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Abstract
We report the design, implementation, and deployment
of Lepton, a fault-tolerant system that losslessly com-
presses JPEG images to 77% of their original size on av-
erage. Lepton replaces the lowest layer of baseline JPEG
compression—a Huffman code—with a parallelized arith-
metic code, so that the exact bytes of the original JPEG
file can be recovered quickly. Lepton matches the com-
pression efficiency of the best prior work, while decoding
more than nine times faster and in a streaming manner.
Lepton has been released as open-source software and
has been deployed for a year on the Dropbox file-storage
backend. As of February 2017, it had compressed more
than 203 PiB of user JPEG files, saving more than 46 PiB.

1 Introduction
In the last decade, centrally hosted network filesystems
have grown to serve hundreds of millions of users. These
services include Amazon Cloud Drive, Box, Dropbox,
Google Drive, Microsoft OneDrive, and SugarSync.

Commercially, these systems typically offer users a
storage quota in exchange for a flat monthly fee, or no
fee at all. Meanwhile, the cost to operate such a system
increases with the amount of data actually stored. There-
fore, operators benefit from anything that reduces the net
amount of data they store.

These filesystems have become gargantuan. After less
than ten years in operation, the Dropbox system contains
roughly one exabyte (± 50%) of data, even after applying
techniques such as deduplication and zlib compression.

We report on our experience with a different technique:
format-specific transparent file compression, based on a
statistical model tuned to perform well on a large corpus.

In operating Dropbox, we observed that JPEG im-
ages [10] make up roughly 35% of the bytes stored. We
suspected that most of these images were compressed in-
efficiently, either because they were limited to “baseline”
methods that were royalty-free in the 1990s, or because
they were encoded by fixed-function compression chips.

In response, we built a compression tool, called Lepton,
that replaces the lowest layer of baseline JPEG images—
the lossless Huffman coding—with a custom statistical
model that we tuned to perform well across a broad corpus
of JPEG images stored in Dropbox. Lepton losslessly
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Figure 1: Compression savings and decompression speed (time-
to-last-byte) of four lossless JPEG compression tools. Diamonds
show 25th, 50th, and 75th percentiles across 200,000 JPEGs
between 100 KiB and 4 MiB (§ 4).

compresses an average JPEG image by about 23%. This
is expected to save Dropbox more than 8% of its overall
backend file storage. Lepton introduces new techniques
that allow it to match the compression savings of prior
work (PackJPG) while decoding more than nine times
faster and in a streaming manner (Figure 1).

Some of the challenges in building Lepton included:

• Round-trip transparency. Lepton needs to deter-
ministically recover the exact bytes of the original
file, even for intentionally malformed files, and even
after updates to the Lepton software since the file
was originally compressed.
• Distribution across independent chunks. The

Dropbox back-end stores files in independent 4-MiB
chunks across many servers. Lepton must be able
to decompress any substring of a JPEG file, without
access to other substrings.
• Low latency and streaming. Because users are

sensitive to file download latency, we must opti-
mize decompression—from Lepton’s format back
into Huffman-coded JPEG output—for both time-to-
first-byte and time-to-last-byte. To achieve this, the
Lepton format includes “Huffman handover words”
that enable the decoder to be multithreaded and to
start transmitting bytes soon after a request.
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• Security. Before reading input data, Lepton enters a
restricted environment where the only allowed sys-
tem calls are read, write, exit, and sigreturn.
Lepton must pre-spawn threads and allocate all mem-
ory before it sees any input.
• Memory. To preserve server resources, Lepton must

work row-by-row on a JPEG file, instead of decoding
the entire file into RAM.

We deployed Lepton in April 2016 on the production
Dropbox service. Compression is applied immediately
to all uploads of new JPEG files. We are gradually com-
pressing files in existing storage and have ramped up to
a rate of roughly a petabyte per day of input, consuming
about 300 kilowatts continuously. As of February 2017,
Lepton had been run on more than 150 billion user files,
accounting for more than 203 PiB of input. It reduced
their size by a total of more than 46 PiB. We have released
Lepton as open-source software [1].

We report here on Lepton’s design (§ 3), evaluation
(§ 4), and production deployment (§ 5), and share a num-
ber of case studies and anomalies (§ 6) encountered in
operating the system at a large scale.

2 Related Work
In network filesystems and storage services, four general
categories of approaches are used to compress user files.

Generic entropy compression. Many filesystems com-
press files using generic techniques, such as the Deflate
algorithm [6], which combines LZ77 compression [23]
and Huffman coding [8] and is used by software such as
zlib, pkzip, and gzip. More recent algorithms such as
LZMA [15], Brotli [3], and Zstandard [5] achieve a range
of tradeoffs of compression savings and speed.

In practice, none of these algorithms achieve much
compression on “already compressed” files, including
JPEGs. In our evaluation on 200,000 randomly selected
user JPEG images, each of these algorithms achieved
savings of 1% or less (§ 4).

Lossy image compression. A second category of ap-
proach involves decoding user images and re-compressing
them into a more-efficient format, at the cost of some vi-
sual fidelity. The “more-efficient format” may simply
be a lower-resolution or lower-quality JPEG. The JPEG
files produced by fixed-function hardware encoders in
cellular-phone cameras can typically be reduced in size
by 70% before users see a perceptual difference [19]. The
re-compression may also use more sophisticated tech-
niques such as WebP or single-frame H.265. With this
approach, storage savings for the provider can be as high
as users are willing to tolerate. However, Dropbox does
not modify user files, precluding these approaches.

Format-aware pixel-exact recompression. Several
tools let users re-compress JPEG files to achieve more-

efficient compression without affecting the decoded
image. These tools include JPEGrescan [13] and
MozJPEG [2], both based on the jpegtran tool written
by the Independent JPEG Group [9]. The tools employ
two key techniques: replacing Huffman coding with arith-
metic coding (which is more efficient but was patent-
encumbered when JPEG was formalized and is not part
of the baseline JPEG standard), and rewriting the file
in “progressive” order, which can group similar values
together and result in more efficient coding. Xu et al. de-
veloped a related algorithm which uses a large number of
context-dependent Huffman tables to encode JPEG im-
ages, reporting average compression savings of 15% in
30-50ms [22]. These tools preserve the exact pixels of
the decoded image, but do not allow bit-exact round-trip
recovery of the original file.

Format-aware, file-preserving recompression. A fi-
nal set of tools can re-compress a JPEG file with round-
trip recovery of the exact bytes of the original file. These
include PackJPG [17, 11] and PAQ8PX [12]. These tools
use different techniques, but in our evaluations, achieved
roughly the same compression savings (23%) on average.

These tools use techniques unavailable in a real-time
setting. For example, one of PackJPG’s compression tech-
niques requires re-arranging all of the compressed pixel
values in the file in a globally sorted order. This means
that decompression is single-threaded, requires access to
the entire file, and requires decoding the image into RAM
before any byte can be output. The time-to-first-byte and
time-to-last-byte are too high to satisfy the service goals
for the Dropbox service. PAQ8PX is considerably slower.

