usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Delta-net: Real-time Network Verification Using Atoms

Alex Horn, Fujitsu Labs of America;
Ali Kheradmand, University of lllinois at Urbana-Champaign;
Mukul Prasad, Fujitsu Labs of America

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex

This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI "17).
March 27-29, 2017 - Boston, MA, USA
ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by USENIX.

Delta-net: Real-time Network Verification Using Atoms

Alex Horn

Fujitsu Labs of America

Abstract

Real-time network verification promises to automatically
detect violations of network-wide reachability invariants
on the data plane. To be useful in practice, these viola-
tions need to be detected in the order of milliseconds,
without raising false alarms. To date, most real-time
data plane checkers address this problem by exploiting
at least one of the following two observations: (i) only
small parts of the network tend to be affected by typical
changes to the data plane, and (ii) many different pack-
ets tend to share the same forwarding behaviour in the
entire network. This paper shows how to effectively ex-
ploit a third characteristic of the problem, namely: sim-
ilarity among forwarding behaviour of packets through
parts of the network, rather than its entirety. We propose
the first provably amortized quasi-linear algorithm to do
so. We implement our algorithm in a new real-time data
plane checker, Delta-net. Our experiments with SDN-IP,
a globally deployed ONOS software-defined networking
application, and several hundred million IP prefix rules
generated using topologies and BGP updates from real-
world deployed networks, show that Delta-net checks a
rule insertion or removal in approximately 40 microsec-
onds on average, a more than 10x improvement over the
state-of-the-art. We also show that Delta-net eliminates
an inherent bottleneck in the state-of-the-art that restricts
its use in answering Datalog-style “what if” queries.

1 Introduction

In an evermore interconnected world, network traffic is
increasingly diverse and demanding, ranging from com-
munication between small everyday devices to large-
scale data centres across the globe. This diversity has
driven the design and rapid adoption of new open net-
working architectures (e.g. [41]), built on programmable
network switches, which make it possible to separate the
control plane from the data plane. This separation opens

Ali Kheradmand
University of Illinois at Urbana-Champaign

Mukul R. Prasad

Fujitsu Labs of America

up interesting avenues for innovation [37], including rig-
orous analysis for finding network-related bugs. Finding
these bugs automatically poses the following challenges.

Since the control plane is typically a Turing-complete
program, the problem of automatically proving the pres-
ence and absence of bugs in the control plane is generally
undecidable. However, the data plane, which is produced
by the control plane, can be automatically analyzed.
While the problem of checking reachability properties
in the data plane is generally NP-hard [34], the prob-
lem becomes polynomial-time solvable in the restricted,
but not uncommon, case where network switches only
forward packets by matching IP prefixes [36]. This the-
oretical fact helps to explain why real-time data plane
checkers [27, 25, 55] can often automatically detect vi-
olations of network-wide invariants on the data plane in
the order of milliseconds, without raising false alarms.

To achieve this, most real-time network verification
techniques exploit at least one of the following two ob-
servations: (i) only small parts of the network tend to be
affected by typical changes to the data plane [27, 25], and
(i) many different packets often share the same forward-
ing behaviour in the entire network [27, 55]. Both ob-
servations are significant because the former gives rise to
incremental network verification in which only changes
between two data plane snapshots are analyzed, whereas
the latter means that the analysis can be performed on a
representative subset of network packets in the form of
packet equivalence classes [27, 25, 55].

In spite of these advances, it is so far an open problem
how to efficiently handle operations that involve swaths
of packet equivalence classes [27]. This is problem-
atic because it limits the real-time analysis of network
failures, which are common in industry-scale networks,
e.g. [13, 4]. Moreover, it essentially prevents data plane
checkers from being used to answer “what if”” queries in
the style of recent Datalog approaches [17, 33] because
these hypothetical scenarios typically involve checking
the fate of many or all packets in the entire network.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 735

To address this problem, this paper shows how to
effectively exploit a third characteristic of data plane
checking, namely: similarity among forwarding be-
haviour of packets through parts of the network, rather
than its entirety. We show that our approach addresses
fundamental limitations (§ 2) in the design of the cur-
rently most advanced data plane checker, Veriflow [27].

In this paper, we propose a new real-time data plane
checker, Delta-net (§ 3). Instead of constructing multi-
ple forwarding graphs for representing the flow of pack-
ets in the network [27], Delta-net incrementally trans-
forms a single edge-labelled graph that represents all
flows of packets in the entire network. We present the
first provably amortized quasi-linear algorithm to do so
(Theorem 1). Our algorithm incrementally maintains the
lattice-theoretical concept of atoms: a set of mutually
disjoint ranges through which it is possible to analyze all
Boolean combinations of IP prefix forwarding rules in
the network so that every possible forwarding table over
these rules can be concisely expressed and efficiently
checked. This approach is inspired by Yang and Lam’s
atomic predicates verifier [55]. While more general, their
algorithm has a quadratic worst-case time complexity,
whereas ours is quasi-linear. Since Delta-net’s atom rep-
resentation is based on lattice theory, it can be seen as
an abstract domain (e.g. [11]) for analyzing forwarding
rules. What makes our abstract domain different from
traditional ones is that we dynamically refine its preci-
sion so that false alarms never occur.

For our performance evaluation (§ 4), we use data sets
comprising several hundred million IP prefix rules gen-
erated from the UC Berkeley campus, four Rocketfuel
topologies [49] and real-world BGP updates [46]. As
part of our experiments, we run SDN-IP [31, 47], one of
the most mature and globally deployed software-defined
networking applications in the ONOS project [7, 42]. We
show that Delta-net checks a rule insertion or removal in
tens of microseconds on average, a more than 10x im-
provement over the state-of-the-art [27]. Furthermore, as
an exemplar of “what if”” scenarios, we adapt a link fail-
ure experiment by Khurshid et al. [27], and show that
Delta-net performs several orders of magnitude faster
than Veriflow [27]. We discuss related work in § 5.

Contributions. Our main contributions are as follows:

e Delta-net (§ 3), a new real-time data plane checker
that incrementally maintains a compact representation
about the flows of all packets in the network, thereby
supporting a broader class of scenarios and queries.

e new realistic benchmarks (§ 4.2.2) with an open-
source, globally deployed SDN application [47].

e experimental results (§ 4.3) that show Delta-net is
more than 10x faster than the state-of-the-art in
checking rule updates, while also making it now feasi-
ble to answer an expensive class of “what if” queries.

!
Pl r3
) [

ry

—_——— e =

-
’@ %\ ’@*%\I S—8
@T’@/ @T’%/

Gl Gz Gs

Figure 1: When rule r4 (red edge) is inserted into switch
s1, Veriflow constructs at least three forwarding graphs,
which significantly overlap with each other.

2 Overview of approach

In this section, we motivate and explain our approach
through a simple example (§ 2.1) that illustrates how
Delta-net differs from the currently most advanced data
plane checker, Veriflow [27]. In addition to performance
considerations, we follow three design goals (§ 2.2).

2.1 Example

Our example is based on a small network of four
switches, shown in the upper-left corner of Figure 1. The
data plane in this network is depicted as a directed graph
in which each edge denotes an IP prefix forwarding rule.
For example, rule | in Figure 1 is assumed to determine
the packet flow for a specific destination IP prefix from
switch s1 to 5. Suppose the network comprises rules 7y,
ro and r3 (black edges) installed on switches s1, s, and
s3, respectively. Since each rule matches packets by a
destination IP prefix, we can represent each rule’s match
condition by an interval. For example, the IP prefix
0.0.0.10/31 (using the IPv4 CIDR format) corresponds
to the half-closed interval [10 : 12) = {10,11} because
0.0.0.10/31 is equivalent to the 32-bit binary sequence
that starts with all zeros and ends with 101 where * de-
notes an arbitrary bit. Here, we depict the intervals of all
three rules as parallel black lines (in an arbitrary order)
in the upper-right half of Figure 1. The interpretation is
that all three rules’ IP prefixes overlap with each other.
Let us assume we are interested in checking the data
plane for forwarding loops. Veriflow then first partitions
all packets into packet equivalences classes, as explained
next. Consider a new rule r4 (red edge in Figure 1) to be
installed on switch s such that rule r4 has a higher prior-
ity than the existing rule r; on switch s1. As depicted in
the upper half of Figure 1, the new rule r4 overlaps with

736 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

«
~
>
«
w

—~@
~6
L 2

S p S
S s,
1.1, =4 ® r
o 0y a, o3
Qy, a3 Qy, a3

¢
|
¢
@
l

Figure 2: Rather than constructing multiple forwarding
graphs that potentially overlap (Figure 1), Delta-net in-
crementally transforms a single edge-labelled graph.

all the existing rules in the network, irrespective of the
switch on which they are installed. Veriflow identifies
at least three equivalence classes that are affected by the
new rule, each of which denotes a set of packets that ex-
perience the same forwarding behaviour throughout the
network. Here, we depict equivalence classes by three
interval segments (gray vertical dashed lines).

