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Abstract
Tor has become the prime example for anonymous com-
munication systems. With increasing popularity, though,
Tor is also faced with increasing load. In this paper,
we tackle one of the fundamental problems in today’s
anonymity networks: network congestion. We show that
the current Tor design is not able to adjust the load ap-
propriately, and we argue that finding good solutions to
this problem is hard for anonymity overlays in general.
This is due to the long end-to-end delay in such networks,
combined with limitations on the allowable feedback due
to anonymity requirements. We introduce a design for
a tailored transport protocol. It combines latency-based
congestion control per overlay hop with a backpressure-
based flow control mechanism for inter-hop signalling.
The resulting overlay is able to react locally and thus
rapidly to varying network conditions. It allocates avail-
able resources more evenly than the current Tor design;
this is beneficial in terms of both fairness and anonymity.
We show that it yields superior performance and im-
proved fairness—between circuits, and also between the
anonymity overlay and concurrent applications.

1 Introduction
Tor [15] is currently the first choice to preserve online
privacy. Implementing what has become the standard ar-
chitecture for low-latency anonymity services, it routes
application-layer data, packaged into equally-sized cells,
along a cryptographically secured virtual circuit through
an overlay network. Clients build a circuit by selecting
three relays (an entry, a middle, and an exit) and estab-
lishing cryptographic key material with each of them. A
circuit can carry data from one or more application-layer
streams. In every overlay hop, one “skin” of encryption
is added (or removed, depending on the direction of com-
munication). Intermediate relays are neither able to read
the cell contents nor to link streams to a specific source
and destination at the same time. This is the foundation
for achieving anonymity.

Unfortunately, the current overlay design faces major
performance issues. Previous work on improving this
more often than not focused on isolated symptoms: for
instance, cells that dwell for a too long time in socket
buffers [22, 37], a too rigid end-to-end sliding window
mechanism [6, 46], security threats due to unbounded
buffer growth [25], or unfairness effects caused by dif-
ferent traffic patterns [5, 24, 42]. We note that all of the
named problems boil down to unsuitably chosen or un-
favorably parameterized algorithms for congestion con-
trol, scheduling and buffer management. While this
has been pointed out before [37, 45], a consistent and
superior overall protocol design—beyond treating the
symptoms—is still missing.

Designing such a protocol raises interesting chal-
lenges, because the requirements in anonymity overlays
deviate in several important points from those of con-
gestion control in the general Internet. First, anonymity
demands that relays used along one circuit should be lo-
cated in different legislations and autonomous systems.
This implies typically long end-to-end latencies. Con-
sequently, end-to-end feedback loops (typically stretch-
ing over three overlay hops) are necessarily slow. At the
same time, though, relays in an anonymity network are
aware of individual circuits, because they perform per-
circuit cryptography. Therefore, stateful processing per
circuit at relays is easily possible, also for the purpose
of congestion/flow control. This motivates a protocol de-
sign that leverages active participation of the relays.

Second, anonymity demands that control feedback
must not reveal user identities, neither directly nor in-
directly. Therefore, feedback—especially end-to-end-
feedback—must be limited and well considered. This
is seen as a reason why reliability should not be imple-
mented end-to-end, but instead hop-wise; this matches
Tor’s current approach.

Third, relay operators donate resources, in particular
bandwidth, to the anonymity overlay. The anonymity
traffic typically competes with other traffic on the dona-
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tor’s network. To incentivize relay operation, anonymity
traffic should therefore not be overly aggressive.

Other desirable properties include the standard set
of requirements in networks with multiple independent
users, including, in particular, good resource utilization,
fairness between users/circuits and reasonable latencies.

Tor currently multiplexes all circuits between a con-
secutive pair of relays into one joint TCP connection.
Circuits carry application-layer data, not transport-layer
or network-layer packets; that is, the anonymized TCP
connection to the destination server is established by the
Tor exit relay, where the payload byte stream is handed
over from the circuit to this connection and vice versa.
In each relay, cells arriving over one of the inter-relay
TCP connections are demultiplexed, kept in per-circuit
queues, and then multiplexed again, according to the next
outgoing connection for the respective circuits. This de-
sign is complemented with an end-to-end sliding window
mechanism with a fixed, constant window size. Due to
its fixed size, this window, quite obviously, lacks adaptiv-
ity. As a result, excessive numbers of cells often pile up
in the per-circuit queues and/or in the socket buffers of
a relay—that is, in the “gap” between the incoming and
outgoing TCP connections. The large number of inter-
relay standard TCP connections furthermore results in
aggressive aggregate traffic, and thus causes unfairness
towards other applications in the same network. Last but
not least, multiplexing varying numbers of circuits into
one joint TCP connection is also the root of substantial
inter-circuit unfairness within Tor [44, 45].

In this paper we propose a new design, which we call
BackTap: Backpressure-based Transport Protocol. With
BackTap, we replace Tor’s end-to-end sliding window
by a hop-by-hop backpressure algorithm between relays.
Through per-hop flow control on circuit granularity, we
allow the upstream node to control its sending behav-
ior according to the variations of the queue size in the
downstream node. Semantically, the employed feedback
implies “I forwarded a cell”. The circuit queue in the
downstream relay is therefore, in essence, perceived as
nothing but one of the buffers along the (underlay) net-
work path between the outgoing side of the local relay
and the outgoing side of the next relay. This includes
circuit queues and socket buffers into the per-hop con-
gestion control feedback loop, yielding responsiveness
and adaptivity. At the same time, it couples the feedback
loops of consecutive hops along a circuit, thereby closing
the above-mentioned gap. The result is backpressure that
propagates along the circuit towards the source if a bot-
tleneck is encountered, because each local control loop
will strive to keep its “own” queue short, while its out-
flow is governed by the next control loop downstream.

We stick to Tor’s paradigm of hop-by-hop reliability,
and also to Tor’s design decision to tunnel application

layer data. However, we implement it in a slightly differ-
ent way: relays in our architecture have a choice whether
to accept or to drop a cell on a per-circuit basis. To
this end, congestion control and reliability decisions are
shifted to the overlay layer, instead of using TCP be-
tween relays. This architecture also avoids reliability-
related security flaws as they have been found in Tor [25].