Lepton was inspired by PackJPG and the algorithms
developed by Lakhani [11], and Lepton uses the same
JPEG-parsing routines that PackJPG uses (uncmpjpg).
However, unlike PackJPG, Lepton only utilizes compres-
sion techniques that can be implemented without “global”
operations, so that decoding can be distributed across in-
dependent chunks and multithreaded within each chunk.

3 Lepton: Design and Implementation
At its core, Lepton is a stand-alone tool that performs
round-trip compression and decompression of baseline
JPEG files. We have released Lepton as open-source soft-
ware [1]; it builds and runs on Linux, MacOS, Windows,
iOS, Android, and Emscripten (JavaScript).

In its current deployment at Dropbox, Lepton is exe-
cuted directly by a back-end file server or, when a file
server is under high load, execution is “outsourced” from
the file server to a cluster of machines dedicated to Lep-
ton only (§ 5.5). Thus, compression and decompression
is currently transparent to client software and does not
reduce network utilization. In the future, we may include
Lepton in the client software, in order to save network
bandwidth and distribute the computation load.
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In contrast to related work (§ 2), Lepton was designed
to meet constraints specific to real-time compression and
decompression in a distributed network filesystem:

Distribution across independent chunks. Decom-
pression must be able to be distributed across independent
pieces. The Dropbox back-end stores files in chunks of at
most 4 MiB, spread across many servers. Client software
retrieves each chunk independently. Therefore, Lepton
must be able to decompress any substring of a JPEG file,
without access to other substrings. By contrast, the com-
pression process is not subject to the same constraints,
because performance does not affect user-visible latency.
In practice, Lepton compresses the first chunk in a file
immediately when uploaded, and compresses subsequent
chunks later after assembling the whole file in one place.

Within chunks, parallel decoding and streaming.
Decoding occurs when a client asks to retrieve a chunk
from a network file server, typically over a consumer
Internet connection. Therefore, it is not sufficient for
Lepton simply to have a reasonable time-to-last-byte for
decompressing a 4-MiB chunk. The file server must start
streaming bytes quickly to start filling up the client’s net-
work connection, even if the whole chunk has not yet
been decompressed.

In addition, average decoding speed must be fast
enough to saturate a typical user’s Internet connection
(> 100 Mbps). In practice, this means that decoding
must be multithreaded, including both the decoding of
the Lepton-format compressed file (arithmetic code de-
coding) and the re-encoding of the user’s Huffman-coded
baseline-JPEG file. To accomplish the latter, the Lepton-
format files are partitioned into segments (one for each
decoding thread), and each thread’s segment starts with a
“Huffman handover word” to allow that thread’s Huffman
encoder to resume in mid-symbol at a byte boundary.

We now give an overview of JPEG compression and dis-
cuss the design of Lepton subject to these requirements.

3.1 Overview of JPEG compression

A baseline JPEG image file has two sections—headers (in-
cluding comments) and the image data itself (the “scan”).
Lepton compresses the headers with existing lossless tech-
niques ([6]). The “scan” encodes an array of quantized
coefficients, grouped into sets of 64 coefficients known
as “blocks.” Each coefficient represents the amplitude of
a particular 8x8 basis function; to decode the JPEG it-
self, these basis functions are summed, weighted by each
coefficient, and the resulting image is displayed. This is
known as an inverse Discrete Cosine Transform.

In a baseline JPEG file, the coefficients are written
using a Huffman code [8], which allows more-probable
values to consume fewer bits in the output, saving space
overall. The Huffman “tables,” given in the header, define

the probability model that determines which coefficient
values will be considered more or less probable. The
more accurate the model, the smaller the resulting file.

Lepton makes two major changes to this scheme. First,
it replaces the Huffman code with an arithmetic code1,
a more efficient technique that was patent-encumbered
at the time the JPEG specification was published (but no
longer). Second, Lepton uses a sophisticated adaptive
probability model that we developed by testing on a large
corpus of images in the wild. The goal of the model is
to produce the most accurate predictions for each coeffi-
cient’s value, and therefore the smallest file size.

3.2 Lepton’s probability model: no sorting, but
more complexity

Arithmetic probability models typically use an array of
“statistic bins,” each of which tracks the probability of
a “one” vs. a “zero” bit given a particular prior context.
The JPEG specification includes extensions for arithmetic-
coded files [10], using a probability model with about 300
bins.2 The PackJPG tool uses about 6,400 bins, after
sorting every coefficient in the image to place correlated
coefficients in the same context.

In designing Lepton, we needed to avoid global op-
erations (such as sorting) that defeat streaming or multi-
threaded decoding. One key insight is that such operations
can be avoided by expanding the statistical model to cover
correlations across long distances in the file, without need-
ing to sort the data. Lepton’s model uses 721,564 bins,
each applied in a different context.

These contexts include the type of coefficient, e.g. “DC”
(the basis function that represents the average brightness
or color over an 8x8 block) vs. “AC,” and the index of
an “AC” coefficient within a block. Each coefficient is
encoded with an Exp-Golomb code [18], and statistic
bins are then used to track the likelihood of a “one” bit
in this encoding, given the values of already-encoded
coefficients that may be correlated.

At the start of an encoding or decoding thread, the
statistic bins are each initialized to a 50-50 probability
of zeros vs. ones. The probabilities are then adapted as
the file is decoded, with each bin counting the number of
“ones” and “zeroes” encountered so far.

The bins are independent, so a “one” seen in one con-
text will not affect the prediction made in another. As
a result, the number and arrangement of bins is impor-
tant: compression efficiency suffers from the curse of
dimensionality if too many bins are used, because the
coder/decoder cannot learn useful information from simi-
lar contexts.

1Lepton implements a modified version of a VP8 [4] range coder.
2Performance is shown in Figure 1 in the diamond labeled

“MozJPEG (arithmetic).” Arithmetic-coded JPEGs are not included
in the widely-supported “baseline” version of the specification because
they were patent-encumbered at the time the standard was published.
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3.3 Details of Lepton’s probability model

We developed Lepton’s probability model empirically,
based on a handful of photos that we captured with pop-
ular consumer cameras. We then froze the model and
tested on randomly selected images from the Dropbox
filesystem; performance on the “development” images
correlated well with real-world performance (§ 4). The
development images and the full probability model are
included in the open-source release [1] and are detailed
in Appendix A.2. We briefly summarize here.

For each 8x8 JPEG block, Lepton encodes 49 AC co-
efficients (7x7), 14 “edge” AC coefficients of horizontal
(7x1) and vertical (1x7) variation, and 1 DC coefficient.

For the 7x7 AC coefficients, we predict the Golomb
code bits by averaging the corresponding coefficients in
the above, left, and above-left blocks. Hence, the bins for
bits of Ci are indexed by 〈i,blog2(|Ai|+ |Li|+ 1

2 |ALi|)c〉.
For the 7x1 and 1x7 AC coefficients, we use the in-

tuition supplied by Lakhani [11] to transform an entire
column of a two-dimensional DCT into a one-dimensional
DCT of an edge row. In this manner we can get pixel-
adjacent 1D DCT coefficients from the bottom-most row
of the above block and the top row of the current block.
Likewise, we can use the neighboring right-most column
of the left block to predict the left-most 1D DCT column
of the current block.