For each equivalence class, Veriflow constructs a for-
warding graph (denoted by G, G, and G3 in Figure 1)
that represent how packets in each equivalence class can
flow through the network. Veriflow can now check for,
say, forwarding loops by traversing G, G> and G3. Note
that the edge that represents the packet flow from switch
s1 to 57 is excluded from all three forwarding graphs be-
cause on switch sy, for the three depicted equivalence
classes, the packet flow is determined by the higher-
priority rule r4 rather than the lower-priority rule r;.

Crucially, in our example, the forwarding graphs that
Veriflow constructs are essentially the same to previously
constructed ones (dashed areas) except for the new edge
from switch s; to s4. In addition, G{, G, and G, share
much in common, e.g. G, and G3 have the same edge
from switch s, to s3. As the number of rules in the
network increases, so may the commonality among for-
warding graphs. In real networks, this leads to inefficien-
cies that pose problems under real-time constraints.

We now illustrate how our approach avoids these kind
of inefficiencies. For illustrative purposes, assume we
start again with the network in which only rules r, r» and
r3 (black edges) have been installed on switches s1, s2
and s3, respectively. The collection of IP prefixes in the
network induces half-closed intervals, each of which we
call an arom. A set of atoms can represent an IP prefix.
For example, as shown at the top of Figure 2, the set
{0, a3} represents the IP prefix of rule r».

At the core of our approach is a directed graph whose

S
| Refine precision
No Create new atoms L .
@ _ | of abstraction

Yes

Figure 3: Delta-net incrementally maintains atoms, a
family of sets of packets that can represent all Boolean
combinations of IP prefix forwarding rules.

edges are labelled by atoms. The purpose of this edge-
labelled graph is to represent packet flows in the en-
tire network. For example, to represent that r, forwards
packets from switch s, to s3 we label the corresponding
edge in the directed graph with the atoms oy and o3.

Of course, an edge-labelled graph that represents all
flows in the network may need to be transformed when a
new rule is inserted or removed. The bottom of Figure 2
illustrates the nature of such a graph transformation in
the case where rule r4 is inserted into switch s;. The
point of the drawing is threefold. First, observe that the
rule insertion of r4 results in the creation of a new atom
0y (red label in the graph on the bottom-left corner). Us-
ing the newly created atom, r4’s IP prefix can now be
precisely represented as the set of atoms {0, 03,04 }.
Second, when a new atom, such as 0y, is created, exist-
ing atom representations may need to be updated. For
example, r;’s IP prefix on the edge from switch s; to s;
needs to be now represented by four instead of only three
atoms. Finally, since rule r4, recall, has higher priority
than rule rq, three of those four atoms need be moved to
the newly inserted edge from switch s; to s4 (as shown
by a dashed arrow in Figure 2). This results in the edge-
labelled graph shown in the bottom-right corner of Fig-
ure 2 where the edges from switch s; correspond to the
forwarding action of the rules r; and r4 and are labelled
by the set of atoms {a; } and {0, 03,04}, respectively.
Crucially, note how our approach avoids the construction
of multiple overlapping forwarding graphs by transform-
ing a single edge-labelled graph instead.

Delta-net’s key components and sequence of steps are
depicted in Figure 3. In this flowchart, the steps in
shaded areas — annotated by {(D,@} and {Q)} in Fig-
ure 3 — are new and described in § 3.1 and § 3.2, respec-
tively. Here, we only highlight two main fundamental
differences between Delta-net and Veriflow:

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 737

s; 25
S—S - S
T l 3 5] T 3
S—S
Sq S1 Iy Sy

(a) Veriflow (b) Delta-net

Figure 4: Comparison of processed rules (black edges).

e Veriflow generally has to traverse rules in different
switches to compute equivalence classes and forward-
ing graphs: in our example, when rule r4 is inserted
into switch sy, Veriflow traverses all rules in the net-
work (four black edges in Figure 4a). By contrast,
our approach concentrates on the affected rules in the
modified switch. For example, when rule r4 is inserted
into switch sy, the two black edges in Figure 4b show
that only rules r; and r4 on switch s; are inspected by
Delta-net to transform the edge-labelled graph.

e Veriflow recomputes affected equivalence classes and
forwarding graphs each time a rule is inserted or re-
moved, whereas Delta-net incrementally transforms a
single edge-labelled graph to represent the flows of
all packets in the entire network. This significantly
broadens the scope of Delta-net (§ 2.2) because it can
more efficiently handle network failures and “what if”
queries regarding many or all packets in the network.

2.2 Functional design goals

In addition to more stringent real-time constraints, our
work is guided by the following three design goals:

1. Similar to Datalog-based approaches [17, 33], we
want to efficiently find all packets that can reach a
node B from A, avoiding restrictions of SAT/SMT-
based data plane checkers (e.g. [34]), which can solve
a broader class of problems but require multiple calls
to their underlying SAT/SMT solver to find more than
one witness for the reachability from A to B.

2. Our design should support known incremental net-
work verification techniques that construct forward-
ing graphs for the purpose of checking reachabil-
ity properties each time a rule is inserted or re-
moved [27]. This is important because it preserves

Priority IP Prefix Action
High 0.0.0.10/31 drop
Low 0.0.0.0/28 forward

Table 1: A forwarding table for a network switch.

one of the main characteristics of previous work,
namely: it is practical, and no expertise in formal ver-
ification is required to check the data plane.

3. When real-time constraints are less important (as in
the case of pre-deployment testing, e.g. [58]), we
want to facilitate the answering of a broader class
of (possibly incremental) reachability queries, such
as all-pairs reachability queries in the style of recent
Datalog approaches [17, 33]. These kind of queries
generally concern the reachability between all pack-
ets and pairs of nodes in the network. We also aim at
efficiently answering queries in scenarios that involve
many or all packets, such as link failures [27].

After explaining the technical details of Delta-net, we
describe how it achieves these design goals (§ 3.3).

3 Delta-net

In this section, we explain Delta-net’s underlying atom
representation (§ 3.1), and its algorithm for modifying
rules through insertion and removal operations (§ 3.2).
Recall that these two subsections correspond to the steps
annotated by {(1),@)} and {()} in Figure 3, respectively.

We illustrate the internal workings of Delta-net using
the simple forwarding table in Table 1. It features two
rules, ry and rz,, whose subscript corresponds to their pri-
ority: the higher-priority rule, ry, drops packets whose
destination address matches the IP prefix 0.0.0.10/31,
whereas the lower-priority rule, rz, forwards packets des-
tined to the IP prefix 0.0.0.0/28. We elide details about
the next hop (where a matched packet should be sent)
because it is not pertinent to the example.

As alluded to in the previous section (§ 2.1), we can
think of IP prefixes as half-closed intervals: ry’s IP pre-
fix, 0.0.0.10/31, corresponds to the half-closed [10: 12).
Similarly, 0.0.0.0/28 = [0 : 16) for r.’s IP prefix. Of
course, this interval representation can be easily gener-
alized to IPv6 addresses. Next, we show how Delta-net
represents rules with such IP prefixes, for some fixed IP
address length.

3.1 Atom representation

In this subsection, we describe the concept of atoms; how
they are maintained is essential to the rule modifications
algorithms in the next subsection (§ 3.2).

o =[10:12)
rg . f—
0p=[0:10) o =[10:12) 0p=[12:16)
rp f { { {

Figure 5: Atoms for the IP prefix rules in Table 1.

738 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

10— o
MIN — o 16 — a3
8=y 12— 0 MAX+— o

Figure 6: Balanced binary search tree of key/value pairs
after inserting the half-closed intervals from Figure 5.

Intuitively, we can segment the IP prefixes of all the
rules in the network into disjoint half-closed intervals,
which we call atoms. This kind of segmentation is illus-
trated in Figure 5 using the rules ry and r; in Table 1.!

By construction of atoms, we can represent an IP
prefix of a rule r as a set of atoms. We denote this
IP prefix representation by [interval(r)]. For exam-
ple, ry’s IP prefix, [interval(rg)], corresponds to the
singleton set consisting of the atom ¢, whereas r;’s
IP prefix is [interval(rz)] = {ao, 01, 00}. Using these
atoms, we can represent, for example, the set difference
[interval(ry)] — [interval(ry)] to formalize the fact that
rp can only match packets that are not matched by the
higher-priority rule ry. Next, we explain how to devise
an efficient representation of atoms such that we can effi-
ciently verify network-wide reachability properties when
a rule is inserted or removed (§ 3.2).