We also do not use a fixed window size, neither end-to-
end nor per hop. Instead, we adjust the per-hop window
size using an appropriately adapted delay-based conges-
tion control algorithm. In previous applications of delay-
based congestion control, first and foremost in TCP Ve-
gas [11], its properties have often been seen as a weak-
ness [1,12]: it is less aggressive than its loss-based coun-
terparts and therefore tends to be disadvantaged in com-
petitive situations. In our approach, this weakness be-
comes a strength, because the aggressiveness of aggre-
gate Tor traffic can be a significant problem otherwise.

BackTap, including all congestion control and reli-
ability mechanisms, can be implemented on the over-
lay nodes’ application layer, based on UDP transport.
Consequently, lower-layer changes are not required. A
simulation-based evaluation confirms the benefits of the
proposed architecture and demonstrates a huge relief of
the network regarding congestion.

Our key contributions are (1) identifying the “feed-
back gap” as the primary cause of Tor’s performance
problems, (2) a novel approach to flow control for envi-
ronments where data is forwarded over multiple overlay
hops, (3) a hop-by-hop backpressure design that avoids
network congestion with quick, local adjustments and
is therefore well suited to long-delay overlay paths, and
(4) an in-depth evaluation including a simulation frame-
work for Tor with a specific focus on network aspects.

The remainder of this paper is structured as follows.
First, we review related work in Section 2. In Section 3,
we discuss the problems and the design space and de-
velop the transport protocol. In Section 4, we evalu-
ate the proposed protocol, before we conclude this paper
with a summary in Section 5.

2 Related Work
Since Tor’s introduction more than a decade ago [15], it
has received significant attention in the research commu-
nity (and beyond). For obvious reasons, this attention has
focused on security and privacy aspects. In recent years,
though, performance aspects of Internet anonymity in
general and the awareness for network congestion issues
in particular have become part of the research agenda.

Performance enhancements have been proposed, for
instance, by considering an alternative circuit selection
algorithm [3, 7, 47] or through an adaptive prioritization
of circuits [5, 24, 42]. These research directions are or-
thogonal to our approach and remain applicable.

2
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The authors of [22, 37] find that cells reside in socket
buffers for a long time. In [22], it is suggested to fix
this by actively querying all sockets before blindly writ-
ing to a socket. Thereby the majority of queued cells is
kept in the application layer, so that scheduling on circuit
granularity becomes possible with a smaller backlog be-
tween data leaving the application and leaving the host.
This follows the general intentions of [44,45]. However,
it does not solve the fundamental problem of excessive
standing queues due to circuit windows that often far
exceed the end-to-end bandwidth-delay product—it only
moves these queues to a different place.

Transport-related modifications for Tor have been con-
sidered before [6, 8, 17, 27, 33, 37, 46]. A comparative
summary of most approaches is provided in [31]. Even
though each proposal improves individual aspects, most
of them [8, 17, 27, 33, 37] still use the same sliding win-
dow mechanism and hence inherit the exact same issues.

As observed by [37], a missing TCP segment carry-
ing data from one circuit will also temporarily stall any
other circuit on the same connection until the missing
segment has been recovered. This results in head-of-line
blocking upon TCP segment losses. The manifest rem-
edy is to use separate (loss-based) TCP connections per
circuit [8, 37]. However, as we point out in [45], such
a modification would largely increase the (already very
high) aggressiveness of the traffic, due to the higher num-
ber of parallel loss-based TCP connections. It also does
not overcome the fundamental problems with the end-to-
end window mechanism and the corresponding feedback
gap. In this work, we tackle all these issues.

Only [46] and [6] get rid of Tor’s sliding window. The
author of [46] builds upon UDP to tunnel an end-to-
end TCP connection through the entire circuit. However,
while this may be considered a very clean design, it soon
comes to its limits because of the long round trip times
of a full circuit, which impairs the responsiveness of both
reliability and congestion control. Using complex proto-
cols like TCP end-to-end also come at a significant risk
of leaking identifying attributes and providing a finger-
print (e. g., via the source port or specific combinations
of TCP options), so that end-to-end designs are generally
not favorable [8, 45].

The authors of [6] substitute the end-to-end window
by a hop-by-hop window, with a scheme adapted from
congestion control in ATM networks. However, head-
of-line blockings and the choice of window parameters
remain open issues. Virtually all transport-related ap-
proaches continue to use standard TCP with its built-in
congestion control. We instead develop a tailored trans-
port design for anonymity overlays, which eliminates the
need for an end-to-end window.

Looking beyond the area of anonymity overlays, the
design of a Tor relay resembles a Split TCP setting as

it also occurs in performance-enhancing proxies (PEPs):
data is forwarded from an incoming to an outgoing TCP
connection, linked by an application-layer queue. A
survey on PEPs, including case studies, can be found
in [10]. Split TCP was originally developed in the con-
text of wireless communication and satellites, but nowa-
days also finds use in content distribution networks [35].
It basically subdivides an end-to-end TCP connection
into a sequence of typically two concatenated connec-
tions, where a middlebox (e. g., a wireless access point
or a router) acts as PEP.

By terminating the connection at the middlebox and
acknowledging data before the actual destination re-
ceived it, Split TCP, in fact, violates TCP’s end-to-end
semantics. If desired, this can be avoided by acknowl-
edging data upstream only after it has been acknowl-
edged by the downstream node [48]. In the context
of anonymity networks, such a strict adherence to TCP
semantics is generally considered unnecessary, though
(just like for most practically deployed PEPs). Since
Split TCP aims for maximizing the utilization of link ca-
pacities, PEPs buffer data and hence congestion might
become a problem. As it has been noted before [30],
using Split TCP in an overlay network poses particular
challenges in this and many other regards. Therefore,
even though we focus on the case of anonymity net-
works, some of our results may also be applied in the
area of PEPs and for other overlay designs.

3 The BackTap Design
BackTap performs reliability, in-order delivery and flow
control on circuit granularity on the application layer.
It can be encapsulated in UDP transport, so that there
is no need for modifications to the operating system;
of course, a transport-layer implementation of the same
concepts in the kernel is, in principle, likewise conceiv-
able, but not pursued here. In fact, the approach to tun-
nel tailored transport protocols has become more and
more widespread in recent years, the likely best-known
examples are µTP [41] as used in BitTorrent [41] and
QUIC [18] designed for HTTP/2. UDP transport can be
combined with DTLS [38] or IPsec to provide message
integrity and confidentiality, just like Tor currently uses
TLS to secure its TCP-based overlay links.