To predict the DC coefficient, we assume image gradi-
ents are smooth across blocks. Linearly extrapolating the
last two rows of pixels of the above and left blocks yields
16 edge pixel values. Since the DC coefficient is decoded
last, we can use every AC coefficient to compute a pre-
dicted DC offset which minimizes average differences
between the decoded block’s edge pixels and the edges
extrapolated from neighbors. We only encode the delta
between our predicted DC value and the true DC value,
so close predictions yield small outputs. We achieved
additional gains by indexing the statistics bins by outlier
values and the variance of edge pixels, enabling Lepton’s
model to adapt to non-smooth gradients.

These techniques yield significant improvements over
using the same encoding for all coefficients (§ 4.3).

3.4 Decompressing independent chunks, with multi-
threaded output

When a client requests a chunk from the Dropbox filesys-
tem, the back-end file servers must run Lepton to decode
the compressed chunk back into the original JPEG-format
bytes. Conceptually this requires two steps: decoding
the arithmetic-coded coefficients (using the Lepton prob-
ability model) and then encoding the coefficients using
a Huffman code, using the Huffman probability model
given in the file headers.

The first step, arithmetic decoding, can be parallelized
by splitting the coefficients into independent segments,

with each segment decoded by one thread. Because the
Lepton file format is under our control, we can use any
number of such segments. However, adding threads de-
creases compression savings, because each thread’s model
starts with 50-50 probabilities and adapts independently.

The second step, Huffman encoding, is more challeng-
ing. The user’s original JPEG file is not under our control
and was not designed to make multithreaded encoding
possible. This step can consume a considerable amount of
CPU resources in the critical path and would consume a
large fraction of the total latency if not parallelized. More-
over, Dropbox’s 4-MiB chunks may split the JPEG file
arbitrarily, including in the middle of a Huffman-coded
symbol. This presents a challenge for distributed decod-
ing of independent chunks.

To solve this, we modified the Lepton file format to
include explicit “Huffman handover words” at chunk and
thread boundaries. This represents state necessary for the
JPEG writer to resume in the middle of a file, including in
mid-symbol. In particular, the Huffman handover words
include the previous DC coefficient value (16 bits), be-
cause DC values are encoded in the JPEG specification
as deltas to the previous DC value, making each chunk
dependent on the previous. They also include the bit
alignment or offset and partial byte to be written.

The Huffman handover words allow decoding to be par-
allelized both across segments within a chunk, and across
chunks distributed across different file servers. Within
a chunk, the Huffman handover words allow separate
threads to each write their own segment of the JPEG out-
put, which can simply be concatenated and sent to the
user. The Lepton file format also includes a Huffman han-
dover word and the original Huffman probability model
at the start of each chunk, allowing chunks to be retrieved
and decoded independently.

4 Performance evaluation
For our benchmarks, we collected 233,376 randomly sam-
pled data chunks beginning with the JPEG start-of-image
marker (0xFF, 0xD8) from the Dropbox store. Some of
these chunks are JPEG files, some are not JPEGs, and
some are the first 4 MiB of a large JPEG file. Since Lep-
ton in production is applied on a chunk-by-chunk basis,
and 85% of image storage is occupied by chunks with the
JPEG start-of-image marker, this sampling gives a good
approximation to the deployed system.

Lepton successfully compresses 96.4% of the sampled
chunks. The remaining 3.6% of chunks (accounting for
only 1.2% of bytes) were non-JPEG files, or JPEGs not
supported by Lepton. Lepton detects and skips these files.

4.1 Size and speed versus other algorithms

In Figure 2 we compare Lepton’s performance against
other compression algorithms built with the Intel C++
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Figure 2: Compression savings and speed of codecs on the
benchmark data-set (including chunks that Lepton cannot com-
press). Generic codecs (right) are fast, but only able to compress
the JPEG header. JPEG-aware codecs (center) compress well,
but are slow. Lepton (far left) is fast and compresses well.

Compiler 16.0 (icc) on a 2.6 GHz Intel Xeon E5 2650v2.
We used the full benchmark data-set, including chunks
that Lepton rejects as corrupt, progressive, or in the
CMYK color space.

Lepton is the fastest of any format-aware compression
algorithm, and it compresses about as well as the best-
in-class algorithms. We also evaluated a single-threaded
version of Lepton (Lepton 1-way), which we modified for
maximum compression savings, by tallying statistic bins
across the whole image rather than independent thread-
segments. The format-aware PAQ8PX algorithm edges
out single-threaded Lepton’s compression ratio by 0.8
percentage points, because it incorporates a variety of
alternative compression engines that work on the 3.6% of
files that Lepton rejects as corrupt. However, PAQ8PX
pays a price in speed: it encodes 35 times slower and
decodes 50 times slower than single-threaded Lepton.

In production, we care about utilizing our CPU, net-
work and storage resources efficiently (§ 5.6.1), and we
care about response time to users. Lepton can use 16 CPU
cores to decode at 300 Mbps by processing 2 images con-
currently. For interactive performance, we tuned Lepton
to decode image chunks in under 250 ms at the 99th per-
centile (p99), and the median (p50) decode time is under
60 ms. This is an order of magnitude faster than Pack-
JPG, 1.5×–4× faster than JPEGrescan and MozJPEG,
and close to Deflate or Brotli. Encoding is also fast: 1 s
at the 99th percentile and 170 ms in the median case, sub-
stantially better than any other algorithm that achieves
appreciable compression.
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Figure 3: Max resident memory used by different algorithms.

Category Original bytes Compression Ratio Bytes saved
Header 2.3% ± 4.2 47.6% ± 19.8 1.0% ± 1.8
7x7 AC 49.7% ± 7.1 80.2% ± 3.2 9.8% ± 1.7
7x1/1x7 39.8% ± 4.7 78.7% ± 3.9 8.6% ± 2.2
DC 8.2% ± 2.6 59.9% ± 8.7 3.4% ± 1.6
Total 100% 77.3% ± 3.6 22.7% ± 3.6
Figure 4: Breakdown of compression ratio (compressed size /
uncompressed size) by JPEG file components.

4.2 Memory usage

Lepton shares production hosts with other, memory-
hungry processes, so limiting memory usage was a signif-
icant design goal. This is particularly important for the
decode path because, under memory pressure, our servers
can fall back to encoding using Deflate, but we do not
have that option for decoding.

Figure 3 shows the memory usage of Lepton and other
algorithms on our benchmark. For decoding, single-
threaded Lepton uses a hard maximum of 24 MiB to
store the model and temporary buffers. Multithreaded
Lepton duplicates the model for each thread, using 39
MiB at the 99th percentile. This compares favorably with
other algorithms using 69–192 MiB.

Decoding can stream the output, but encoding currently
retains all pixels in memory so each thread can operate on
its own spatially contiguous region of pixels. Thus, the
memory profile of Lepton encoding is similar to PackJPG
and MozJPEG.

4.3 Compression savings by component

For the sampled chunks that Lepton successfully com-
presses, Figure 4 shows how each part of the file con-
tributed to the total compression ratio, among JPEG files,
of 77.3% ± 3.6 (with multithreading enabled).