At the core of our atom representation is a function,
T, that maps non-negative integers to identifiers. Specif-
ically, 90 is an ordered map that contains key/value pairs
n — o; where n is a lower or upper bound of an IP pre-
fix of a rule r (denoted by lower(r) and upper(r), respec-
tively) and ¢; is a unique identifier, called atom identifier.
For example, lower(rg) = 10 and upper(rg) = 12. More
generally, we ensure that MIN < lower(r) < upper(r) <
MAX for every rule » where MIN = 0 and MAX = 2*
for some fixed positive integer k, e.g. k = 32 for 32-bit
IP addresses. We maintain the invariant that 90t contains
only unique keys. The interpretation of each pair n — o;
in 9N, for all n < MAX, is as follows: the atom identifier
o; denotes the afom [n : n') where n’ is the next numer-
ically greater key in 9. Each atom identifier, therefore,
uniquely denotes a half-closed interval, i.e. an atom. For
efficiency reasons, we ensure that each atom identifier is
generated from a consecutively increasing counter that
starts at zero. Before processing any rules, we initialize
M by inserting MIN — o and MAX — ., where . is
the greatest atom identifier.

We define the procedure CREATE_ATOMS(r), where
interval(r) = [lower(r) : upper(r)) is the half-closed in-
terval corresponding to »’s IP prefix, such that, if 9t has

! Appendix A illustrates the fact that atoms induce a Boolean lattice.

not already paired lower(r) with an atom identifier, then
it inserts into 97 the key/value pair lower(r) — a; for the
next available counter value ¢;; similarly, we condition-
ally insert into 90t the key/value pair upper(r) — oy for
the next available counter value ¢. Note that after CRE-
ATE_ATOMS(7) has been called,)t may contain 0, 1, or 2
new atoms (but not more). For example, IP prefixes such
as 1.2.0.0/16 and 1.2.0.0/24 have the same lower bound
because they only differ in their prefix lengths, and so
together yield only three and not four atoms. While the
values of atom identifiers depend on the order in which
rules are inserted, the set of generated atoms at the end
is invariant under the order in which CREATE_ATOMS is
called. We also remark that the number of atoms repre-
sented by 901 is equal to 2)1’s size minus one.

For our complexity analysis, we assume that the 91’s
insertion and retrieval operations run logarithmically in
the size of 99T, which could be achieved with a bal-
anced binary-search tree such as a red-black tree. In
this case, Figure 6 (excluding the leaf node connected
by a dashed edge) illustrates the balanced binary search
tree that results after CREATE_ATOMS(ry) and CRE-
ATE_ATOMS(ry) has been called for the rules rgy and r,
in Table 1. For example, ¢ at the root of the binary
search tree in Figure 6 denotes the atom [10 : 12). When
clear from the context, we refer to atom identifiers and
atoms interchangeably.

3.2 Edge labelling algorithm

Using our atom representation (§ 3.1), we show how to
efficiently label the edges of a directed graph that suc-
cinctly describes the flow of all packets in the entire net-
work. Our algorithm is incremental in the sense that it
only changes edge labels that are affected by the inser-
tion or removal of a rule. Our algorithm, which achieves
this incrementality, requires the following notions.

We denote an IP prefix forwarding rule by r, possi-
bly with a prime symbol. Each rule r is associated with
priority(r) and link(r), as explained in turn. We assume
that rules in the same forwarding table whose IP pre-
fixes overlap have pair-wise distinct priorities, denoted
by priority(r).? For all rules r and 7 in the same forward-
ing table, r has a higher priority than v if priority(r) >
priority(r'); equivalently, priority(r) < priority(r') means
that r has a lower priority than ¥'. Note that longest-
prefix routing can be simulated by assigning rule pri-
orities according to prefix lengths [55]. We denote by
link(r) a directed edge in a graph that is induced by a
network topology. For theoretical and practical reasons
(see also § 4.1), link(r) is purposefully more general than
a pair of, say, ports. We write source(r) for the node

2This assumption is reasonable for, say, OpenFlow tables where the
matching of rules with the same highest priority is explicitly undefined.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 739

in the graph on which link(r) is incident. For example,
source(ry) = s1 and source(ry) = s, in Figure 2.

From a high-level perspective, Delta-net consists of
two algorithms, one for inserting (Algorithm 1) and an-
other for removing (Algorithm 2) a single rule. Both al-
gorithms accesses three global variables: 91, label and
owner, as described in turn. First, 90T is the balanced bi-
nary tree described in § 3.1, e.g. Figure 6. Second, given
a link in the network topology, label[link] denotes a set
of atoms, each of which corresponds to a half-closed in-
terval that a designated field in a packet header & can
match for i to be forwarded along the link. Finally,
owner is an array of hash tables, each of which stores a
balanced binary search tree containing rules ordered by
priority. More accurately, owner is an array of sufficient
size such that, for every atom @, owner[] is a hash ta-
ble that maps a source node to a balanced binary search
tree, bst, that orders rules in the source node that contain
atom « in their interval according to their priority, i.e.,
we maintain the invariant that bst contains only rules r
such that source = source(r) and o € [interval(r)] where
bst = owner|c][source]. The highest-priority rule in a
non-empty balanced binary search tree bst can be re-
trieved via bst.highest_priority_rule(). We remark that
we do not use a priority queue because Algorithm 2 de-
scribed later (§ 3.2.2) needs to be able to remove arbitrary
rules, not just the highest-priority one. We write r € bst
when rule r is stored in bst.

3.2.1 Edge labelling when inserting a rule

We now explain how the INSERT_RULE procedure
in Algorithm 1 works. The algorithm starts by call-
ing CREATE_ATOMS™ (line 2) that accomplishes the
same as CREATE_ATOMS from § 3.1 except that CRE-
ATE_ATOMS™ also returns A, a set of delta-pairs, as ex-
plained next. Each delta-pair in A is of the form a — o
where « and o are atoms. The intuition is that the half-
closed interval previously represented by & needs to be
now represented by two atoms instead, namely o and
o. We call this atom splitting. In a nutshell, this split-
ting provides an efficient mechanism for incrementally
refining the precision of our abstract domain. This incre-
mental abstraction refinement allows us to precisely and
efficiently represent all Boolean combinations of rules in
the network (see also § 1).

To illustrate the splitting of atoms, let ry; be a new
medium-priority rule to be inserted into Table 1 such that
priority(rz) < priority(ra) < priority(rg). Assume ry’s
IP prefix is 0.0.0.8/30; hence, interval(ry) = [8 : 12).
If 901 is the binary search subtree in Figure 6 consisting
of undashed edges, then CREATE_ATOMS™ (rys) returns
a single delta-pair, namely A = {a — a4}, where o is
the atom identifier denoting the atom [MIN : 10) before

Algorithm 1 Inserts rule » into a forwarding table.
1: procedure INSERT_RULE(r)

2. A+ CREATE_ATOMS™ (r) > Al <2
32 fora— o in Ado
4 owner|d'] < owner|d]
5 for source — bst in owner|[a] do
6: ¥ < bst.highest _priority_rule()
7 label[link(r")] < label[link(r)|U{a'}
8 end for
9: end for
10: for o in [interval(r)] do
11: r' < null
12: bst < owner[o][source(r)]
13: if not bst.is_empty() then
14: ¥ < bst.highest_priority_rule()
15: end if
16: if ¥ = null or priority(+') < priority(r) then
17: label[link(r)] < label]link(r)]U{a}
18: if ¥/ # null and link(r) # link(+') then
19: label[link(r')] < label[link(r")] — {a}
20: end if
21: end if
22: bst.insert(r)

23: end for
24: end procedure

ry has been inserted, and o4 is a new atom identifier,
depicted as a dashed leaf in Figure 6. Here, A = {ap —
04} means that the existing atom [MIN : 10) needs to be
splitinto g = [MIN : 8) and a4 = [8 : 10). Note that there
are always at most two delta-pairs in A. Thus, since |A] <
2, we can effectively update the atom representation of
forwarding rules in an incremental manner.

