑
i∈Nd′ ,c

ηi〈g̃ggi, g̃ggt〉
]

(7)

Proof.

D(xxx∗,xxxt+1)−D(xxx∗,xxxt) =
1
2
‖xxx∗− xxxt+1‖2− 1

2
‖xxx∗− xxxt‖2

=
1
2
‖xxx∗− xxxt + xxxt − xxxt+1‖2− 1

2
‖xxx∗− xxxt‖2

=
1
2
‖xxx∗− xxxt +ηt g̃ggt‖

2− 1
2
‖xxx∗− xxxt‖2

=
1
2
〈xxx∗− xxxt +ηt g̃ggt ,xxx

∗− xxxt +ηt g̃ggt〉−
1
2
〈xxx∗− xxxt ,xxx∗− xxxt〉

=
1
2
〈xxx∗− xxxt ,xxx∗− xxxt〉+

1
2
〈ηt g̃ggt ,ηt g̃ggt〉+ 〈xxx∗− xxxt ,ηt g̃ggt〉

− 1
2
〈xxx∗− xxxt ,xxx∗− xxxt〉

=
1
2

ηt
2‖g̃ggt‖

2 +ηt〈xxx∗− xxxt , g̃ggt〉

=
1
2

ηt
2‖g̃ggt‖

2−ηt〈xxxt − xxx∗, g̃ggt〉

=
1
2

ηt
2‖g̃ggt‖

2−ηt〈xxxt − x̃xxt + x̃xxt − xxx∗〉

=
1
2

ηt
2‖g̃ggt‖

2−ηt〈xxxt − x̃xxt , g̃ggt〉−ηt〈x̃xxt − xxx∗, g̃ggt〉 =⇒

644 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

〈x̃xxt − xxx∗, g̃ggt〉=
1
2

ηt‖g̃ggt‖
2 +

D(xxx∗,xxxt)−D(xxx∗,xxxt+1)

ηt

−〈xxxt − x̃xxt , g̃ggt〉 (8)

Substituting the RHS of Equation 5 into Equation 8
completes the proof.

Theorem 1. (Convergence of SGD under ASP).
Suppose that, in order to compute the minimizer x∗ of a

convex function f (xxx) = ∑
T
t=1 ft(xxx), with ft , t = 1,2, . . . ,T ,

convex, we use stochastic gradient descent on one com-
ponent ∇ ft at a time. Suppose also that 1) the algorithm
is distributed in D data centers, each of which uses P
machines, 2) within each data center, the SSP protocol is
used, with a fixed staleness of s, and 3) a fixed mirror clock
difference ∆c is allowed between any two data centers.
Let uuut = −ηt∇ ft(x̃xxt), where the step size ηt decreases
as ηt =

η√
t and the significance threshold vt decreases

as vt =
v√
t . If we further assume that: ‖∇ ft(xxx)‖ ≤ L,

∀xxx ∈ dom(ft) and max(D(xxx,xxx′))≤ ∆2,∀xxx,xxx′ ∈ dom(ft).
Then, as T → ∞,

R[X] =
T

∑
t=1

ft(x̃xxt)− f (xxx∗) = O(
√

T)

and therefore

lim
T→∞

R[X]

T
→ 0

Proof.

R[X] =
T

∑
t=1

ft(x̃xxt)− ft(xxx∗)

≤
T

∑
t=1
〈∇ ft(x̃xxt), x̃xxt − xxx∗〉 (convexity of ft)

=
T

∑
t=1
〈g̃ggt , x̃xxt − xxx∗〉

=
T

∑
t=1

[
1
2

ηt‖g̃ggt‖
2 +

D(xxx∗,xxxt)−D(xxx∗,xxxt+1)

ηt

+ ∑
d′ 6=d

[
− ∑

i∈Ld′ ,c

ηi〈g̃ggi, g̃ggt〉
]