In this section, we motivate and present the building
blocks of our transport approach in detail. In order to
emphasize the changes that we propose and to point out
the major design challenges in anonymity networks, we
use the current Tor design as a reference architecture
throughout the discussion.

3.1 Tor’s Feedback Gap
Tor implements another instance of data forwarding and
transport functionality on the application layer, i. e., on

3
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Figure 1: Overview of the layered Tor architecture: re-
lays build a TCP-based overlay, multiplexing circuits,
while using an end-to-end sliding window.

top of the existing Internet protocol stack. For this rea-
son, overlay mechanisms will interact with the behav-
ior of underlay protocols and the properties of underlay
network paths. This is hardly taken into account in the
current design of anonymity overlays in general and of
Tor in particular. There are multiple cases where differ-
ent mechanisms on both layers have overlapping aims.
Figure 1 illustrates the various layers of the Tor architec-
ture. The prime example is Tor’s end-to-end (E2E) slid-
ing window mechanism between a client’s Tor software
and an exit relay: it will obviously interact with TCP con-
gestion and flow control, which is used between adjacent
overlay nodes. This is also at the heart of the feedback
gap in Tor’s current design, so that the interplay of these
two mechanisms is worth a closer look. This will moti-
vate the key design decisions behind our approach.

Recall, Tor relays forward cells according to the cir-
cuit switching principle, but the individual relay does not
know about the full path of the circuit. Leaving cryp-
tography aside, relays receive cells over TCP, enqueue
them to the respective outgoing circuit queue and then
forward them to the downstream node, again via TCP.
Between any two adjacent relays, circuits share the same
TCP connection. The number of cells in flight for any
given circuit is limited by an end-to-end sliding window
with a fixed size of 1000 cells (= 512 kB of data).

A node on the receiving side of a Tor circuit signals to
send more data by issuing a circuit-level cell for
every 100 delivered cells. Receiving such a in-
crements the circuit’s transmission window by 100. An
additional, analogous mechanism exists on the stream
level: a stream is Tor’s notion for the data carried through
a circuit, belonging to one anonymized TCP session.
Only the end points of a circuit can associate cells with
a stream. Intermediate relays, i. e., entry and middle,

only differentiate circuits. The stream-level window’s
fixed size is 500 cells, and stream-level s worth
50 cells each are used. Due to the end-to-end sliding
window there will be no more than 500 cells in flight
on a stream, which is capped by 1000 cells in sum on
the circuit level. 1000 cells, though, can be significantly
more than the bandwidth-delay product of a circuit, so
that long queues build up often: excessive queuing is one
of the major causes for huge delays, which Tor painfully
experiences [13, 27]. In addition, long queues give im-
plicit preference to bulk flows which constantly keep the
queue filled, when compared to more interactive flows,
like for instance web traffic.

Even if the end-to-end window size were not fixed (a
possible modification which, of course, has been taken
into consideration before [6]), the end-to-end delay of
a circuit is too high to dynamically adjust it with rea-
sonable responsiveness. Given the specific situation in
anonymity overlays, it is fortunately also not necessary to
find an end-to-end solution: because intermediate nodes
are aware of individual circuits anyway, relay-supported
hop-by-hop feedback with local readjustments based on
perceived local congestion is a reasonable way out.

What happens, now, if the flow control and congestion
control mechanisms of the TCP connections between re-
lays come into play? For the inflight traffic permitted by
the end-to-end sliding window, TCP will determine the
local data flow. Congestion control will adapt to the un-
derlay network path between adjacent relays. Flow con-
trol will specifically depend on the receiving relay’s pol-
icy for reading from sockets.

This is where the feedback gap appears, which we il-
lustrate in Figure 2a: Tor relays read from incoming TCP
connections regardless of the current fill level of corre-
sponding circuit queues in the relay. Therefore, limited
outflow of a circuit does not propagate back to the in-
coming side of the relay. For this reason, the end-to-end
sliding window with its non-adaptive constant size and
its long feedback loop is the only mechanism that limits
the number of cells in flight along the circuit, and it is the
only mechanism that will eventually throttle the source.

One may then, of course, ask whether it would suf-
fice to stop reading from a circuit’s incoming socket if a
queue for that circuit builds up locally. This, however, is
infeasible because, as discussed before, circuits are mul-
tiplexed over joint TCP connections. A relay therefore
cannot selectively read cells from one specific circuit;
stopping to read from one socket could result in massive
head-of-line blocking for other circuits.

Using separate standard, loss-based TCP connections
per circuit is also not a good design avenue: this would
result in excessive numbers of parallel connections, and
therefore in very aggressive traffic and high packet loss.
In accordance with TCP models such as [34], we ar-

4
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gue that more (loss-based) TCP connections imply a
smaller rate per connection and thus inevitably a higher
packet loss probability per connection [45]. In addition,
Bufferbloat phenomena [16] cause long reaction times
due to excessively large buffers. Thus, approaches such
as [8, 37] still suffer from the feedback gap in the same
way as Tor does.

These observations motivate our design based on
delay-based per-circuit congestion control loops, which
can be expected to be much less aggressive than a corre-
sponding loss-based design.

3.2 Realizing Backpressure
A naive realization of the ideas sketched so far—with
separate transport-layer connections per circuit, each
with delay-based congestion control—would now likely
proceed as follows: if an application-layer queue builds
up for one circuit, the inflow might be throttled for that
circuit by ceasing to read from its incoming connection.
The incoming connection’s input buffer would conse-
quently fill up, so that the flow control window is not re-
opened; a zero window would be triggered. This would,
in turn, throttle the outflow of the upstream node, so that
the outgoing socket buffer fills up. The outgoing socket
in the upstream node would then no longer be writable,
an application-layer queue would build up there, and so
on. Thereby, congestion feedback would propagate indi-
rectly through backpressure.