Lakhani-inspired edge prediction [11] contributes 1.5%
of overall compression savings. Compared with baseline
PackJPG [17] (which used the same predictions for all
AC coefficients), it improved the compression of 7x1/1x7
AC coefficients from 82.5% to 78.7%. DC gradient pre-
diction contributes 1.6% of overall savings, improving
the compression of DC coefficients from 79.4% (using
baseline PackJPG’s approach) to 59.9%. 3

3By “baseline PackJPG”, we refer here to the algorithm described in
the 2007 publication [17]. However, for fairness, all other performance
comparisons in this paper (e.g., Figures 1, 2, 3) use the latest version
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5 Deployment at Scale
To deploy Lepton at large scale, without compromising
durability, we faced two key design requirements: deter-
minism and security. Our threat model includes inten-
tionally corrupt files that seek to compress or decompress
improperly or cause Lepton to execute unintended or ar-
bitrary code or otherwise consume excess resources.

With determinism, a single successful roundtrip test
guarantees that the file will be recoverable later. However,
it is difficult to prove highly optimized C++ code to be
either deterministic or secure, even with bounds checks
enabled. Undefined behavior is a core mechanism by
which C++ compilers produce efficient code [21], and
inline assembly may be required to produce fast inner
loops, but both hinder analysis of safety and determinism.
At present, safer languages (including Rust and Java) have
difficulty achieving high performance in image processing
without resorting to similarly unsafe mechanisms.

We wrote Lepton in C++, and we enforce security
and determinism using Linux’s secure computing mode
(SECCOMP). We have also cross-tested Lepton at scale
using multiple different compilers.

5.1 Security with SECCOMP

When SECCOMP is activated, the kernel disallows all sys-
tem calls a process may make except for read, write,
exit and sigreturn. This means a program may not
open new files, fork, or allocate memory. Lepton allo-
cates a zeroed 200-MiB region of memory upfront, before
reading user data, and sets up pipes to each of its threads
before initiating SECCOMP. Memory is allocated from the
main thread to avoid the need for thread synchronization.

5.2 Imperfect efforts to achieve deterministic C++

To help determinism, the Lepton binary is statically linked,
and all heap allocations are zeroed before use. However,
this setup was insufficient to detect a buffer overrun from
incorrect index math in the Lepton model (§ 6.1). We had
an additional fail-safe mechanism to detect nondetermin-
ism. Before deploying any version of Lepton, we run it on
over a billion randomly selected images (4 billion for the
first version), and then decompress each with the same
binary and additionally with a single-threaded version
of the same code built with gcc using the address sani-
tizer and undefined-behavior checker [16]. This system
detected the nondeterministic buffer overrun after just a
few million images were processed and has caught some
further issues since (§ 6.7).

5.3 Impact

As of Feb. 16, 2017, Lepton has encoded 203 PiB of
images, reducing the size of those images by 46 PiB.

of the PackJPG software, which has various unpublished improvements
over the 2007 version.
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Figure 6: Compression savings on production workloads are
uniform across file sizes.

The traffic has been divided between live encode traf-
fic and a steady rate of background encoding of older
images. Dropbox has decoded and served 427 billion
Lepton-compressed images.

5.4 Workload

Lepton has been in production since April 144, and has
been on the serving path for all uploads and hundreds of
billions of downloads. A typical week can be observed
in Figure 5. On the weekends, users tend to produce the
same number of photos but sync fewer to their clients, so
the ratio of decodes to encodes approaches 1.0. On week-
days, users tend to consume significantly more photos
than they produce and the ratio approaches 1.5. Over the
last 6 months Dropbox has encoded images with Lepton
at between 2 and 12 GiB per second.

When the Lepton encoder accepts a three-color, valid,
baseline JPEG, that file compresses down to, on average,
77.31% of its original size (22.69% savings). The savings
are uniform across file sizes, as illustrated in Figure 6.

Small images are able to compress well because they
are configured with fewer threads than larger images and
hence have a higher proportion of the image upon which
to train each probability bin. The number of threads
per image was selected empirically based on when the
overhead of thread startup outweighed the gains of mul-
tithreading. The multithreading cutoffs can be noticed
in the production performance scatter plot in Figure 7.
Because Lepton is streaming, the working set is roughly
fixed in size. Profiling the decoder using hardware coun-
ters confirmed that the L1 cache is rarely missed. Nearly
all L1 delays are due to pipeline stalls, not cache misses.

4All dates are in 2016 and times are in UTC.
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Figure 7: Decompression speed given an input file size.
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Figure 8: Compression speed given an input file size.

The compression speed, shown in Figure 8, is similar,
but it is almost unaffected by the benefit of moving to 8
threads from 4. This is because at 4 threads the bottleneck
shifts to the JPEG Huffman decoder, away from the arith-
metic coding. This is solved in the Lepton decoder with
the Huffman handover words, but the Lepton encoder
must decode the original JPEG serially.

5.5 Outsourcing

Blockservers are machines that, among other tasks, re-
spond to requests to store or retrieve data chunks, whether
Lepton-compressed JPEGs or Deflate-compressed files.
Load balancers, which do not inspect the type of request,
randomly distribute requests across the blockserver fleet.

Each blockserver has 16 cores, which means that 2 si-
multaneous Lepton decodes (or encodes) can completely
utilize a machine. However, blockservers are configured
to handle many more than 2 simultaneous requests, be-
cause non-Lepton requests are far less resource-intensive.
Therefore, a blockserver can become oversubscribed with
work, negatively affecting Lepton’s performance, if it is
randomly assigned 3 or more Lepton conversions at once.
Without outsourcing, there are an average of 5 encodes/s
during the Thursday peak. Individual blockservers will
routinely get 15 encodes at once during peak, to the point
where there is never a full minute where there isn’t at least
one machine doing 11 parallel encodes during an hour of
peak traffic, as illustrated in the Control line in Figure 9.

We mitigated this problem by allowing overloaded
blockservers to “outsource” compression operations to
other machines. Inspired by the power of two random
choices [14], Lepton will outsource any compression op-
erations that occur on machines that have more than three
conversions happening at a time.
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Figure 9: 99th-percentile of concurrent Lepton processes on
Sept. 15 with listed outsourcing strategy and threshold=4.

Under normal operation, when the system is under
low load, Lepton operates by listening on a Unix-domain
socket for files. A file is read from the socket, and the
(de)compressed output is written back to the socket. The
file is complete once the socket is shut down for writing.
When outsourcing, instead of a Unix-domain-socket con-
nection to a local Lepton process, the blockserver instead
will make a TCP connection to a machine tagged for out-
sourcing within the same building in the same datacenter.5

The overhead from switching from a Unix-domain socket
to a remote TCP socket was 7.9% on average.

We have two alternative strategies for selecting ma-
chines for outsourcing. The simpler idea was to dedicate
a cluster of machines ready to serve Lepton traffic for
overloaded blockservers. This cluster is easy to provision
to meet traffic demands and can be packed full of work
since there are no contending processes on the machines.

Our other strategy was to mark each blockserver as an
outsourcing target for other blockservers (denoted “To
Self”). The intuition is that in the unlikely case of a cur-
rent blockserver being overloaded, the randomly chosen
outsource destination is likely to be less overloaded than
the current machine at the exact contended instant.