+
[
− ∑

i∈Md,c

ηi〈g̃ggi, g̃ggt〉+ ∑
i∈Nd,c

ηi〈g̃ggi, g̃ggt〉
]

+ ∑
d′ 6=d

[
− ∑

i∈Md′ ,c

ηi〈g̃ggi, g̃ggt〉+ ∑
i∈Nd′ ,c

ηi〈g̃ggi, g̃ggt〉
]]

(9)

We first bound the upper limit of the term:
T
∑

t=1

1
2 ηt‖g̃ggt‖

2:

T

∑
t=1

1
2

ηt‖g̃ggt‖
2 ≤

T

∑
t=1

1
2

ηtL2 (‖∇ ft(xxx)‖ ≤ L)

=
T

∑
t=1

1
2

η√
t
L2

=
1
2

ηL2
T

∑
t=1

1√
t

(
T

∑
t=1

1√
t
≤ 2
√

T)

≤ 1
2

ηL22
√

T = ηL2√T (10)

Second, we bound the upper limit of the term:
T
∑

t=1

D(x∗,xt)−D(x∗,xt+1)
ηt

:

T

∑
t=1

D(xxx∗,xxxt)−D(xxx∗,xxxt+1)

ηt

=
D(xxx∗,xxx1)

η1
− D(xxx∗,xxxT+1)

ηT
+

T

∑
t=2

D(xxx∗,xxxt)(
1
ηt
− 1

ηt−1
)

≤ ∆2

η
−0+

∆2

η

T

∑
t=2

[
√

t−
√

t−1] (max(D(xxx,xxx′))≤ ∆
2)

=
∆2

η
+

∆2

η
[
√

T −1]

=
∆2

η

√
T (11)

Third, we bound the upper limit of the term:
T
∑

t=1
∑

d′ 6=d

[
− ∑

i∈Ld′,c

ηi〈g̃ggi, g̃ggt〉
]
:

T

∑
t=1

∑
d′ 6=d

[
− ∑

i∈Ld′ ,c

ηi〈g̃ggi, g̃ggt〉
]

≤
T

∑
t=1

(D−1)
[
− ∑

i∈Ld′ ,c

ηi〈g̃ggi, g̃ggt〉
]
≤

T

∑
t=1

(D−1)vt

= (D−1)
T

∑
t=1

v√
t− (s+∆c +1)P

≤ (D−1)v
T

∑
t=(s+∆c+1)P+1

1√
T − (s+∆c +1)P

≤ 2(D−1)v
√

T − (s+∆c +1)P

≤ 2(D−1)v
√

T

≤ 2Dv
√

T (12)

where the fourth inequality follows from the fact that:
T
∑

t=(s+∆c+1)P+1

1√
T−(s+∆c+1)P

≤
√

T − (s+∆c +1)P.

Fourth, we bound the upper limit of the term:
T
∑

t=1

[
− ∑

i∈Md,c

ηi〈g̃ggi, g̃ggt〉+ ∑
i∈Nd,c

ηi〈g̃ggi, g̃ggt〉
]
:

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 645

T

∑
t=1

[
− ∑

i∈Md,c

ηi〈g̃ggi, g̃ggt〉+ ∑
i∈Nd,c

ηi〈g̃ggi, g̃ggt〉
]

≤
T

∑
t=1

[|Md,c|+ |Nd,c |]ηmax(1,t−(s+1)P)L
2

= L2
[(s+1)P

∑
t=1

[|Md,c|+ |Nd,c|]η

+
T

∑
t=(s+1)P+1

[|Md,c|+ |Nd,c|]ηt−(s+1)P

]

= L2
[(s+1)P

∑
t=1

[|Md,c|+ |Nd,c|]η

+
T

∑
t=(s+1)P+1

[|Md,c|+ |Nd,c|]
η√

t− (s+1)P

]

≤ ηL2
[(s+1)P

∑
t=1

2s(P−1)