However, this implies that upstream of the bottleneck,
in each relay there must be enough queued data to fill
up a) the outgoing socket buffer, b) the application-layer
circuit buffer, and c) the incoming socket buffer. Even
keeping technical difficulties related to sizing and man-
agement of socket buffers in various operating systems
aside, incoming and outgoing socket buffers must at least
be sufficiently large to cover the bandwidth-delay prod-
uct of the respective link, in order not to waste perfor-
mance. Together with the additional application-layer
buffer, the total amount of queued data per overlay hop
and circuit would once again have to be very significant,
and feedback propagation would once again be slow.

To mitigate these effects, we follow a somewhat dif-
ferent, more consequent path: our solution also per-
forms congestion control per circuit, and it likewise
does so without multiplexing circuits into joint connec-
tions. However, we virtually extend the network into and
through the application layer, by emitting flow control
feedback only when a cell has been forwarded out of the
local relay. The application-layer circuit queues in our
design therefore take the role of a fused version of the re-
spective ingress and egress socket buffers. Such a queue
is illustrated in Figure 2b, and contrasted with the design
that is currently followed in Tor, shown in Figure 2a. The
feedback gap in the latter is clearly visible, whereas the

(a) Tor’s queuing mechanism with cell multiplexing and a feedback gap
between ingress and egress, i. e., TCP sockets.

(b) Fused circuit queue triggers flow control feedback ( ) not until a
cell has been forwarded to the successor to achieve backpressure.

Figure 2: Comparison of feedback loops.

local feedback loops in our protocol are directly coupled
so that backpressure can build up and propagate immedi-
ately upon a deterioration of the available bandwidth.

In BackTap, arriving cells from the predecessor are
read from the UDP socket and processed as usual; that
is, in particular the cryptographic operations demanded
by the anonymity overlay are performed. The cell is sub-
sequently enqueued in the respective circuit queue. The
variable tailSeq points to the last cell that has been re-
ceived in order. tailSeq is updated when new cells are re-
ceived. Cells received out of order may also be queued,
with respective gaps in the buffer.

On the other end of the queue, headSeq points to the
frontmost unacknowledged cell. As soon as we learn that
the successor has successfully received the cell, headSeq
is incremented and the respective cell may be discarded
from the buffer.

The third pointer, nextTxSeq, is incremented when a
cell is forwarded to the downstream relay. The key point
that distinguishes our design is: this forwarding at the
same time also triggers the transmission of correspond-
ing flow control feedback upstream. In the practical im-
plementation this event triggers the transmission of a
message. Similar to an , an carries a sequence
number that refers to a cell. The upstream node can make
use of s to determine a sending window (swnd) based
on the provided feedback. It is allowed to keep at most
swnd cells in the transmission pipe.

The resulting design is a hybrid between flow con-
trol and congestion control: the swnd adjustment strat-
egy follows a delay-based approach, based on the latency

5
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experienced before receiving an . It will therefore ad-
just both to the outflow in the downstream node (because
only then the is issued) and to the conditions of the
network path between consecutive relays (because this
path, too, will influence the delays). In essence, it there-
fore turns the application-layer circuit buffer into yet an-
other buffer along the network path, without a special
role from the perspective of the load feedback.

Moreover, tying transmissions to the forwarding
of the corresponding cell yields tight feedback coupling
between consecutive overlay hops: if the swnd adjust-
ment control loop of one overlay hop in a circuit re-
sults in a throttled outflow of cells, the arrival de-
lay over the preceding overlay hop will increase accord-
ingly within a one-way local-hop delay. swnd can there-
fore be adjusted quickly. This way, hop-by-hop feed-
back emerges, and backpressure propagates back to the
source. Because delay-based congestion control strives
to maintain very short queues, the emerging queues will
be small, while available capacity can be fully utilized.

3.3 Reliable Transfer
Tor circuits—or, more precisely, Tor streams—carry
application-layer data that expects TCP-like reliable
bytestream service. The anonymity overlay design relies
on each intermediate hop to ensure reliable in-order de-
livery. That is, there is no end-to-end ARQ (i. e., reliabil-
ity/acknowledgment/retransmission) scheme. Reliability
on the individual hop in Tor uses the per-hop TCP con-
nections’ reliability mechanism; relays are not allowed to
drop or re-order cells residing in their per-circuit queues.

We stick to this model also in our proposed transport
protocol, i. e., we implement reliability on a per-hop ba-
sis. To this end, we use cell sequence numbers to deter-
mine the order of cells and to detect losses. The mech-
anisms generally adhere closely to those employed by
TCP. The sender infers, either by a timeout or by dupli-
cate acknowledgments, that cells have likely been lost
and retransmits them. The key point where we deviate
from TCP’s mechanism is where the circuit queue in the
downstream node and the coupling between consecutive
hop feedback loops comes into play.

The most consequent version of the philosophy of tak-
ing the application-layer circuit queue as “yet another
network buffer” would use the packets as acknowl-
edgments. This might actually be expected to work rea-
sonably well under many circumstances. However, we
argue that it entails a pitfall: after all, when a cell has
arrived at the next relay, it is already under the control of
the downstream application-layer instance, but reliabil-
ity feedback is not yet generated. This creates a risk for
spurious timeouts, and it might take unnecessarily long
to recognize and fix losses.

(a) Extended Cell Header (*new header field).

(b) New Feedback Cell.

Figure 3: Cell structure.

For this reason, as an optimization, we separate reli-
ability on the one hand and congestion/flow control on
the other hand in terms of feedback. We provide reliabil-
ity feedback as early as possible, namely upon arrival of
a cell, by sending a corresponding . The calculation
of the retransmission timeout (RTO) and the fast retrans-
mit mechanism follow RFCs 6298 [36] and 5681 [4], re-
spectively. Both s and s are cumulative. Hand-
shakes upon circuit establishment and teardown can like-
wise closely follow their respective counterparts in TCP,
and can easily be integrated with Tor’s handshakes.

Implementing reliability on the application layer
makes it possible to drop arriving cells by a deliberate
decision (only before the respective has been sent, of
course). This opens up new ways out of a difficult prob-
lem: the fact that Tor relays in the current overlay design
can be attacked by overloading them with cells which
they are not allowed to drop [25]. Dropping excessive
cells for a given circuit is a much cleaner and simpler so-
lution than the heuristics that are currently used to relieve
Tor from this threatening attack vector.