The splitting of atoms is effectuated by updating the
labels for some links in the single-edged graph that rep-
resents the flow in the entire network (line 7). To quickly
determine these links, we exploit the highest-priority
matching mechanism of packets. For this purpose, we
use the array of hash tables, owner: it associates an atom
o and source node with a binary search tree bst such that
bst.highest_priority_rule() determines the next hop from
source of an o-packet (line 6). Since |A| < 2, the doubly
nested loop (line 3-9) runs at most twice. For each delta-
pair o — o in A, the array of hash tables is updated so
that owner[a'] is a copy of owner|[@] (line 4). There-
fore, since ' € owner|a][source(r’')] holds for the ex-
isting atom ., it follows that ' € owner|o/][source(r')]
holds for the new atom o’ € [interval(r’)], thereby main-
taining the invariant of the owner array of hash tables
(§ 3.2). We adjust the labels accordingly (line 7). The
remainder of Algorithm 1 (line 10-23) reassigns atoms
based on the priority of the rule that ‘owns’ each atom,
as explained next.

740 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Algorithm 2 Removes rule r from a forwarding table.
1: procedure REMOVE_RULE(r)

for in [interval(r)] do

3 bst + owner|a][source(r)]

4 ¥ < bst.highest_priority_rule()

5: bst.remove(r)

6: if 7/ = r then

7

8

9

label[link(r)] < label[link(r)] — {a}
if not bst.is_empty() then
: ¥’ < bst.highest_priority_rule()
10: label(link(r")] < label[link(F")] U {a}

11: end if
12: end if
13: end for

14: end procedure

The algorithm continues by iterating over all atoms
that collectively represent r’s IP prefix (line 10), possibly
including the newly created atom(s) in A (see previous
paragraphs). For each such atom o in [interval(r)], we
find the highest-priority rule ' (line 14) that determines
the flow of an a-packet at the node source(r) into which
rule 7 is inserted. We say such a rule #' owns o. If no
such rule exists or its priority is lower than r’s (line 16),
we assign o to the set of atoms that determine which net-
work traffic can flow along the link of r (line 17-20), i.e.
label[link(r)]. Finally, we insert r into the binary search
tree for atom & and node source(r) (line 22), irrespective
of which rule owns atom «.

3.2.2 Edge labelling when removing a rule

Algorithm 2 removes a rule r from a forwarding table.
Similar to Algorithm 1, Algorithm 2 iterates over all
atoms (that are needed to represent r’s IP prefix (line 2).
For each such atom ¢, it retrieves the bst that is specific
to the node from which » should be removed (line 3).
After finding the highest-priority rule ¥’ in bst (line 4), it
removes r from bst (line 5). If 7 equals r (line 6), we
need to remove o from the label of link(r) because the
rule that needs to be removed, r, owns atom « (as de-
scribed in § 3.2.1). In addition, we may need to transfer
the ownership of the next higher priority rule (line 8-11).

We remark that after the removal of a rule, it may be
that some (at most two) atoms are not needed any longer.
In this case, akin to garbage collection, we could reclaim
the unused atom identifier(s). This ‘garbage collection’
mechanism is omitted from Algorithm 2.

3.2.3 Complexity analysis

We now show that each rule update is amortized linear
time in the number of affected atoms and logarithmic

in the maximum number of overlapping rules in a sin-
gle switch. While in the worst-case there are as many
atoms as there are rules in the network, our experiments
(§ 4) show that the number of atoms is typically much
smaller in practice, explaining why we found Delta-net
to be highly efficient in the vast majority of cases.

Theorem 1 (Asymptotic worst-case time complexity).
To insert or remove a total of R rules, Algorithm 1 and 2
have a O(RK log M) worst-case time complexity where K
is the number of atoms and M is the maximum number of
overlapping rules per network switch.

Proof. The proof can be found in Appendix B. O

The space complexity of Delta-net is O(RK) where R
and K are the total number of rules and atoms, respec-
tively. We recall that K is significantly smaller than R.
We also experimentally quantify memory usage (§ 4).

3.3 Revisited: functional design goals

From a functionality perspective, recall that our work is
guided by three design goals (§ 2.2). In this subsection,
we explain how Delta-net achieves these goals.

API for persistent network-wide flow information.
Delta-net provides an exact representation of all flows
through the entire network. For this purpose, Delta-net
maintains the atom labels for every edge in the graph that
represents the network topology. From a programmer’s
perspective, this edge-centric information can be always
retrieved in constant-time through label[link| where link
is a pair of nodes in this graph. This way, our API allows
a programmer to answer reachability questions about
packet flow through the entire network irrespective of
the rule that has been most recently inserted or removed.
This makes Delta-net different from Veriflow [27]. Ar-
chitecturally, our generalization is achieved by decou-
pling packet equivalence classes (whether affected by a
rule update or not) from the construction of their corre-
sponding forwarding graphs, cf. [27].

Incremental network verification via delta-graphs.
Similar to Veriflow [27], Delta-net can build forwarding
graphs, if necessary, to check reachability properties that
are suitable for incremental network verification, such as
checking the existence of forwarding loops each time a
rule is inserted or removed. In fact, the concept of atoms
has as consequence a convenient algorithm for comput-
ing a compact edge-labelled graph, called delta-graph,
that represents all such forwarding graphs. We can gen-
erate a delta-graph as a by-product of Algorithm 1 for
all atoms & whose owner changes (line 16-21); similarly
for Algorithm 2. If so desired, multiple rule updates may
be aggregated into a delta-graph.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 741

Algorithm 3 Compute all-pairs reachability of all atoms.
1: for k,i,jinV do > Triple nested loop
2: labelli, j] < label[i, j] U (label[i,k] N label[k, j))
3: end for

Easier checking of other reachability properties.
Delta-net’s design provides a lattice-theoretic foundation
for transferring known algorithmic techniques to the field
of network verification. For example, Algorithm 3 adapts
the Floyd—Warshall algorithm to compute the transitive
closure of packet flows between all pairs of nodes in the
network. Note that our adaptation interchanges the usual
maximum and addition operators with union and inter-
section of sets of atoms, respectively. This way, Algo-
rithm 3 process multiple packet equivalence classes in
each hop.® Veriflow has not been designed for such com-
putations, and Algorithm 3 illustrates how Delta-net fa-
cilitates use cases beyond the usual reachability checks,
cf. [27, 25, 55]. This algorithm could be run either on the
edge-labelled graph that represents the entire network or
only its incremental version in form of a delta-graph (see
previous paragraph).

While decision problems such as all-pairs reachabil-
ity have a higher computational complexity (e.g., Al-
gorithm 3’s complexity is O(K|V|*) where K and V
is the number of atoms and nodes in the edge-labelled
graph, respectively), they are relevant and useful during
pre-deployment testing of SDN applications, as demon-
strated by recent work on Datalog-based network veri-
fication, e.g. [17, 33]. The fact that our design makes it
possible to verify network-wide reachability by intersect-
ing or taking the union of sets of atoms [55] is also rele-
vant for scenarios that involve many or all packet equiva-
lence classes at a time, such as “what if” queries, network
failures, and traffic isolation properties, e.g. [3, 18].

4 Performance evaluation

In this section, we experimentally evaluate our imple-
mentation of Delta-net (§ 4.1) on a diverse range of data
sets (§ 4.2) that are significantly larger than previous ones
(see also Appendix C). Our experiments provide strong
evidence that Delta-net significantly advances the field of
real-time network verification (§ 4.3).

4.1 Implementation

We implemented Algorithm 1 and 2 in C++14 [22]. Our
implementation is single-threaded and comprises around
4,000 lines of code that only depend on the C++14 stan-
dard library. In particular, we use the standard hashmap,

3A routine proof by induction on k (the outermost loop) shows
that Algorithm 3 computes the all-pairs reachability of every o-packet.

Data set ‘ Nodes ‘ Max Links Operations
Berkeley 23 252 25.6 x 10°
INET 316 40,770 | 249.5 x 10°
RF 1755 87 2,308 67.5 x 10°
RF 3257 161 9,432 | 149.0 x 10°
RF 6461 138 8,140 | 150.0 x 10°
Airtel 1 68 260 14.2 x 100
Airtel 2 68 260 | 505.2 x 10°
4Switch 12 16 | 1.12x10°

Table 2: Data sets used for evaluating Delta-net.

balanced binary search tree and resizeable array imple-
mentations. We implement edge labels as customized
dynamic bitsets, stored as aligned, dynamically allo-
cated, contiguous memory. We detect forwarding loops
via an iterative depth-first graph traversal.

We remark that while Algorithm 1 and 2 focus on han-
dling IP prefix rules, our approach can be extended for
other packet header fields. For non-wildcard (i.e. con-
crete) header fields, our implementation achieves this by
encoding composite match conditions as separate nodes
in the single edge-labelled graph. For example, if a
switch s contains rules that can match three input ports,
we encode s as three separate nodes in the edge-labelled
graph. It is for this reason that we report the number
of graph nodes rather than the number of switches when
describing our data sets in the next subsection.