5.5.1 Outsourcing Results

Figure 10 illustrates that outsourcing reduces the p99 by
50% at peak from 1.63 s to 1.08 s and the p95 by 25%.

The dedicated cluster reduces the p99 more than simply
outsourcing directly to other, busy, blockservers, espe-
cially at peak. However, rebalancing traffic within the
same cluster of blockservers has the added effect of reduc-
ing the p50 as well, since there are fewer hotspots because
of the additional load balancing.

5.6 Backfill

Lepton has been configured to use spare compute capac-
ity to gradually compress older JPEG files in storage, a
process we call “backfilling.” To this end, we developed
a small system called DropSpot. DropSpot monitors the

5Initially it seemed to make sense logistically to select an outsourcing
destination simply in the same metro location as the busy blockserver.
However, in measuring the pairwise conversion times, our datacenters in
an East Coast U.S. location had a 50% latency increase for conversions
happening in a different building or room within, and in a West Coast
location, the difference could be as high as a factor of 2.
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Figure 10: Percentile timings of JPEG compression near to
peak traffic (left) and at peak traffic (right) with 2 outsourcing
strategies when concurrent Lepton processes exceed a threshold
(denoted with bar color) on the local machine.

spare capacity in each server room, and when the free
machines in a room exceed a threshold, a machine is allo-
cated for Lepton encoding. When too few machines are
free, DropSpot releases some.

Wiping and reimaging the machine with the necessary
software takes 2-4 hours, so a sufficiently diverse reserve
of machines must be available for on-demand use. The
backfill system can be run on Amazon spot instances, but
our goal of 6,000 encodes per second has been attainable
using spare capacity.

In July, all user accounts were added to a sharded table
in a database service backed by MySQL. For a Lepton
backfill worker to find images to encode, it sends a request
to the metadata servers (metaservers) to request work
from a randomly chosen shard. The metaserver selects
the next 128 user-ids from the table in the corresponding
shard. The metaserver scans the filesystem for each user,
for all files with names containing the case-insensitive
string “.jp” (likely jpeg or jpg). The metaserver builds
a list of SHA-256 sums of each 4-MiB chunk of each
matching file until it obtains up to 16,384 chunks. The
metaserver returns a response with all the SHA-256 sums,
the list of user ids to process, and a final, partial user
with a token to resume that user. The worker then down-
loads each chunk and compresses it. It double-checks the
result with the gcc address-sanitizer version of Lepton
in both single and multithreaded mode, and uploads the
compressed version back to Dropbox.

5.6.1 Cost Effectiveness

The cluster has a power footprint of 278 kW and it en-
codes 5,583 chunks per second (Figure 11). This means
that one kWh can be traded for an average of 72,300
Lepton conversions of images sized at an average of 1.5
MB each. Thus, a kWh can save 24 GiB of storage, per-
manently. The power usage includes three extraneous
decodes, which could be tallied as future reads, since the
file is redundantly checked three times during backfill.

Imagining a depowered 5TB hard drive costing $120
with no redundancy or checks, the savings from the extra
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Figure 11: Overall Dropbox datacenter power usage graph on
Sept. 26, 2016. During an outage, Lepton backfill was disabled.
When shut off, the power usage dropped by 121 kW.

space would be worthwhile as long as a kWh costed less
than $0.58. Even in Denmark, where electricity costs
about $0.40 per kWh, Lepton would be a worthwhile
investment for somewhat balanced read/write load of 3:1.
Most countries offer prices between $0.07 and $0.12 per
kWh. With cross-zone replication, erasure coding, and
regular self-checks, 24 GiB of storage costs significantly
more in practice. For instance, buying a year storage
for 24 GiB on Amazon S3’s Infrequent Access Storage
tier, as of February 2017, would cost $3.60 each year,
excluding any data read fees, making the actual savings
even more clear.

To get the full 5,583 conversions per second, 964 ma-
chines are required. This means that each Intel Xeon E5
2650 v2 at 2.6 GHz can backfill 5.75 images per second.
This means each server can process 181,500,000 images
per year, saving 58.8 TiB of storage. At Amazon S3 In-
frequent Access pricing, this would cost $9,031 per year,
justifying the savings. Additionally, the storage savings
will recur, year over year, while the capital expense of the
Xeon for a year will be much less than $9,000 and will
depreciate only once.

5.7 Safety Mechanisms

During the initial roll-out, after Lepton was activated for
several days after April 14th, all of the several hundred
TiB of compressed images had been downloaded in com-
pressed form and decompressed twice in a row, once with
a gcc, asan-enabled, Lepton and another time with the
default productionized icc Lepton in multithreaded mode.

There are also alerts in place that page a member of
the Lepton team if a particular chunk is unable to be
decompressed. The construction of this alert required
some care(§ 6.6). There is a “playbook entry” for the
person on call to immediately disable Lepton.

The shutoff switch operates by placing a file with a
predetermined name in /dev/shm, and the Lepton system
checks for that file before compressing new chunks. Most
Dropbox configuration files take between 15 and 45 min-
utes to fully deploy, but this mechanism allows a script
to populate the file across all hosts that encode Lepton
within 30 seconds.

The blockservers also never admit chunks to the stor-
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age system that fail to round-trip—meaning, to decode
identically to their input. Additionally, all memory pages
holding compressed data in memory are protected at the
OS level before the round-trip test, and an md5sum is
done of the initial compressed file to be compared with
the result stored on disk, so the memory contents cannot
change due to a user-level bug. Corruptions in compress-
ing will be detected immediately, and the files will be
compressed using Deflate instead.

For a file that fails to round-trip, it can be difficult to
distinguish between a badly formed/unsupported JPEG
file versus a real program bug, but as long as the compres-
sor and decompressor are deterministic, a small level of
such failures is acceptable.

For added safety, there is an automated verification
process that searches for images that succeeded in a round-
trip once but then fail a subsequent round-trip test, or fail
when decompressed with the address-sanitizing gcc build
of Lepton. If either of those occur, a member of the
Lepton team is paged and the failing data is saved. This
process has currently gone through over four billion files
and has caused four alerts (§ 6.7).

During roll-out of a new Lepton version it will be “qual-
ified” using the automated process over a billion images.
Additionally it must be able to decompress another bil-
lion images already compressed in the store. Currently
a candidate which fails to do so also causes the Lepton
team to be paged. This alert has never triggered.

For the first two weeks of ramp-up, the system was com-
pletely reversible. Every chunk uploaded with Lepton was
concurrently also uploaded to a separate S3 bucket (the
“safety net”) with the standard Deflate codepath. This
means that in the worst case, requests could fail-over
directly to the safety net until the affected files were re-
paired.

Before enabling Lepton, the team did a mock disaster
recovery training (DRT) session where a file in a test
account was intentionally corrupted and recovered from
the safety net. However, we never needed to use this
mechanism to recover any real user files.

We have since deleted the safety net and depend on
other controls to keep Lepton safe. Our rationale for
this was that uploading to a separate bucket causes a
performance degradation since all images would upload
in the max of latency between Dropbox datacenters and
S3, plus associated transaction and storage fees. We may
re-enable the safety net during future format upgrades.