In an extended cell structure, we introduce new header
fields: a sequence number (4 Byte) and a field for flags
(1 Byte). They fulfill comparable roles to the respective
fields in the TCP header. However, since cells have a
fixed size for anonymity reasons, sequence numbers re-
fer to cells rater than bytes. The extended cell header is
illustrated in Figure 3a.

For s and s, we introduce a separate message
format, much smaller than a Tor cell. Smaller feedback
messages can be considered safe and per se do not affect
anonymity, because they occur in TCP anyway. More-
over, regular cells and feedback messages—not neces-
sarily for the same circuits—can be encapsulated in one
UDP packet traveling between two relays. In a typical
MTU up to two regular cells and a number of /
messages fit in. The freedom to combine s/ s with
cells also from other circuits (or, of course, to send them
separately if no cells travel in the opposite direction) cor-
responds to a generalized variant of piggybacking.

6
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Since the Tor protocol already exchanges hop-by-hop
control messages and supports variable cell lengths and
the negotiation of protocol versions [14], our modifi-
cations of the cell structure are resonably easy to inte-
grate. Generally speaking, hop-by-hop feedback mes-
sages of any kind and size are allowable under Tor’s at-
tacker model, i. e., a local adversary with a partial view
of the network. Moreover, our modifications affect the
cell preamble only. The preamble is not part of the
onion encryption and therefore remains unencrypted on
the application layer. Likewise, / messages are
not application-layer encrypted. However, the DTLS en-
cryption between consecutive relays shields the pream-
ble from observers on the wire, and also s and s.
The BackTap design therefore provides additional pro-
tection in comparison to the current TCP-based trans-
port: when using kernel-level TCP as in Tor today, TCP
flow control and ACKs are not encrypted by TLS.

3.4 Window Adjustment
In the proposed protocol design, each node determines
the size of its local swnd based on the feedback from
the next hop downstream. s are used for reliability,
but do not influence the window adjustment.

Most transport protocols, and in particular most TCP
variants, use packet loss as an indicator of congestion
and therefore as a basis for adjusting their window size
or transmission rate; details highly depend on the TCP
flavor [1]. Here, we use a delay-based approach as orig-
inally used in TCP Vegas [11]. Delay-based congestion
control uses latency variations rather than packet losses
as a signal for congestion. If queues start to build up—
that is, before losses due to exceeded buffers occur—
such a control algorithm re-adjusts the congestion win-
dow. Thus, they are less aggressive in the sense that
they do not force losses and do typically not fully utilize
buffers in intermediate nodes.

This reduced aggressiveness constitutes a significant
benefit for an anonymity overlay. The Tor overlay at
this time is formed by more than 6000 relays (with in-
creasing trend [43]) in a fully connected topology. All
currently active connections to other relays compete for
the available capacity. The resulting traffic, in sum,
is very aggressive and inevitably provokes significant
packet loss—also for other traffic traversing the same
bottleneck. One may expect that this can significantly
be reduced by using delay-based controllers.

Following the ideas of TCP Vegas, we calculate the
difference between expected and actual window size as

diff = swnd · actualRtt
baseRtt

− swnd,

where actualRtt and baseRtt are the RTT with and with-
out load. In the literature they are also referred to as the

“experienced RTT” and the “real RTT”. We sample the
RTT based on the flow control feedback by measuring
the time difference between sending a cell and receiving
the respective . The actualRtt is estimated by taking
the smallest RTT sample during the last RTT. This re-
duces the effect of outliers due to jitter on the network
path. The baseRtt is the minimum over all RTT samples
of all circuits directed to the same relay. Hence, the in-
dividual diff calculations per circuit use a joint baseRtt
estimate. This mitigates potential intra-fairness issues of
delay-based approaches.

Depending on the value of diff, we adjust the sending
window every RTT as follows:

swnd′ =




swnd+1 if diff < α
swnd−1 if diff > β
swnd otherwise.

(1)

Since swnd changes by at most one, it follows an additive
increase additive decrease (AIAD) policy. Typically α
and β are chosen as 2 and 4 (here measured in cells).
Therefore, one may expect that swnd does not exceed
the bandwidth-delay product by much. This is sufficient
to achieve full utilization of the available capacities.

Combined with a locally operating scheduling al-
gorithm that round robins all circuits, this adjustment
scheme yields a rate allocation that achieves global max-
min fairness between circuits [44], because it aims for
maintaining a non-empty queue at the bottleneck. In ad-
dition, prioritization heuristics such as [5, 24, 42] can be
applied, if a prioritization of certain traffic types and pat-
terns is desired. End-to-end windows and corresponding
feedback (in Tor: s) are no longer necessary.

4 Evaluation
A deployment in a real-world anonymity overlay
will only be realistic after very thorough preceding
evaluations and in-depth discussion in the research
community—a process which we hope to initiate with
this work. Even deployments in an emulated or testbed-
based anonymity network, are also notoriously hard to
analyze—because the anonymity itself, of course, pro-
hibits in-depth traceability and measureability. We there-
fore evaluated the proposed protocol in a large-scale sim-
ulation study.

In fact, setting up such a simulation study is a chal-
lenging task by itself. As it turned out, there is a missing
link in the tool chain when it comes to experimenting
with network protocols for Tor under thorough consid-
eration of protocol behavior below the application layer.
Some tools focus only on specific aspects, such as the
Tor Path Simulator (TorPS) for circuit paths [26]. Oth-
ers, such as Shadow [23] and ExperimenTor [9], run real
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(c) Bulk circuits.

Figure 4: Calibration of the simulation evironment.

Tor code, which results in a high degree of realism re-
garding the application logic, but at the same time re-
quires extensive development efforts to evaluate experi-
mental protocols [28]. While all approaches have their
benefits and drawbacks [40], all miss the “noise” of the
real Internet and have no real user behavior. Therefore,
assumptions about traffic patterns and user behavior are
inevitable anyway. The opportunities, though, to vary pa-
rameters, scale the setting, and prototype experimental
protocols are much more favorable with advanced net-
work simulators such as ns-3 [19].