4.2 Description of data sets

Our data sets are publicly available [14] and can be
broadly divided into two classes: data sets derived from
the literature (§ 4.2.1), and data sets gathered from an
ONOS SDN application (§ 4.2.2). Both are significant
as the former avoids experimental bias, whereas the lat-
ter increases the realism of our experiments. To achieve
reproducibility, we organize our data sets as text files in
which each line denotes an operation: an insertion or re-
moval of a rule. So all operations can be easily replayed.
Table 2 summarizes our data sets in terms of three
metrics.The second and third column in Table 2 corre-
spond to the maximum number of nodes and links in
the edge-labelled graph, respectively. We recall that the
number of nodes is proportional to the number of ports
and switches in the network (§ 4.1). The total number
of operations is reported in the last column. Note that
most of our data sets are significantly larger than pre-
vious ones, cf. [27, 10, 25, 55] (see also Appendix C).
Next, we describe the main features of our data sets.

4.2.1 Synthetic data sets

To avoid experimental bias, our experiments purpose-
fully include data sets from the literature [59, 39] that

742 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

feature network topologies from the UC Berkeley cam-
pus and the Rocketfuel (RF) project [49], namely ASes
1755, 1239, 6257 and 6461. Note that the RF topolo-
gies in [39] correspond to those used by [21, 19, 51]. For
each of these five network topologies, we generate for-
warding rules following the same mechanism as in [59],
namely: we gather IP prefixes from over a half a mil-
lion of real-world BGP updates collected by the Route
Views project [46], and compute the shortest paths in a
network topology [30]. For example, for the network
topology RF 12309, this results in the INET data set [59],
a synthetic wide-area backbone network that contains ap-
proximately 300 routers, 481 thousand subnets and 125
million IPv4 forwarding rules. We modify the data sets
so that rules are inserted with a random priority. After
rules have been inserted, we remove them in random or-
der. The first five rows in Table 2 show the resulting
data sets, which contain up to 125 million rules. Due to
rule removals, the total number of operations is twice the
maximum number of rules. Collectively, the Berkeley,
INET and RF 1755, 3257 and 6461 data sets comprise
around 640 million rule operations. Next, we explain the
remaining three data sets in Table 2.

4.2.2 SDN-IP Application

In addition to synthetic data sets (§ 4.2.1), we run exper-
iments with ONOS [7, 42], an open SDN platform used
by sizeable operator networks around the globe [7, 42].
To obtain a relevant and realistic experimental setup,
we run SDN-IP [31, 47], an important ONOS application
that allows an ONOS-controlled network to interoperate
with external autonomous networks (ASes). This inter-
operability is achieved as follows (Figure 7). Inside the
ONOS-controlled network reside Border Gateway Pro-
tocol (BGP) speakers (in our experimental setup there is
exactly one internal BGP speaker) that use eBGP to ex-
ONOS

1, -1, .. Delta-net Event
| .SDN-IP Injector
\ SDN A Failures

Y] S > @ BGP speaker

BGP
Router

AS1 @

78.88.0.0/17

OpenFlow

46.21.16.0/24

Figure 7: Experimental setup with SDN-IP application.

change BGP routing information with the border routers
of adjacent external ASes. This information, in turn,
is propagated inside the ONOS-controlled network via
iBGP. As sketched in the upper half of Figure 7, SDN-
IP listens to these iBGP messages and requests ONOS to
dynamically install IP forwarding rules such that pack-
ets destined to an external AS arrive at the correct bor-
der router. In doing so, SDN-IP sets the priority of rules
according to the longest prefix match where rules with
longer prefix lengths receive higher priority. For each
rule insertion and removal (depicted by +r; and —r;
in Figure 7), Delta-net checks the resulting data plane.

For our experiments, we run SDN-IP in a sin-
gle ONOS instance. We use Mininet [29] to em-
ulate a network of sixteen Open vSwitches [43],
configured according to the Airtel network topology
(AS 9498) [28]. We connect each of these OpenFlow-
compliant switches [38] to an external border router that
we emulate using Quagga [45]. We configure Quagga
such that each border router advertises one hundred IP
prefixes, which we randomly select from over half a
million real-world IP prefixes gathered from the Route
Views project [46], resulting in a total of 1,600 unique
(but possibly overlapping) IP prefixes.

Our experiments in § 4.3.1 exploit the fact that SDN-
IP relies on ONOS to reconfigure the OpenFlow switches
when parts of the network fail. Since network failures
happen frequently [4] and pose significant challenges for
real-time data plane checkers [25, 27], we can generate
interesting data sets by systemically failing links, con-
trolled by the ‘Event Injector’ process in the upper right
half of Figure 7. In particular, the Airtel 1 data set con-
tains the rule insertions and removals triggered by failing
a single inter-switch link at a time, recovering each link
before failing the next one. Such a link failure (dashed
red edge) is illustrated in the left half of Figure 7, causing
ONOS to reconfigure the data plane so that a new path is
established (green arrow on the left) that avoids the failed
link, which caused disruption to earlier network traffic
(red arrow). In the case of Airtel 2, we automatically
induce all 2-pair link failures (separately failing the first
link and then the second one), including their recovery.

We also wanted to study a larger number of rules and
IP prefixes, but were limited due to technical issues with
ONOS. We worked around these limitations by using a
4-switch ring network. In this smaller ring topology, we
configure each Quagga instance to advertise 5,000 IP
prefixes (rather than only 100 IP prefixes as in the Airtel
experiments), again randomly selected from the Route
Views project [46]. We do not fail any links. Instead,
we only collect the rules generated by SDN-IP, a process
we repeat fourteen times with different IP prefixes. This
workaround yields the 4Switch data set in Table 2, com-
prising 1.12 million rules. In contrast to the previously

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 743

Berkley — — = = _|
INET
RF-1755 ----=----- B
RF-3257
RF-6461 —--—--- —
4Switch
Airtell - - - - —

21
") / Airtel2
0 A R R R

10° 10t 102 103 104 10°

CDF

Processing time (Microseconds)

Figure 8: CDF of combined time (microseconds) for pro-
cessing a rule update and checking for forwarding loops.

described data sets, all of the operations in the 4Switch
data set are rule insertions.

4.3 Experimental results

Our experiments separately measure Delta-net’s perfor-
mance in checking individual rule updates (§ 4.3.1) and
handling a “what if”” scenario (§ 4.3.2). In both cases, at
the cost of higher memory usage, Delta-net is more than
10x faster than the state-of-the-art. We run our experi-
ments on an Intel Xeon CPU with 3.47 GHz and 94 GB
of RAM. Since our implementation is single-threaded
(§ 4.1), we utilize only one out of the 12 available cores.

4.3.1 Checking network updates

To evaluate Delta-net’s performance with respect to rule
insertions and removals, we build the delta-graph (§ 3.3)
for each operation, and find in it all forwarding loops, a
common network-wide invariant [26, 25, 55, 27, 59]. We
process the rules in each data set in the order in which
they appear in the data sets (§ 4.2).

Table 3 summarizes our experimental results for mea-
suring the checking of rule insertions and removals. The
first row in Table 3 shows that the total number of atoms
is much smaller than the total number of rules in the
network (recall Table 2), suggesting a significant degree
of commonality among IP prefix rules that atoms effec-
tively exploit. Furthermore, for all data sets, the median
and average rule processing time is less than 5 and 41 mi-
croseconds, respectively, which includes the checking of
forwarding loops. On closer inspection, as shown in the
last row of Table 2, Delta-net processes rule updates and
checks for the existence of forwarding loops in less than
250 microseconds for at least 98.5% of cases. The com-
bined time for processing a rule update and finding all
forwarding loops in the corresponding delta-graph (§ 3.3)
is visualized by the cumulative density function (CDF)
in Figure 8. It shows that the INET data set [59] (solid
red line) is one of the more difficult ones for Delta-net.

We remark that Delta-net’s memory usage never exceeds
the available memory on our machine (Appendix D).

Our measurements are significant because earlier ex-
periments with Veriflow [27] result in an average ver-
ification time of 380 microseconds, whereas Delta-net
verifies rule insertions and removals in often tens of mi-
croseconds, and 41 microseconds on average even on
the largest data set, INET. This comparison is mean-
ingful because our data sets are significantly larger than
previous ones [27, 10, 25, 55]. Moreover, two of our
data sets (Airtel 1 and 2) are derived from a real-world
software-defined networking application while causing
an extensive number of link failures in the network,
which were previously shown to lead to longer verifica-
tion times [25, 27]. Our experiments therefore provide
strong evidence that Delta-net can be at least one order of
magnitude faster compared to Veriflow [27]. Since nei-
ther Veriflow’s implementation (or its algorithm) nor any
of the data sets used for its experimental evaluation are
publicly available, and neither its time nor space com-
plexity is specified, we further quantify the differences
between Delta-net and Veriflow by re-implementing a
consistent interpretation of Veriflow, as described next.