Even with the safety net disabled, we believe there are
adequate recovery plans in place in case of an unexpected
error. Every file that has been admitted to the system with
Lepton compression has also round-tripped at least once
in order to be admitted. That means that a permanent
corruption would expose a hypothetical nondeterminism
in the system. But it also means that if the same load/perf

circumstances were recreated, the chunk would proba-
bly be decodable again with some probability, as it was
decoded exactly correctly during the original round-trip
check. Thus, with sufficient retries, we would expect to
be able to recover the data. That said, it would be a sig-
nificant problem if there were a nondeterminism in the
Lepton system. After 4 billion successful determinism
tests, however, we believe the risk is as small as possible.

6 Anomalies at Scale
With a year of Lepton operational experience, there have
been a number of anomalies encountered and lessons
learned. We share these in the hopes that they will be
helpful to the academic community in giving context
about challenges encountered in the practical deployment
of format-specific compression tools in an exabyte-scale
network filesystem.

6.1 Reversed indices, bounds checks and compilers

During the very first qualification of 1 billion files, a
handful of images passed the multithreaded icc-compiled
check, but those images would occasionally fail the gcc
roundtrip check with a segfault. The stack trace revealed
the multidimensional statistic-bin index computation was
reversed. If deployed, this would have required major
backwards compatibility contortions to mimic the unde-
fined C++ behavior as compiled with icc; bins would need
to be aliased for certain versions of Lepton.

In response to this discovery, the statistic bin was ab-
stracted with a class that enforced bounds checks on ac-
cesses. Consequently, the duration of encodes and de-
codes are 10% higher than they could be, but bounds
checks help guard against undefined behavior.

6.2 Error codes at scale

This table shows a variety of exit codes that we have
observed during the first 2 months of backfill.
Success . . . . . . . . . . . . . . . 94.069%
Progressive . . . . . . . . . . . . 3.043%
Unsupported JPEG . . . . . 1.535%
Not an image . . . . . . . . . . 0.801%
4 color CMYK . . . . . . . . 0.478%
>24 MiB mem decode . 0.024%
>178 MiB mem encode 0.019%
Server shutdown . . . . . . . 0.010%

“Impossible” . . . . . . . . . . 0.006%
Abort signal . . . . . . . . . . . 0.006%
Timeout . . . . . . . . . . . . . . . 0.004%
Chroma subsample big . 0.003%
AC values out of range . 0.001%
Roundtrip failed . . . . . . . 0.001%
OOM kill . . . . . . . . . . . . . 10−5%
Operator interrupt . . . . . . 10−6%

The top 99.9864% of situations were anticipated: from
graceful shutdown, to deciding not to encode JPEG files
that consist entirely of a header, to unsupported Progres-
sive and CMYK JPEGs, and chroma subsampling that
was larger than the slice of framebuffer in memory.

The Lepton program binary could process these types
of images, e.g., by allocating more memory, an extra
model for the 4th color channel, or sufficient memory on
decode to keep the progressive image resident. However,
for simplicity, these features were intentionally disabled
in Dropbox as they account for a small fraction of files.
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Figure 12: Hourly p99/p95/p75/p50 latency for decodes. Trans-
parent huge pages disabled April 13 at 03:00.

Some codes were unexpected, e.g., incorrect thread pro-
tocol communication (listed as “Impossible”), or “Abort
signal”, since SECCOMP disallows SIGABRT. By contrast,
a small level of “Roundtrip failed” was expected, largely
because of corruptions in the JPEG file (e.g., runs of ze-
roes written by hardware failing to sync a file) that cannot
always be represented in the Lepton file format.

6.3 Poor p95 latency from Huge Pages

During the Lepton roll-out, after the qualification round,
a significant fraction of machines had significantly higher
average and p99 latency, and could take 2–3× as long as
the isolated benchmarks. It was even possible to have a
decode take 30 seconds to even begin processing. The
time would elapse before a single byte of input data was
read. Reboots could sometimes alleviate the issue, but on
the affected machines it would come back. Also, when
services on the machine were halted and benchmarks run
in isolation, the problem disappeared altogether and the
machine performed as expected.

On affected machines, performance counters attributed
15–20% of the time to the kernel’s page-table routines.

9.79% [kernel] [k] isolate migratepages range
4.04% [kernel] [k] copy page range
3.16% [kernel] [k] set pfnblock flags mask

These kernel routines implicated transparent huge
pages (THP), and each affected machine had THP en-
abled [Always], but most unaffected machines had them
disabled. Disabling THP solved the issue (Figure 12).

Additionally, when THP is enabled, Linux continu-
ously defragments pages in an attempt to build a full
2 MiB page of free memory for an application requesting
large ranges of data. Since Lepton requests 200 MiB of
space at initialization time, with no intent to use more
than 24 MiB for decodes, Linux may prepare a significant
number of huge pages for use, causing the process to be
blocked during defragmentation. These pages are con-
sumed without penalty over the next 10 decodes, meaning
that the p95 and p99 times are disproportionately affected
by the stall (compared with the median times).

6.4 Boiling the frog

Currently, the Lepton system decodes about 1.5× to twice
as many files as it encodes. However, during the initial
roll-out, months before the backfill system, the ratio of
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Figure 13: Lepton decode:encode ratio on the serving path.
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Figure 14: Decode timing percentiles, starting with the roll-out
and building up over months to multi-second p99s.

decodes to encodes was much less than 1.0, since each
old photo was compressed using Deflate, not Lepton, and
only new photos need a Lepton decompress. This can be
seen in the historical graph of the decode:encode ratio
over time in Figure 13. Akin to “boiling the frog,” it was
not obvious that the actual hardware requirements would
be significantly higher than those needed from having
reached 100% of users in the first weeks.

To react to these new requirements for decodes, we
built the outsourcing system (§ 5.5). But until that system
rolled out, for several months, at peak, our 99th-percentile
decode time was in the seconds, as seen in Figure 14.

6.5 Dropbox camera upload degradation

Before removal of the safety net, each image would be
uploaded compressed to the Dropbox store and uncom-
pressed to the S3 safety net. During maintenance in one
East-Coast datacenter, each top of rack switch required
a reboot. Traffic was rerouted to another datacenter. The
transition was going well, but on June 13 at 8:40:25, once
most traffic had moved to the new location, S3 “put” op-
erations began to fail sporadically from truncated uploads.
The safety-net feature was writing more data to S3 from
the new location than all of the rest of Dropbox combined,
and the capacity of our S3 proxy machines was overtaxed
by the safety-net mechanism.

For uploads, the availability dropped to 94% for the 9
minutes required to diagnose the situation, and camera
uploads from phones were disproportionately affected, as
mobile devices are a very common means for users to
capture images. Availability of this service dropped to
82%, since each photograph upload required a write to
the safety net. Once the situation was identified, Lepton
encodes were disabled in 29 seconds, using the shutoff

10    14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



switch (§ 5.7) in /dev/shm, stopping extra traffic to S3.
Traffic returned to normal at 8:49:54.

An irony emerged: a system we designed as a belt-and-
suspenders safety net ended up causing our users trouble,
but has never helped to resolve an actual problem.

6.6 Decodes that exceed the timeout window

With thousands of servers decoding chunks, there are of-
ten unhealthy systems that are swapping, overheating, or
broken. These can become stuck during a Lepton decode
and time out. Because these events happen regularly, they
must be investigated automatically without involving a
human operator.