Therefore, as a further contribution of this work, we
introduce nstor, a Tor module for ns-3. It is modeled
along the lines of the original Tor software, but clearly
focuses on the network aspects. In particular, it includes
the transport protocol, the cell transmission scheduler,
the traffic shaper (Tor includes a token bucket which can
be used by a relay operator to constrain the rate and burst
that is used), and the multiplexing. First and foremost,
it allows direct and reproducible comparisons of proto-
col design alternatives in both toy examples and larger
scenarios. In addition, with ns-3 the Linux kernel can
be hooked, so that practically deployed and widely used
transport protocol implementations can be used in the
simulations, for additional realism. The code of nstor
is publicly available on Github1.

The key point in setting up an environment for a valid
evaluation of Tor is to model the overlay appropriately.
The Tor model from [21] serves as a guideline here. In
our simulations, we use a star topology for simple, easy-
to-analyze toy scenarios, and a dumbbell topology for
larger-scale, more realistic experiments. Since approx-
imately 93 % of all Tor relays are currently hosted in
North America or Europe [43], the dumbbell topology
can be thought to approximate the geographical cluster-
ing. For this reason, we adjusted the delay according
to the iPlane [29] RTT measurements and the client ac-
cess rates according to Akamai’s state of the Internet re-
port [2] by inverse transform sampling, i. e., generating

1 .

random samples from its cumulative distribution func-
tion (CDF). In addition, we scaled and sampled the Tor
consensus (as of 2015/08/04) and generated a large set
of circuit paths by feeding this consensus to TorPS [26].
Unless otherwise specified, we assumed neither the phys-
ically available bandwidth of the relays’ access link nor
the Internet backbone to be a bottleneck, but that the re-
lay capacity is bounded by the operators using the above-
mentioned token bucket rate limiter.

In accordance to the model proposed in [21], we de-
liberately distinguish only two types of circuits, bulk
and web circuits. Bulk circuits continuously transfer
5 MiB files, i. e., after completing such a download they
immediately request another one. Web circuits request
320 KiB files with a random “think time” of 1 to 20 sec-
onds between consecutive requests. Although apparently
being very simplistic, it is the common approach used
by the Tor community and hence increases the compa-
rability to related research. As [21] stresses, the ratio of
simulated web and bulk circuits in relation to the number
of relays requires calibration to produce network char-
acteristic that approximate Tor. Therefore, we used the
publicly available torperf data set [43], which consists
of measurements of various file downloads over the live
Tor network. The time-to-last-byte (TTLB) and time-to-
first-byte (TTFB) results (as of August 2015) are shown
in Figure 4 as CDF plots. For our analysis in a larger
setting, we observed that a scenario with 100 relays and
375 circuits with 10 % bulk circuits approximates Tor’s
performance reasonably well (cf. Figure 4). This con-
figuration corresponds to one of Shadow’s example sce-
narios (as of Shadow v1.9.2). In this setting, we simu-
lated a period of 300 seconds (simulation time), started
the clients at random times during the first 30 seconds
and left the system another 30 seconds lead time before
evaluating. For statistically sound results, all simulations
in this paper were repeated with varying random seeds
and are presented either with 95 % confidence intervals
or as cumulative distribution functions.

In addition to “vanilla” Tor and our approach, Back-
Tap, we also implemented the N23 protocol as proposed
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in [6] and PCTCP [8] (which is conceptually identical to
TCP-over-DTLS [37]). This constitutes the first qualita-
tive comparison among alternative transport design pro-
posals for Tor. It also underlines the flexibility of nstor,
our ns-3-based simulation module.

4.1 Steady State
First, we take a look at the steady state behavior, i. e.,
when long-term flows reach equilibrium. For the analysis
of the steady state, we focus on the cumulative amount of
delivered data of a circuit: by W (t) we denote the amount
of payload data delivered to the client up to time t. The
counterpart on the sender side is R(t), which denotes the
cumulative amount of data injected into a circuit up to
time t. Obviously, both functions are non-negative, non-
decreasing and R(t)≥W (t) must hold true at all times.

Given R and W , the end-to-end backlog can be defined
as R(t)−W (t), the end-to-end delay as t2 − t1 for t1 ≤ t2
and R(t1) =W (t2), and the achieved end-to-end data de-
livery rate during an interval [t1, t2] as

W (t2)−W (t1)
t2 − t1

.

Intuitively, these are the vertical difference, the horizon-
tal difference and the slope of the respective functions.
For our simulation, we sampled R(t) and W (t) at the
sender side (in Tor often called the “packaging edge”)
and the receiver side (the “delivering edge”) of a circuit
every 10 ms (simulation time). After the steady state is
reached, we performed a linear regression on our data
points and calculated the rate, backlog and delay accord-
ingly. The results for a single circuit with a bottleneck
rate of 1 500 kB/s (enforced through an application layer
limit at the middle relay) and varying end-to-end RTT
are given in Figure 5 as a mean of 20 runs with 95 %
confidence intervals.

Since Tor has a fixed window size that it will fully uti-
lize, the results with the standard Tor protocol heavily de-
pend on how this window size relates to the bandwidth-
delay product (BDP), and thus to the end-to-end RTT. In
our example, the circuit window size matches the BDP
at an RTT of approximately

1000 · 512B
1500kB/s

≈ 341ms.

Before this point, the backlog significantly increases
the delivery delay; for higher RTTs, the download rate
drops and asymptotically converges to zero, because the
window does not suffice to fully utilize the available
bandwidth. This clearly demonstrates Tor’s fundamen-
tal problem: on the end-to-end level, the only control
mechanism is the fixed window, which, however, does
not adapt to the network path.

There are some noteworthy phenomena that might be
confusing at first sight. In a first approximation accord-
ing to theory, one would expect that half of a circuit win-
dow’s worth of data (i. e., approx. 250 kB) is travelling
in downstream direction, while the other half of the win-
dow is on its way back in the form of cells. The
end-to-end backlog (as defined above: the difference be-
tween the amount of sent and received data at a given
point in time) should therefore be approximately 250 kB.
However, recall that the rate limit is enforced on the ap-
plication layer by a token bucket. Our model follows the
implementation in Tor, where this token bucket is refilled
periodically every 100 ms. The bottleneck operates at
its capacity limit, always draining its bucket and sending
corresponding cell bursts. Thus, about every 100 ms ap-
proximately 1500kB/s · 100ms = 150kB (300 cells) ar-
rive at the client, consequently triggering three s.
As a result, as long as the RTT is lower than the 100 ms
refill interval, only three s are on the way back,
so that the upstream amount of data is correspondingly
higher (approx. 350 kB). For higher RTTs, the observed
backlog approaches the theoretical limit without this ef-
fect, i. e., 250 kB. Both levels, 350 kB and 250 kB, can be
observed in Figure 5b for vanilla Tor (“circuit win”).