+
T

∑
t=(s+1)P+1

2s(P−1)
1√

t− (s+1)P

]
= 2ηL2s(P−1)

[
(s+1)P+

T

∑
t=(s+1)P+1

1√
T − (s+1)P

]
≤ 2ηL2s(P−1)

[
(s+1)P+2

√
T − (s+1)P

]
≤ 2ηL2s(P−1)[(s+1)P+2

√
T]

= 2ηL2s(s+1)(P−1)P+4ηL2s(P−1)
√

T

≤ 2ηL2(s+1)(s+1)(P−1)P+4ηL2(s+1)(P−1)
√

T

= 2ηL2(s+1)2(P−1)P+4ηL2(s+1)(P−1)
√

T

≤ 2ηL2(s+1)2PP+4ηL2(s+1)P
√

T

= 2ηL2[(s+1)P]2 +4ηL2(s+1)P
√

T (13)

where the first inequality follows from the fact that
ηmax(1,t−(s+1)P) ≥ ηt , t ∈Md,t ∪Nd,t , the second inequal-
ity follows from the fact that |Md,t |+ |Nd,t | ≤ 2s(P−1),
and the third inequality follows from the fact that

T
∑

t=(s+1)P+1

[
1√

T−(s+1)P

]
≤ 2

√
T − (s+1)P.

Similarly, ∀d′ ∈ D′ = D\{d}, we can prove that:
T

∑
t=1

[
− ∑

i∈Md′ ,c

ηi〈g̃ggi, g̃ggt〉+ ∑
i∈Nd′ ,c

ηi〈g̃ggi, g̃ggt〉
]
≤

2ηL2[(s+∆c +1)P]2 +4ηL2(s+∆c +1)P
√

T

which implies:
T

∑
t=1

∑
d′ 6=d

[
− ∑

i∈Md′ ,c

uuui + ∑
i∈Nd′ ,c

uuui

]
≤

D
[
2ηL2[(s+∆c +1)P]2 +4ηL2(s+∆c +1)P

√
T
]

By combining all the above upper bounds, we have:

R[X]≤ ηL2√T +
∆2

η

√
T +2Dv

√
T +2ηL2[(s+1)P]2

+4ηL2(s+1)P
√

T

+D
[
2ηL2[(s+∆c +1)P]2 +4ηL2(s+∆c +1)P

√
T
]

= O(
√

T) (14)

and thus lim
T→∞

R[X]
T → 0.

B. Performance Results of SSP
Due to limited space, we present the performance results
of SSP for MF (Matrix Factorization) and TM (Topic
Modeling) here. We do not present the results of SSP
for IC (Image Classification) because SSP has worse
performance than BSP for IC [18]. In our evaluation,
BSP and SSP are used among all worker machines for
Baseline and LAN, whereas for Gaia, they are used
only within each data center. To show the performance
difference between BSP and SSP, we show both results
together.

B.1. SSP Performance on EC2 Deployment
Similar to Section 6.1, Figures 13 and 14 show the execu-
tion time until convergence for MF and TM, normalized
to Baseline with BSP on EC2. The data label above each
bar shows the speedup over Baseline for the respective
deployment and synchronization model.

2.0X 2.0X 1.5X 1.5X1.8X 1.8X
1.3X 1.3X

3.8X 3.7X 3.0X 2.7X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN Baseline Gaia LAN

BSP SSP

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Amazon-EC2
Emulation-EC2
Emulation-Full-Speed

Figure 13: Normalized execution time of MF until conver-
gence when deployed across 11 EC2 regions

2.0X
2.5X

1.5X 1.7X

3.7X
4.8X

2.0X

3.5X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Baseline Gaia LAN Baseline Gaia LAN

BSP SSP

N
ro

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Emulation-EC2

Emulation-Full-Speed

Figure 14: Normalized execution time of TM until conver-
gence when deployed across 11 EC2 regions