Instead, any decode exceeding a timeout is uploaded
to an S3 queue bucket. Chunks in this queue bucket are
decompressed on an isolated, healthy cluster without a
timeout using the gcc-asan as well as the icc build of
Lepton. If the chunk is successfully decoded 3 times in a
row with each build, then the chunk is deleted from the
bucket. If any of those decodes fails, a human is signaled.

6.7 Alarm pages

As of this submission, anomalies in the Lepton system
have caused an on-call engineer to be paged four times.

Assert failed in sanitizing build only. The first alarm
occurred just days after Lepton was activated for 0.1%
of users, on April 8. When reconstructing the Huffman
coded data, each thread asserts that the number of bytes
produced matches the number of bytes decoded on the
initial compression. A file tripped this assert in the gcc-
asan build that was disabled for the icc production build,
so the icc build admitted the file.

The solution was to compile Lepton with all mean-
ingful asserts enabled and to check whether any of the
existing 150 TiB of images tripped the assert. Luckily no
other files triggered the assert. We deployed stricter code
that will not admit such files.

Single- and multi-threaded code handled corrupt
JPEGs differently. The second alarm was triggered on
May 11 because of a bug in the single-threaded code.
The single-threaded decoder wrote all output directly to
the file descriptor, whereas in the multithreaded decoder,
each thread wrote to a fixed sized memory area. When
the JPEG was sufficiently corrupt, the size would be in-
correctly computed, but the writes to the memory area
would be truncated in multi-threaded mode, yet the direct
writes to the stream would be unbounded in single-thread
mode. The fix was to make sure single-threaded decodes
bounded their writes to the stream as if it were a fixed
memory region.

After open-source release, fuzzing found bugs in
parser handling of corrupt input. The third alarm
was caused by a security researcher [7], who fuzzed

the open-source release of Lepton and found bugs in the
uncmpjpg JPEG-parsing library that Lepton uses. The li-
brary did not validate that the Huffman table had sufficient
space for the data. Uncmpjpg would overwrite global
memory past the array with data from the untrusted input.
A similar bug existed in uncmpjpg’s quantization table in-
dex, which also opened up a buffer overrun. The response
was to replace every raw array with a bounds-checked
std::array, to avoid similar attacks in the future. It was
unfortunate that we did not apply this philosophy after the
earlier “reversed indices” incident (§ 6.1). Fortunately, the
deployed system is protected with SECCOMP, preventing
escalation of privileges.

Accidental deployment of incompatible old version.
The final alarm was the result of a series of operational
mistakes. On Dec. 12, 2016, a new team member was
deploying Lepton on some blockservers. The internal
deployment tool asks the operator to specify the hash of a
Lepton build to deploy. These builds have all been “qual-
ified,” meaning they successfully compressed and then
decompressed a billion JPEGs with both optimized and
sanitizing decoders, yielding identical results to the input.

Our historical practice has been to retain earlier “qual-
ified” builds as eligible for deployment, so that Lepton
can be rolled back if necessary. However, because Lep-
ton’s file format has evolved over time, the earliest quali-
fied builds are not compatible with more recent versions.
When features were added, an older decoder may not be
able to decode a newer file. When Lepton’s format was
made stricter, an older encoder may produce files that are
rejected by a newer decoder. At the time of such upgrades,
we searched for and re-encoded JPEG files in Dropbox as
necessary, but we did not remove the older software from
the list of qualified builds.

Typically, our team members deployed Lepton to block-
servers by specifying the hash of the most recent qualified
build in the deployment tool. However, our documenta-
tion did not properly inform the new employee of this
practice, and they simply left the field blank. This caused
the deployment tool to use an internal default value of the
hash, which had been set when Lepton was first deployed
and never updated. As a result, the very first qualified
version of Lepton was accidentally deployed on some
blockservers.

The first warning sign was availability dropping to
99.7% for upload and download endpoints. This was
due to the oldest qualified Lepton code being unable to
decode some newly compressed images because of minor
additions to the format. An additional alarm was triggered
after other blockservers (ones that did not receive the bad
configuration change) found themselves unable to decode
some files that had been written by blockservers that did
receive the change.

As operators were occupied trying to roll back the
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configuration change, it took two hours before Lepton
was disabled, during which time billions of files were up-
loaded. We performed a scan over all these files, decoding
and then re-encoding them if necessary into the current
version of the Lepton file format. Ultimately, 18 files had
to be re-encoded.

This was an example of a number of procedures gone
wrong. It confirms the adage: we have met the enemy
and he is us. The incident has caused us to reconsider
whether a “qualified” version of Lepton ought to remain
eternally qualified for deployment, the behavior and user
interface of the deployment tools, and our documentation
and onboarding procedures for new team members.

7 Limitations and Future Work
Lepton is currently deployed on Dropbox’s back-end file
servers, and is transparent to client software. In the future,
we intend to move the compression and decompression
to client software, which will save 23% in network band-
width when uploading or downloading JPEG images.

Lepton is limited to JPEG-format files, which account
for roughly 35% of the Dropbox filesystem. Roughly
another 40% is occupied by H.264 video files, many of
which are encoded by fixed-function or power-limited
mobile hardware that does not use the most space-efficient
lossless compression methods. We intend to explore the
use of Lepton-like recompression for mobile video files.

8 Conclusion
Lepton is an open-source system that compresses JPEG
images by 23% on average. It has been deployed on the
production Dropbox network filesystem for a year and
has so far compressed more than 150 billion user JPEG
files that accounted for more than 203 PiB. Lepton was
designed to be deployable on a distributed file-serving
backend where substrings of a file must be decodable in-
dependently, with low time-to-first-byte and time-to-last-
byte. The system demonstrates new tradeoffs between
speed, compression efficiency, and deployability in the
context of a large-scale distributed filesystem back-end.

In a year of production use and hundreds of billions
of downloads, deployment has been relatively smooth.
We have never been unable to decode a stored file. The
issues we have encountered have involved human error
and procedural failures, non-obvious ways in which the
system created load hotspots, and difficulties in ensur-
ing deterministic behavior from a highly optimized C++
program processing untrusted input from diverse sources.
We have shared a number of deployment case studies and
anomalies in the hopes that they will be helpful to the aca-
demic community in giving context about challenges en-
countered in the practical deployment of format-specific
compression tools at a large scale.
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A Appendix
A.1 File Format

Magic Number (0xcf, 0x84) (2 bytes)
Version (0x01) (1 byte)
Skip serializing header? ( Y ‖ Z

) (1 byte)
Number of Thread Segments (4 bytes)
Truncated Git Revision (12 bytes)
Output File Size (4 bytes)
Zlib Data Size (4 bytes)

Zlib Data

JPEG Header Size (4 bytes)
JPEG Header

Pad Bit ( 0 ‖ 0xFF )
Per-Thread Segment Information

Thread Segment Vertical Range (2 bytes)
Size of Thread Segment Output (4 bytes)

Huffman Handover Word (2 bytes)
DC per channel (8 bytes)

Number of RST markers
Total Number of 8x8 JPEG Blocks per channel

Arbitrary data to prepend to the output
Arbitrary data to append to the output

Interleaved Arithmetic Coding Section

Thread Segment Id
Length (256‖4096‖65536‖arbitrary)

Arithmetic coded data
Thread Segment Id

Length (256‖4096‖65536‖arbitrary)
Arithmetic coded data

...
May be repeated many times per thread segment

...