The respective end-to-end delay, as seen in Figure 5c,
behaves according to the built up backlog. That is, while
the circuit window is larger than the BDP, there is a not-
icable delay. Ideally, the end-to-end delay should be half
the end-to-end RTT, though.

It is important to note that with a fixed window size
there is only one sweet spot, i. e., the BDP. If this point is
not met, either the backlog and hence the delay increases
or the circuit becomes underutilized. A heterogeneous
and volatile network such as Tor is condemned to yield
poor performance when employing a static mechanism.

Of course, the same applies to simulations where the
(smaller) stream window is the limiting factor: the rate
drops much earlier, at 500 · 512B/1500kB/s ≈ 171ms.
While the end-to-end RTT is less than 100 ms, the three

s in upstream direction cause a backlog of about
100 kB, this time slightly less than half the window size.
Beyond this point, the results meet theory and the back-
log levels at half the stream window, that is 125 kB.

We also observed that Nagle’s algorithm [32] can in-
terfere with Tor’s window mechanism. In a nutshell, Na-
gle’s algorithm suspends transmission for a short period
and tries to combine small chunks of data to reduce the
overhead. This behavior causes extra delays upon trans-
mission of s, and thereby artificially increases the
experienced RTT. As a consequence, the rate drops much
earlier and the backlog settles at a lower level accord-
ingly, because a larger fraction of the window is spent
on the upstream ( ) direction (not shown in the
figure). However, as soon as scenarios become more
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(b) End-to-end backlog.
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Figure 5: Single circuit scenario clearly demonstrates Tor’s fundamental problem and the benefits of our approach.
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Figure 6: Fairness evaluation.

complex including more traffic flows, the effect van-
ishes. By default Nagle is enabled in today’s deploy-
ments and hence also in Tor. Therefore, we disabled it
only to make the previous simulations more easily com-
prehensible; in all our following simulations Nagle will
be enabled. Nevertheless, either with or without Nagle
enabled or with the stream or circuit window in place,
a fixed-size window is not able to adapt and obviously
comes at a severe cost in performance.

In contrast, our approach is able to adjust to the net-
work in all situations. It maintains the rate, while the
backlog increases linearly with the RTT (and thus with
the BDP). As a result, we achieve an end-to-end delay
that always just slightly exceeds the physical RTT. This
is the behavior a good transport protocol should exhibit.

4.2 Fairness
For those readers familiar with delay-based congestion
control, a number of typical issues will likely come to
mind. In particular, they relate to intra-fairness and inter-
fairness. We therefore now assess these aspects.

Intra-Fairness Delay-based congestion control de-
pends on accurate RTT measurements. In particular,
“late coming” circuits may suffer from an overestimated
baseRTT. This leads to intra-fairness issues, i. e., to
drawbacks in the competition with other delay-based cir-
cuits. We mitigate this issue by sharing baseRTT infor-
mation among circuits directed to the same successor.

Thus, circuits established later will still base their calcu-
lations on sound baseRTT measurements. This is a fea-
ture of our approach that becomes possible, because the
transport logic is implemented in the application layer.

Furthermore, our approach enables cell scheduling on
circuit granularity. This avoids fairness issues due to
varying numbers of active circuits multiplexed into one
transport layer connection, as described in [44]. Fig-
ure 6a shows Jain’s fairness index [20] calculated over
per-circuit goodputs at the respective bottlenecks. This
index quantifies fairness as a value between zero and
one, where one means perfect fairness. For this simula-
tion, a star topology with 50 relays and 100 circuits gen-
erated according to the real-world Tor consensus were
used. We started infinite large downloads (i. e., bulk traf-
fic) over each circuit, where the starting times were ran-
domly distributed during the first 30 seconds. We let
the simulation settle for another 60 seconds to reach a
steady state before evaluating the mean per-circuit end-
to-end rates. The results of 20 runs are given as a cumu-
lative distribution plot. Our approach, in fact, achieves
a much fairer distribution than all other protocols, which
the larger fraction of higher fairness indices confirms.

In these simulations, we also investigated the overhead
by comparing the ratio of the achieved goodput (on the
application layer) and the actually transmitted bytes (on
the MAC layer), i. e., the throughput. The results, as seen
in Table 1, show an insignificant difference of approxi-
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Table 1: Overhead and backlog comparison

protocol goodput
throughput ratio avg. backlog

10
0

ci
rc

s BackTap 0.89 29 kB
N23 0.86 112 kB
PCTCP 0.90 181 kB
vanilla 0.90 184 kB

Table 2: Completed downloads (#dwnlds) and mean rate

bulk web

protocol #dwnlds avg. rate #dwnlds avg. rate

37
5

ci
rc

s BackTap 7 503 587 kB/s 52 102 357 kB/s
N23 4 563 378 kB/s 49 065 215 kB/s
PCTCP 5 426 424 kB/s 49 513 223 kB/s
vanilla 5 493 426 kB/s 49 522 228 kB/s

80
0

ci
rc

s BackTap 12 108 439 kB/s 110 142 302 kB/s
N23 9 067 346 kB/s 104 641 204 kB/s
PCTCP 10 388 376 kB/s 105 288 207 kB/s
vanilla 10 491 382 kB/s 105 276 217 kB/s

mately 1 % compared to vanilla Tor. Note that Tor reg-
ulalry sends at least one (512 Byte) cell every
250 kB and produces constantly s on the transport
layer, while our appraoch sends a comparable amount
of s but emits much smaller flow control feedback
messages with a higher frequency. As the results suggest
the overhead approximately balances out. We also found
that our approach largely reduces the number of in-flight
cells in the network: the total backlog is about three (for
N23) to six times (for vanilla and PCTCP) lower.