We see that Gaia significantly improves the perfor-
mance of Baseline with SSP. For MF, Gaia provides a
speedup of 1.3–3.0× over Baseline with SSP, and suc-
cessfully approaches the speedups of LAN with SSP. For
TM, Gaia achieves speedups of 1.5–2.0× over Baseline.
Note that for TM, Gaia with BSP outperforms Gaia with
SSP. The reason is that SSP allows using stale, and thus

646 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

inaccurate, values in order to get the benefit of more effi-
cient communication. However, compared to Baseline,
the benefit of employing SSP to reduce communication
overhead is much smaller for Gaia because it uses SSP
only to synchronize a small number of machines within
a data center. Thus, the cost of inaccuracy outweighs the
benefit of SSP in this case. Fortunately, Gaia decouples
the synchronization model within a data center from the
synchronization model across different data centers. Thus,
we can freely choose the combination of synchronization
models that works better for Gaia.
B.2. SSP Performance and WAN Bandwidth
Similar to Section 6.2, Figures 15 and 16 show the nor-
malized execution time until convergence on two de-
ployments: V/C WAN and S/S WAN. The data label
above each bar shows the speedup over Baseline for the
respective deployment and synchronization model.

3.7X 2.6X3.5X 2.3X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(a) Matrix Factorization (MF)

3.7X 3.1X3.9X 3.2X

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(b) Topic Modeling (TM)
Figure 15: Normalized execution time until convergence
with the WAN bandwidth between Virginia and California

25X 16X24X 14X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(a) Matrix Factorization (MF)

14X 17X17X 21X
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

BSP SSP

N
ro

m
al

iz
ed

 E
xe

c.
 T

im
e

Baseline Gaia LAN

(b) Topic Modeling (TM)
Figure 16: Normalized execution time until convergence
with the WAN bandwidth between Singapore and São Paulo

We find that Gaia performs very well compared to
Baseline with SSP in both high WAN bandwidth (V/C
WAN) and low WAN bandwidth (S/S WAN) settings.
For V/C WAN, Gaia achieves a speedup of 2.6× for
MF and 3.1× for TM over Baseline with SSP. For
both applications, the performance of Gaia is almost the
same as the performance of LAN. For S/S WAN, Gaia
provides a speedup of 15.7× / 16.8× for MF / TM over
Baseline with SSP, and successfully approaches the LAN
speedups. We conclude that Gaia provides significant
performance improvement over Baseline, irrespective
of the synchronization model used by Baseline.

C. EC2 Cost Model Details
We use the on-demand pricing of Amazon EC2 published
for January 2017 as our cost model [8]. As the pricing
might change over time, we provide the details of the
cost model in Table 2.

The CPU instance is c4.4xlarge or m4.4xlarge, de-
pending on the availability in each EC2 region. The
GPU instance is g2.8xlarge. The low-cost instance
(m4.xlarge) is the one used for centralizing input data.
All the instance costs are shown in USD per hour. All
WAN data transfer costs are shown in USD per GB.

Table 2: Cost model details

Region CPU
Instance

GPU
Instance

Low-cost
Instance

Send to
WANs

Recv. from
WANs

Virginia $0.86 $2.60 $0.22 $0.02 $0.01
California $1.01 $2.81 $0.22 $0.02 $0.01

Oregon $0.86 $2.60 $0.22 $0.02 $0.01
Ireland $0.95 $2.81 $0.24 $0.02 $0.01

Frankfurt $1.03 $3.09 $0.26 $0.02 $0.01
Tokyo $1.11 $3.59 $0.27 $0.09 $0.01
Seoul $1.06 $3.59 $0.28 $0.08 $0.01

Singapore $1.07 $4.00 $0.27 $0.09 $0.01
Sydney $1.08 $3.59 $0.27 $0.14 $0.01
Mumbai $1.05 $3.59 $0.26 $0.09 $0.01

São Paulo $1.37 $4.00 $0.34 $0.16 $0.01

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 647