Our re-implementation of Veriflow, which we call
Veriflow-RI, is not intended to be a full-feature copy of
Veriflow, but rather a re-implementation of their core
idea to enable an honest comparison with Delta-net.
Specifically, Veriflow-RI is designed for matches against
a single packet header field. This explains why Veriflow-
RI uses a one-dimensional trie data structure in which ev-
ery node has at most two children (rather than three [27]).
We optimize the computation of equivalence classes and
construction of forwarding graphs. Note that these op-
timizations may not be possible in the original Veriflow
implementation with its ternary trie data structure, and
Veriflow-RI may therefore be faster than Veriflow [27].
We remark that Veriflow-RI’s space complexity is linear
in the number of rules in the network, whereas its time
complexity is quadratic, rather than quasi-linear as in the
case of Delta-net (Theorem 1).

While Delta-net is only approximately 4 x faster than
Veriflow-RI on the Airtel data set, on the INET data
set, Delta-net is approximately 6 x faster than Veriflow-
RI. This gap widens on the RF 3257 and 6461 data
sets where Delta-net is approximately 7x faster than
Veriflow-RI. In turn, however, Veriflow-RI consumes
5 —7x less memory than Delta-net (Appendix § D).

It is therefore natural to ask whether this trade-off in
space and time is worth it. Next, we answer this question
affirmatively by showing that Delta-net can check prop-
erties for which Veriflow often times out. This difference
in run-time performance is due to the fact that Delta-
net incrementally maintains flow information of every
packet in the entire network, whereas Veriflow recom-

744 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

|| Berkeley |

INET | RF 1755 | RF 3257 | RF 6461 | Airtel 1 | Airtel 2 | 4Switch

Total number of atoms 668,520
Median rule processing time 4us
Average rule processing time Sus
Percentage < 250 us 99.9%

563,480 | 726,535 | 726,535 | 726,535 2,799 2,799 | 443,443
Sus 4us Sus Sus 2us lus 4us

41 us 11us 22 us 20us 3us 3us Sus
98.5% 99.8% 99.6% 99.7% 99.9% 99.9% 99.9%

Table 3: Experimental results using Delta-net, measuring rule insertions and removals.

putes the forwarding graph for each affected equivalence

incomplete average query time r as ‘17,

We find that

class. What is remarkable is that Delta-net achieves this
extra bookkeeping without limiting the checking of indi-
vidual network updates (see previous paragraph).

4.3.2 Beyond network updates

We show how Delta-net can go beyond traditional data
plane checks per network update. To do so, we con-
sider the following question, which was previously posed
by [27], as an exemplar of a “what if” query: What is the
fate of packets that are using a link that fails? We inter-
pret their question to mean that Veriflow has to construct
forwarding graphs for all packet equivalence classes that
are affected by a link failure. This is known to be a diffi-
cult task for Veriflow since it requires the construction of
at least a hundredfold more forwarding graphs compared
to checking a rule insertion or removal (§ 4.3.1). Here,
our experiment quantifies how much Delta-net gains by
incrementally transforming a single-edge labelled graph
instead of constructing multiple forwarding graphs.

For our experiments, we generate a consistent data
plane from all the rule insertions in the five synthetic and
4Switch data sets in Table 2, respectively. And in the
case of Airtel, we extract a consistent data plane snapshot
from ONOS. The total number of resulting rules in each
data plane is shown in the second column of Table 4. For
all of these seven data planes, we answer which packets
and parts of the network are affected by a hypothetical
link failure. The verification task therefore is to represent
via one or multiple graphs all flows of packets through
the network that would be affected when a link fails. The
third column in Table 2 (number of links) corresponds to
the number of queries we pose, except for the new Airtel
data plane snapshot where we pose 158 queries.

Since Delta-net already maintains network-wide
packet flow information, we expect it to perform better
than Veriflow-RI.* The third and fourth column in Ta-
ble 4 quantify this performance gain by showing the av-
erage query time of Veriflow-RI and Delta-net, respec-
tively. On three data planes, Veriflow-RI exceeds the
total run-time limit of 24 hours, whereas the longest
running Delta-net experiment takes a total of 3.2 hours.
When these time outs in Veriflow-RI occur, we report its

“4Recall from previous experiments (§ 4.3.1), Delta-net’s extra book-
keeping poses no performance problems for checking network updates.

Delta-net is usually more than 10x faster than Veriflow-
RI (even if Delta-net checks for forwarding loops, as re-
ported in the last column). Since Delta-net is very fast
in maintaining the flow of packets, the difference be-
tween the last two columns in Table 4 shows that Delta-
net’s processing time is dominated by the property check
(here, forwarding loops). In contrast to Delta-net, Ver-
iflow’s processing time is reportedly dominated by the
construction of forwarding graphs [27].

5 Related work

In this section, we discuss related works in the literature.

Stateful networks. One of the earliest stateful net-
work analysis techniques [9] proposes symbolic execu-
tion of OpenFlow applications using a simplified model
of OpenFlow network switches. VeriCon [5] uses an
SMT solver to automatically prove the correctness of
simple SDN controllers. FlowTest [15] investigates rele-
vant Al planning techniques. SymNet [50] symbolically
analyzes stateful middleboxes through additional fields
in the packet header. Unlike [9], BUZZ [16] adopts
a symbolic model-based testing strategy [52] as a way
to capture the state of forwarding devices. Most re-
cent complexity results [53] are the first step towards a
taxonomy of decision procedures in this research area.
Real-time network verification techniques (see next para-
graph) can be extended to check safety properties that
depend on the state of the SDN controller [6].

Stateless networks. The seminal work of Xie et
al. [54] introduces stateless data plane checking to which
Delta-net belongs. The research that emerged from [54]
can be broadly divided into offline [57, 2, 24, 40, 1, 34,

Data plane Rules Average query time (ms)
Veriflow-RI ‘ Delta-net ‘ +Loops
Berkeley 12,817,902 3,073.0 4.7 93.3
INET 124,733,556 | 29,117.5" 0.7 | 2,888.6
RF 1755 33,732,869 8,100.6 13 897.4
RF 3257 74,492,920 | 17,645.3 1.0 2.6
RF 6461 75,005,738 | 17,594.5% 04 0.4
Airtel 38,100 4.5 0.04 2.3
4Switch 1,120,000 433.4 211 128.1

Table 4: Experimental results for “what if” link failures.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation

745

48, 26, 35, 17, 33] and online [27, 25, 55] approaches.
The offline approaches encode the problem into Dat-
alog [17, 33] or logic formulas that can be checked
for satisfiability by constructing a Binary Decision Di-
agram [57, 2] or calling an SAT/SMT solver [24, 40,
1, 34, 48, 23, 35]. By contrast, all modern online ap-
proaches [27, 25, 55] partition in some way the set
of all network packets. In particular, the partitioning
scheme described in [26], on which [27] is based, dy-
namically computes equivalence classes by propagat-
ing ternary strings in the network, whereas more recent
work [25, 55, 8], including ours, pre-compute network
packet partitions prior to checking a verification con-
dition. Our work could be used in conjunction with
network symmetry reduction techniques [44]. Custom
network abstractions can be very useful for restricted
cases [20]. While potentially less efficient, our work
is more general than [20], and most closely related
to [27, 10, 25, 55, 59, 8], which we discuss in turn. The
complexity of the most prominent of these works, includ-
ing Veriflow [27] and NetPlumber [25], is summarized in
work [32, Section II] that is independent from ours.

Veriflow [27] constructs multiple forwarding graphs
that may significantly overlap (§ 2.1). Our algorithm
exploits this overlapping and transforms a single edge-
labelled graph instead. Moreover, Veriflow relies on the
fact that overlapping IP prefixes can be efficiently found
using a trie data structure [27]. By contrast, atoms are
generally not expressible as a single IP prefix. For exam-
ple, atom [0 : 10) in Figure 5 can only be represented by
the union of at least two IP prefixes.

Chen [10] shows how to optimize Veriflow [27], while
retaining its core algorithm. Similar to [10], we represent
IP prefixes in a balanced binary search tree. Unlike [10],
however, our representation serves as a built-in index of
half-closed intervals through which we address funda-
mental limitations of Veriflow (§ 2.1).

NetPlumber [25] incrementally creates a graph that, in
the worst case, consists of R2 edges where R is the num-
ber of rules in the network. In contrast to NetPlumber,
Delta-net maintains a graph whose size is proportional
to the number of links in the network, which is usually
much smaller than R. Since the number of atoms tends
to be much less than R (§ 4), Delta-net has an asymptoti-
cally smaller memory footprint than NetPlumber.