A.2 Using prior information to predict and encode
DCT coefficients

Each 8x8 JPEG block has 49 2D DCT coefficients, 14 1D
DCT coefficients, and one DC coefficient (§ 3.3). Lep-
ton encodes each kind of coefficient using the same Exp-
Golomb code (unary exponent, then sign bit, then residual
bits) but with different methods for indexing the adap-
tive arithmetic code’s bins. Prior information, such as
neighboring blocks, is used to predict bin indices; higher
correlation between the predicted indices and the actual
coefficient values yields better compression ratios.

A.2.1 Predicting the 7x7 AC coefficients

Lepton first encodes the number of non-zero coefficients
in the block, n ∈ {0, . . . ,49}, by emitting 6 bits. Since
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?	

Figure 15: The neighboring coefficients at the same coordinates
are averaged to predict the 7x7 coefficient.

the number of non-zero coefficients in the above and left
blocks approximately predicts n, the bins are indexed by⌊
log1.59

( nA+nL
2

)⌋
∈ {0, . . . ,9}. The bin for each bit is

further indexed by the previously decoded bits, so that the
total number of bins (for encoding n) is 10× (26−1).

The 7x7 coefficients are encoded in zigzag order [20],
which yields a 0.2% compression improvement over
raster-scan order. For each coefficient F , we compute
a weighted average of the corresponding coefficient
from the above, left, and above-left blocks (Figure 15):
F̄ = 1

32 (13FA +13FL +6FAL). Each coefficient is Exp-
Golomb encoded using bins indexed by (bF̄c ,blog1.59 nc).
Each time a non-zero coefficient is encoded, n is decre-
mented; the block is finished when n = 0.

A.2.2 Predicting the 7x1 and 1x7 AC coefficients

The 7x1 and 1x7 coefficients represent image variation
purely in the horizontal and vertical directions. Lepton en-
codes them similarly to the 7x7 coefficients, but instead of
predicting each coefficient using a weighted average, we
use a more sophisticated formula inspired by Lakhani [11].
When encoding the 1x7 coefficients, Lepton has already
encoded the 7x7 coefficients, as well as the full block
to the left of the current block. We combine this prior
information with the additional assumption that the image
pixel values are continuous across the block edge — i.e.,
that PL(7,y)≈ P(0,y).

The block’s pixels are defined to be a linear combina-
tion of orthonormal DCT basis functions B:

P(x,y) =
7

∑
u=0

7

∑
v=0

B(x,u)B(y,v)Fuv

Written as matrices, P = BT FB where BT B = 1. The

?	 ?	

Figure 16: An entire row (or column) of coefficients may be
used to predict an edge DCT coefficient.

continuity assumption can then be rewritten as:

e7BT LB ≈ e0BT FB

e7BT L ≈ e0BT F

The left side is fully known from the block to the left,
while the right side is a linear combination of the known
7x7 coefficients and the unknown 1x7 coefficients, as
shown in Figure 16.

7

∑
u=0

B7uLuv ≈ B00F0v +
7

∑
u=1

B0uFuv

We solve for the unknowns to predict F0v:

F̄0v =
1

B00

(
7

∑
u=0

B7uLuv−
7

∑
u=1

B0uFuv

)

The predicted F̄0v is quantized to 7 bits and concatenated
with the non-zero count as the bin index for encoding the
true coefficient F0v.

A.2.3 Predicting the DC coefficient

With all 63 of the AC coefficients known, the last block
element to be encoded is the DC coefficient. Instead of
encoding this value directly, Lepton instead predicts a
DC coefficient and encodes the delta (the DC error term)
between the true value and the prediction. To make this
prediction, Lepton first computes the 8x8 pixel block (up
to the constant DC shift) from the known AC coefficients
using inverse DCT.

A first-cut prediction, illustrated in Figure 17 (left),
might be to compute the DC value that minimized the
differences between all 16 pairs of pixels at the borders
between the current 8x8 block and each of its left and
above neighbors. If we average the median 8 pairs and
discard the 8 outlier pairs, this technique compresses the
DC values by roughly 30% versus baseline JPEG.

We can improve upon this prediction by observing that
images tend to have smooth gradients; for example, the
sky fades from blue to orange towards the horizon during
a sunset. Lepton interpolates the pixel gradients smoothly
between the last two rows of the previous block and the
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Figure 17: Left: illustrates minimizing differences between
pairs of pixels by predicting the DC value for the block being
decoded (shaded in blue). DC adds a constant shift to all colors
in the blue 8x8 block. Right: illustrates using gradients to
interpolate colors between the blue block and its neighbors.

first two rows of the current block, as illustrated in Fig-
ure 17 (right). For each border pair, we predict the DC
value that would cause the two gradients to meet seam-
lessly. We finally encode the DC error term between
the true DC coefficient and the average of all 16 predic-
tions. Lepton estimates the DC prediction confidence
by subtracting the maximum and minimum predictions
(out of 16), and uses this value as the bin index when
Exp-Golomb encoding the error term. The combination
of these techniques yields another 10% compression im-
provement over the first cut: the final compression ratio
is 40.1% ± 8.7 better than the JPEG baseline.

A.3 Common JPEG Corruptions

In the Lepton qualification process, there were several
common JPEG anomalies that would trigger roundtrip
failures.

Most prevalently, JPEG files sometimes contain or end
with runs of zero bytes. Likely these are caused by failures
for an image editing tool or hard disk to sync pages to
disk before a user depowered their machine. Many such
images will successfully roundtrip with Lepton since zero
describes valid DCT data.

However, RST markers foil this fortuitous behavior,
since RST must be generated at regular block intervals
in image space. Ironically the very markers that were
designed to recover from partial corruption instead caused
it for Lepton. For affected files, during these zero runs,
the RST markers, beginning with a signature 0xff, would
not be present. However, Lepton blindly uses the RST
frequencies in the header to insert them at regular intervals
irrespective of the bytes in the original file. The fix for
these zero-filled files regions at the end was to add a RST
count to the Lepton header, so that Lepton could cease
automatically inserting RST markers after the last one
was recorded in the original file.

The RST solution did not fix issues with zero runs
appearing in the middle of a scan, since one count cannot
describe both the start and stop of RST insertions. These
corruptions manifest themselves as roundtrip failures.

A very common corruption was arbitrary data at the end
of the file. There are documented cases of cameras pro-
ducing a TV-ready interlaced image file in a completely
different format at the end of JPEG files produced. This
let old cameras display images directly to TVs. One of
the authors had a series of files where two JPEGs were
concatenated, the first being a thumbnail of the second.
For these, the compression ratio is less, since Lepton only
applies to the thumbnail, but they do roundtrip.

Likewise, the JPEG specification does not mention
whether partial bytes, filled with fewer than 8 bits, must
be padded with zeros or with ones. Most encoders pick a
pad bit and use it throughout. Lepton stores this bit in the
header.
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