Inter-Fairness One of the most prominent caveats of
delay-based approaches is that they are “over-friendly”
to concurrent loss-based connections. Basically, they re-
duce the sending rate before loss-based approaches do,
because they detect congestion earlier. In some cases
this is an intended behavior (cf. LEDBAT [39]), while
in the case of TCP Vegas this was generally perceived
as an issue [1, 12]. However, if a number of delay-based
sessions come together, they are in sum able to compete
well [12]. We exploit the properties of delay-based con-
gestion control, because it allows the anonymity overlay
to compete more reasonably with other applications (us-
ing loss-based TCP) in the relay operators’ networks.

We simulated a scenario with a varying number of par-
allel circuits (on the x axis) and a likewise varying num-
ber of competing loss-based TCP connections (nTcp).
The TCP connections represent downloads that are per-
formed on the same machine as the Tor relay. In a first
setting, we limited the anonymity relay bandwidth to
1 MB/s (by the token bucket), while the access link has
twice that capacity. In a second setting, we left Tor virtu-
ally unlimited (token bucket configured to 10 MB/s) and
let the access link become the bottleneck. For small num-
bers of circuits, the results in Figure 6b and 6c clearly

demonstrate in both settings the over-friendly behavior
of the delay-based controller, relative to the number of
TCP connections. A higher number of active circuits still
leaves a good fraction of the total 2 MB/s for the compet-
ing non-anonymity connections. For typical relays today
one may expect between a few hundred and several thou-
sand concurrently open circuits [8]; of course, not all of
them are active all the time.

We believe that the over-friendly inter-fairness of
BackTap constitutes an important incentive for relay op-
erators to donate more bandwidth. Typically, relay op-
erators use Tor’s token bucket to impose conservative
bandwidth limits on their relays. If Tor, however, will ap-
propriately reduce its bandwidth consumption while an-
other application’s traffic demand temporarily increases,
relay operators will be more willing to operate a Tor relay
with less restrictive bandwidth limits. In addition perfor-
mance penalties of loss-based protocols in environments
like Tor [45] will be mitigated.

4.3 Larger-Scale Analysis
For an analysis in a larger setting, we simulated scenarios
with a dumbbell topology and paths generated according
to the real-world Tor consensus, as described above. The
time-to-first-byte and time-to-last-byte results of the cali-
brated setting are shown in Figure 7 (a)–(c) as CDF plots.

In Figure 7a, we show the TTFB results for web and
bulk traffic. Virtually all initial byte sequences of an-
swers to requests are delivered faster with BackTap than
with any other protocol. In fact, BackTap’s TTFB results
are very close to the optimum, i. e., the network’s physi-
cal end-to-end RTT (denoted as “E2E RTT” in the plot).
TTFB is an important measure for the interactivity and
has a significant impact on the overall user experience.
The lower achieved TTFB would likely result in an in-
creased user satisfaction, due to increased reactivity.

The performance gain of our approach becomes ap-
parent when looking at the TTLB results in Figures 7b
and 7c. While the download times for web requests typ-
ically vary between 1 and 3 s, we achieve significantly
better performance, where almost half of all the requests
are already completed in less than 1 s. Also the bulk
transfers yield better results, i. e. approximately 30 %
more bulk downloads are completed in less than 10 s.

In order to assess the performance of our approach in
a very congested network, we additionally simulated a
scenario with 800 circuits. The results are shown in Fig-
ure 7 (d)–(e). Also in this “stress test” scenario, BackTap
is able to achieve reasonable results, which in all cases
yield shorter download times. Particularly a look at Fig-
ure 7f provides a deeper explanation for these results. It
shows that the CDF of our approach is closer to the other
protocols and “flattens” quicker than in Figure 7c, i. e.,
more bulk downloads take longer to finish. As a con-
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(a) Bulk and web circuits.
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(b) Web circuits.
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(c) Bulk circuits.
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(d) Bulk and web circuits.
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(e) Web circuits.
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(f) Bulk circuits.

Figure 7: Time to download files over Tor (10 runs, 100 relays, (a)–(c) 375 circuits, (d)–(f) 800 circuits).

sequence, bulk traffic is prevented from “clogging” the
network as with the other protocols. However, this does
not mean that bulk traffic is treated unfairly: quite in con-
trast, all of the circuits and flows are treated equally. This
is an important feature of our approach: it gives all cir-
cuits, web and bulk, a fair share of the network capacity,
without the need for (complex, error-prone) explicit traf-
fic pattern analysis and prioritization.

Another perspective on the performance of the vari-
ous protocols is provided by Table 2. There, we sum-
marize the number of completed downloads (within the
simulation time) and the mean download rate for both
larger-scale simulation scenarios. In the stress test with
800 circuits, BackTap is able to complete approximately
5 % and 15 % more web and bulk requests, respectively,
compared to vanilla Tor. Eventually, the mean download
rate is in all cases higher as well. On a more general
level, we note that vanilla Tor shows, particularly for the
web traffic, a much higher variance of TTFB and TTLB.
There is, for instance, always a non-negligible fraction
of connections that takes far longer than average. This
observation is in line with practical experiences of Tor
users and the results presented in [21,43]. Our approach,
according to the results presented here, typically reduces
the overall variance by more than 17 %.

5 Conclusion
Aware of Tor’s fundamental problems and the specific
requirements of anonymity overlays, we developed a tai-
lored transport protocol, namely BackTap. In particular,

we presented a novel way to couple the local feedback
loops for congestion and flow control. It builds upon
backpressure between consecutive application-layer re-
lays along a circuit, and a delay-based window size con-
troller. We showed that this can bring a huge relief re-
garding network congestion by closing the gap between
local controllers, so that the need for slow end-to-end
control vanishes. In packet level simulations we con-
firmed the expected improvement.

Besides, there are good reasons why our approach also
makes Tor more resilient. First, due to the backpres-
sure, congestion-based attacks will have less influence
on other circuits. Second, the much fairer resource al-
location makes circuits “look” more “similar”, thereby
improving the cover traffic properties of concurrent cir-
cuits. However, the trade-off between anonymity and
performance needs further investigation. In particular,
the use of delayed and aggregated feedback to impede
traffic confirmation is on our agenda for future work.
Generally, we believe that an advanced network traffic
control can make Tor’s degree of anonymity stronger.

Overall, our approach shows new ways for designing
suitable transport mechanisms for anonymity overlays.
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