Yang and Lam [55] propose a more compact represen-
tation of forwarding graphs that reduces the task of data
plane checking to intersecting sets of integers. For the
restricted, but common, case of checking IP forwarding
rules, our algorithm is asymptotically faster than theirs.
Our algorithm, however, does not find the unique mini-
mal number of packet equivalence classes, cf. [55].

More recent work for stateless and non-mutating data
plane verification [8] encodes a canonical form of ternary

bit-vectors, and shows on small data sets with a few thou-
sand rules that their encoding performs better than Yang
and Lam [55]’s algorithm. It would be interesting to re-
peat these experiments on our, significantly larger, data
sets.

Finally, Libra [59] may be used for incrementally
checking network updates, but it requires an in-memory
“streaming” MapReduce run-time, whereas Delta-net
avoids the overheads of such a distributed system. Since
Libra’s partitioning scheme into disjoint subnets is or-
thogonal to our algorithm, however, it would be interest-
ing to leverage both ideas together in future work.

6 Concluding remarks

In this paper, we presented Delta-net (§ 3), a new data
plane checker that is inspired by program analysis tech-
niques in the sense that it automatically refines a lattice-
theoretical abstract domain to precisely represent the
flows of all packets in the entire network. We showed
that this matters from a theoretical and practical point
of view: Delta-net is asymptotically faster and/or more
space efficient than prior work [27, 25, 55], and its new
design facilitates Datalog-style use cases [17, 33] for
which the transitive closure of many or all packet flows
needs to be efficiently computed (§ 3.3). In addition,
Delta-net can be used to analyze catastrophic network
events, such as link failures, for which current incremen-
tal techniques are less effective. To show this experi-
mentally (§ 4), we ran an adaptation of the link failure
experiments by Khurshid et al. [27] on data sets that are
significantly larger than previous ones. For this exem-
plar “what if” scenario, we found that Delta-net is sev-
eral orders of magnitude faster than the state-of-the-art
(Table 4). Our work therefore opens up interesting new
research directions, including testing scenarios under dif-
ferent combinations of failures, which have been shown
to be effective for distributed systems, e.g. [56].

Future work. One advantage of Delta-net is that its
main loops over atoms in Algorithm 1 and 2 are highly
parallelizable. In addition, (stateless) packet modifica-
tion of IP prefixes can be easily supported without sub-
stantial changes to the data structures by augmenting the
edge-labelled graph with the necessary information on
how atoms are transformed along hops. We are also
studying an improved version of Delta-net that avoids the
quadratic space complexity by exploiting properties of IP
prefixes. Finally, since a naive implementation of Delta-
net is exponential in the number of range-based packet
header fields (as is Veriflow’s [32, Section II]), it would
be interesting to guide further developments into multi-
range support in higher dimensions using the ‘overlap-
ping degree’ among rules [32].

746 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Acknowledgements.

‘We would like to thank Sho Shimizu,

Pingping Lin and members of the ONOS developer mailing list
for technical support. We thank Rao Palacharla, Nate Foster
and Mina Tahmasbi for their invaluable feedback on an early
draft of this paper. We also would like to thank Ratul Mahajan
and the anonymous reviewers of NSDI for their detailed com-
ments and helpful suggestions.

References

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

AL-SHAER, E., AND AL-HAJ, S. FlowChecker: Configuration
analysis and verification of federated OpenFlow infrastructures.
In SafeConfig (2010).

AL-SHAER, E., MARRERO, W., EL-ATAWY, A., AND EL-
BADAWI, K. Network configuration in a box: towards end-to-
end verification of network reachability and security. In ICNP
(2009).

ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,
KOZEN, D., SCHLESINGER, C., AND WALKER, D. NetKAT:
Semantic foundations for networks. In POPL (2014).

BAILIS, P., AND KINGSBURY, K. The network is reliable. Queue
12,7 (July 2014), 20:20-20:32.

BALL, T., BJORNER, N., GEMBER, A., ITZHAKY, S., KAR-
BYSHEV, A., SAGIV, M., SCHAPIRA, M., AND VALADARSKY,
A. VeriCon: Towards verifying controller programs in software-
defined networks. In PLDI (2014).

BECKETT, R., ZoU, X. K., ZHANG, S., MALIK, S., REXFORD,
J., AND WALKER, D. An assertion language for debugging SDN
applications. In HotSDN (2014).

BERDE, P., GEROLA, M., HARrT, J., HIGUCHI, Y.,
KoOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B., RA-
DOSLAVOV, P., SNOW, W., AND PARULKAR, G. ONOS: To-
wards an open, distributed SDN OS. In HotSDN (2014).

BI@RNER, N., JUNIWAL, G., MAHAJAN, R., SESHIA, S. A.,
AND VARGHESE, G. ddNF: An efficient data structure for header
spaces. In HVC (2016).

CANINI, M., VENZANO, D., PERESINI, P., KOSTIC, D., AND
REXFORD, J. A NICE way to test openflow applications. In
NSDI (2012).

CHEN, Z. Veriflow system analysis and optimization. Master’s
thesis, University of Illinois Urbana-Champaign, 2014.

CousorT, P., AND COUSOT, R. Systematic design of program
analysis frameworks. In POPL (1979).

DAVEY, B. A., AND PRIESTLEY, H. A. Introduction to Lattices
and Order, second ed. Cambridge University Press, 2002.

DEAN, J. Underneath the covers at Google, 2008. Google 1/0.
DELTA-NET. https://github.com/delta-net/datasets.

FAayAz, S. K., AND SEKAR, V. Testing stateful and dynamic
data planes with FlowTest. In HotSDN (2014).

Fayaz, S. K., YU, T., TOBIOKA, Y., CHAKI, S., AND SEKAR,
V. BUZZ: Testing context-dependent policies in stateful net-
works. In NSDI (2016).

FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN,
M., GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. A
general approach to network configuration analysis. In NSDI
(2015).

FOSTER, N., KOZEN, D., MILANO, M., SILVA, A., AND
THOMPSON, L. A coalgebraic decision procedure for NetKAT.
In POPL (2015).

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

FRENETIC TOPOLOGIES. https://github.com/
frenetic-lang/pyretic/tree/master/pyretic/
evaluations. Tree ac942315136e.

GEMBER-JACOBSON, A., VISWANATHAN, R., AKELLA, A.,
AND MAHAJAN, R. Fast control plane analysis using an abstract
representation. In SIGCOMM (2016).

HARTERT, R., VISSICCHIO, S., SCHAUS, P., BONAVENTURE,
O., FILSFILS, C., TELKAMP, T., AND FRANCOIS, P. A declar-
ative and expressive approach to control forwarding paths in
carrier-grade networks. In SIGCOMM (2015).

ISO. International Standard ISO/IEC 14882:2014(E) Program-
ming Language C++. 2014.

JAYARAMAN, K., BIGRNER, N., OUTHRED, G., AND KAUF-
MAN, C. Automated analysis and debugging of network connec-
tivity policies. Tech. rep., Microsoft Research, 2014.

JEFFREY, A., AND SAMAK, T. Model checking firewall policy
configurations. In POLICY (2009).

KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G.,
MCKEOWN, N., AND WHYTE, S. Real time network policy
checking using header space analysis. In NSDI (2013).

KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header
space analysis: Static checking for networks. In NSDI (2012).

KHURSHID, A., ZoU, X., ZHOU, W., CAESAR, M., AND GOD-
FREY, P. B. VeriFlow: Verifying network-wide invariants in real
time. In NSDI (2013).

KNIGHT, S., NGUYEN, H., FALKNER, N., BOWDEN, R., AND
ROUGHAN, M. The internet topology zoo. IEEE Journal on
Selected Areas in Communications 29,9 (Oct. 2011), 1765-1775.

LANTZ, B., HELLER, B., AND MCKEOWN, N. A network in
a laptop: Rapid prototyping for software-defined networks. In
SIGCOMM Workshop on Hot Topics in Networks (2010).

LIBRA. https://github.com/jvimal/libra-data.

LiN, P., HART, J., KRISHNASWAMY, U., MURAKAMI, T.,
KOBAYASHI, M., AL-SHABIBI, A., WANG, K.-C., AND BI,
J. Seamless interworking of SDN and IP. In SIGCOMM (2013).

LINGUAGLOSSA, L. Two challenges of Software Networking:
Name-based Forwarding and Table Verification. PhD thesis, Paris
Diderot University, France, 2016.

LoPES, N. P., BJORNER, N., GODEFROID, P., JAYARAMAN,
K., AND VARGHESE, G. Checking beliefs in dynamic networks.
In NSDI (2015).

MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GOD-
FREY, P. B., AND KING, S. T. Debugging the data plane with
Anteater. In SIGCOMM (2011).

MALDONADO-LOPEZ, F. A., CALLE, E., AND DONOSO, Y.
Detection and prevention of firewall-rule conflicts on software-
defined networking. In RNDM (2015).

MCGEER, R. Verification of switching network properties using
satisfiability. In ICC (2012).

MCKEOWN, N. How SDN will shape networking, 2011. Open
Networking Summit.

McKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review
38, 2 (Mar. 2008), 69-74.

NARAYANA, S., TAHMASBI, M., REXFORD, J., AND WALKER,
D. Compiling path queries. In NSDI (2016).

NELSON, T., BARRATT, C., DOUGHERTY, D. J., FISLER, K.,
AND KRISHNAMURTHI, S. The Margrave tool for firewall anal-
ysis. In LISA (2010).

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation

747

https://github.com/delta-net/datasets
https://github.com/frenetic-lang/pyretic/tree/master/pyretic/evaluations
https://github.com/frenetic-lang/pyretic/tree/master/pyretic/evaluations
https://github.com/frenetic-lang/pyretic/tree/master/pyretic/evaluations
https://github.com/jvimal/libra-data

[41] NUNES, B. A. A., MENDONCA, M., NGUYEN, X. N.,
OBRACZKA, K., AND TURLETTI, T. A survey of software-
defined networking: Past, present, and future of programmable
networks. IEEE Communications Surveys Tutorials 16, 3 (2014),
1617-1634.

[42] ONOS DEPLOYMENTS. https://wiki.onosproject.org/

display/0ONOS/Global+SDN+Deployment+Powered+by+
ONOS.

[43] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E. J., ZHOU,
A., RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J.,
SHELAR, P., AMIDON, K., AND CASADO, M. The design and
implementation of open vswitch. In NSDI (2015).

[44] PLOTKIN, G. D., BIJ@RNER, N., LOPES, N. P., Ry-
BALCHENKO, A., AND VARGHESE, G. Scaling network veri-
fication using symmetry and surgery. In POPL (2016).

[45] QUAGGA. http://www.nongnu.org/quagga/.
[46] ROUTE VIEWS. http://www.routeviews.org/.

[47] SDN-IP APPLICATION. https://wiki.onosproject.org/
display/0ONOS/SDN-IP.
[48] SON, S., SHIN, S., YEGNESWARAN, V., PORRAS, P. A., AND

GU, G. Model checking invariant security properties in Open-
Flow. In ICC (2013).

[49] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring
ISP topologies with Rocketfuel. In SIGCOMM (2002).

[50] STOENEScu, R., Poprovici, M., NEGREANU, L., AND
RaAIcIu, C. SymNet: Scalable symbolic execution for modern
networks. In SIGCOMM (2016).

[51] TAHMASBI, M. personal communication.

[52] UTTING, M., PRETSCHNER, A., AND LEGEARD, B. A taxon-
omy of model-based testing approaches. Software Testing, Verifi-
cation & Reliability 22, 5 (Aug. 2012).

[53] VELNER, Y., ALPERNAS, K., PANDA, A., RABINOVICH, A.,
SAGIV, M., SHENKER, S., AND SHOHAM, S. Some complexity
results for stateful network verification. In TACAS (2016).

[54] XIE, G. G., ZHANM, J., MALTZ, D. A., ZHANG, H., GREEN-
BERG, A., HIALMTYSSON, G., AND REXFORD, J. On static
reachability analysis of ip networks. In INFOCOM (2005).

[55] YANG, H., AND LAM, S. S. Real-time verification of network
properties using atomic predicates. In ICNP (2013).

[56] YUAN, D., Luo, Y., ZHUANG, X., RODRIGUES, G. R., ZHAO,
X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Simple test-
ing can prevent most critical failures: An analysis of production
failures in distributed data-intensive systems. In OSDI (2014).

[571 YUuaN, L., Mal, J., Su, Z., CHEN, H., CHUAH, C.-N., AND
MOHAPATRA, P. FIREMAN: A toolkit for firewall modeling and
analysis. In SP (2006).

[58] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN,
N. Automatic test packet generation. In CoNEXT (2012).

[59] ZENG, H., ZHANG, S., YE, F., JEYAKUMAR, V., Ju, M., L1U,
J., MCKEOWN, N., AND VAHDAT, A. Libra: Divide and con-

quer to verify forwarding tables in huge networks. In NSDI
(2014).

A Illustration of Boolean lattice

Delta-net is based on ideas from lattice theory.> In particu-
lar, Delta-net leverages the concept of atoms, a form of mutu-
ally disjoint ranges that make it possible to analyze all Boolean

SFor interested readers, a good introduction to lattice theory, whose
applications in computer science are pervasive, can be found in [12]

T={0:16)}
{[0:10),[12: 16)} {[10: 16)}

S S

12)}
10)} {[10:12)} {[12:16)}

\/

Figure 9: Boolean lattice induced by the atoms (bold)
in Figure 5, assuming 4-bit numbers for simplicity.

{[0:
{[0:

combinations of IP prefix forwarding rules in a network. The
fact that atoms induce a Boolean lattice is illustrated by the
Hasse diagram [12] in Figure 9 where atoms (depicted in bold)
correspond to g, o and o in Figure 5, respectively.

B Proof of complexity analysis

In this appendix, we sketch the proof of the asymptotic worst-
case time complexity of Algorithm 1 and 2.

Proof of Theorem 1. We analyze INSERT_RULE. Each atom
split (line 2-9) requires copying the owner information from
an existing atom to a newly created atom. For insertion of R
rules, resulting in K atoms, this requires O(RK) steps in the
worst-case. In each insertion, the adjustment of labels and
retrieval of the balanced binary search tree (BST) (line 12)
are amortized constant-time operations per atom. Inserting
each rule into the BST and finding the highest-priority rule per
atom (line 14) are O(logM). By the loop (line 10-23), we get
O(RK + RKlogM) = O(RKlogM), concluding the proof. A
similar argument proves the claim for REMOVE_RULE. O

C Comparison to previous data sets

In this appendix, we discuss how our data sets compare to pre-
vious ones used in the experimental evaluation of Veriflow [27].

In particular, it is natural to ask how our RF 1755 data set
in Table 2 compares to the one used in a previous Veriflow ex-
periment [27], which was constructed from 5 million BGP RIP
entries and by ‘replaying’ 90,000 BGP updates. While the re-
sulting total number of IP prefix rules in the original RF 1755
data set is not reported, the authors of the Veriflow paper note
that “[t]he largest number of ECs (equivalence classes) affected
by a single rule was 574; the largest verification latency was
159.2ms due to an update affecting 511 ECs.” For our experi-
ments, we expect this number to be different, since we had to
generate a new data set.

Running Veriflow-RI (§ 4.3.1) on our RF 1755 data set, we
find that the maximum number of affected ECs on rule inser-
tions is 319,681, which is significantly larger than the original
experimental evaluation of Veriflow [27].

748 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://wiki.onosproject.org/display/ONOS/Global+SDN+Deployment+Powered+by+ONOS
https://wiki.onosproject.org/display/ONOS/Global+SDN+Deployment+Powered+by+ONOS
https://wiki.onosproject.org/display/ONOS/Global+SDN+Deployment+Powered+by+ONOS
http://www.nongnu.org/quagga/
http://www.routeviews.org/
https://wiki.onosproject.org/display/ONOS/SDN-IP
https://wiki.onosproject.org/display/ONOS/SDN-IP

Data set | Memory usage (MB)

Veriflow-RI ‘ Delta-net
Berkeley 1,089 6,208
INET 9,776 | 63,563
RF 1755 2,713 16,937
RF 3257 5,882 | 40,716
RF 6461 5,920 | 39,481
Airtel 1 7 61
Airtel 2 9 74
4Switch 154 785

Table 5: Memory usage of Delta-net and Veriflow-RI.

D Memory usage

In this appendix, we report the detailed memory consumption
of Delta-net (§ 3) and Veriflow-RI (§ 4.3.1) using our eight data
sets (§ 4.2, see Table 2).

Table 5 quantifies the memory usage of Delta-net and
Veriflow-RI. In all cases, Delta-net consumes between 5 and
7 times more space than Veriflow-RI. This increase in mem-
ory consumption is offset, however, by the fact that Delta-net
keeps track of the forwarding behaviour of all packets, and as a
result can check properties that Veriflow-RI cannot. Neverthe-
less, as discussed for future work (§ 5), we are actively working
on asymptotically reducing the memory consumption of Delta-
net.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation

749

