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Abstract

Consensus mechanisms for ensuring consistency are
some of the most expensive operations in managing large
amounts of data. Often, there is a trade off that involves
reducing the coordination overhead at the price of ac-
cepting possible data loss or inconsistencies. As the de-
mand for more efficient data centers increases, it is im-
portant to provide better ways of ensuring consistency
without affecting performance.

In this paper we show that consensus (atomic broad-
cast) can be removed from the critical path of perfor-
mance by moving it to hardware. As a proof of concept,
we implement Zookeeper’s atomic broadcast at the net-
work level using an FPGA. Our design uses both TCP
and an application specific network protocol. The design
can be used to push more value into the network, e.g.,
by extending the functionality of middleboxes or adding
inexpensive consensus to in-network processing nodes.

To illustrate how this hardware consensus can be used
in practical systems, we have combined it with a main-
memory key value store running on specialized mi-
croservers (built as well on FPGAs). This results in
a distributed service similar to Zookeeper that exhibits
high and stable performance. This work can be used as a
blueprint for further specialized designs.

1 Introduction

Data centers face increasing demands in data sizes and
workload complexity while operating under stricter effi-
ciency requirements. To meet performance, scalability,
and elasticity targets, services often run on hundreds to
thousands of machines. At this scale, some form of coor-
dination is needed to maintain consistency. However, co-
ordination requires significant communication between
instances, taking processing power away from the main
task. The performance overhead and additional resources
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needed often lead to reducing consistency, resulting in
less guarantees for users who must then build more com-
plex applications to deal with potential inconsistencies.

The high price of consistency comes from the mul-
tiple rounds of communication required to reach agree-
ment. Even in the absence of failures, a decision can
be taken only as quickly as the network round-trip times
allow it. Traditional networking stacks do not optimize
for latency or specific communication patterns turning
agreement protocols into a bottleneck. The first goal of
this paper is to explore whether the overhead of running
agreement protocols can be reduced to the point that it
is no longer in the performance critical path. And while
it is often possible to increase performance by “burning”
more energy, the second goal is to aim for a more effi-
cient system, i.e., do not increase energy consumption or
resource footprint to speed up enforcing consistency.

In addition to the performance and efficiency
considerations, there is an emerging opportunity
for smarter networks. Several recent examples il-
lustrate the benefits of pushing operations into the
network [16, 41, 54] and using middleboxes to tailor
it to applications [52, 9, 61, 49]. Building upon these
advances, the following question arises: could agree-
ment be made a property of the network rather than
implementing it at the application level? Given the
current trade off between complexity of operations and
the achievable throughput of middleboxes, the third goal
of this work is to explore how to push down agreement
protocols into the network in an efficient manner.

Finally, data center architecture and the hardware
used in a node within a data center is an important
part of the problem. Network interface cards with pro-
grammable accelerators are already available from, e.g.,
Solarflare [55], but recent developments such as the
HARP initiative from Intel [25] or the Catapult sys-
tem of Microsoft [50] indicate that heterogeneous hard-
ware is an increasingly feasible option for improving per-
formance at low energy costs: the field programmable
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gate arrays (FPGAs) used in these systems offer the op-
portunity of low energy consumption and do not suffer
from some of the traditional limitations that conventional
CPUs face in terms of data processing at line-rate. Cata-
pult also demonstrates the benefits of having a secondary,
specialized network connecting the accelerators directly
among themselves. When thinking of agreement proto-
cols that are bound by round trip times and jitter, such
a low latency dedicated network seems quite promising
in terms of efficiently reducing overhead. We do not ar-
gue for FPGAs as the only way to solve the problem,
but given their increasing adoption in the data center, it
makes sense to take advantage of the parallelism and per-
formance/energy advantages they offer. This leads us to
the fourth and final question the paper addresses: can
an FPGA with specialized networking be used to imple-
ment consensus while boosting performance and reduc-
ing overall overhead?

Contribution. In this paper we tackle the four chal-
lenges discussed above: We implement a consensus pro-
tocol in hardware in order to remove the enforcement of
consistency from the critical path of performance with-
out adding more bulk to the data center. We create
a reusable solution that can augment middleboxes or
smart network hardware and works both with TCP/IP
and application-specific network protocols using hard-
ware and platforms that are starting to emerge. Therefore
the solution we propose is both a basis for future research
but also immediately applicable in existing data centers.

Results. In the paper we show how to implement
Zookeeper’s atomic broadcast (ZAB [43]) on an FPGA.
We expose the ZAB module to the rest of the net-
work through a fully functional low latency 10Gbps TCP
stack. In addition to TCP/IP, the system supports an
application-specific network protocol as well. This is
used to show how the architecture we propose can be
implemented with point-to-point connections to further
reduce networking overhead. For a 3 node setup we
demonstrate 3.9 million consensus rounds per second
over the application specific network protocol and 2.5
million requests per second over TCP. This is a signif-
icant improvement over systems running on commod-
ity networks and is on par even with the state of art
systems running over lower latency and higher band-
width Infiniband networks. Node to node latencies are
in the microsecond range, without significant tail laten-
cies. To illustrate how this hardware consensus can be
used in practical systems, we have combined it with a
main-memory key value store running on specialized mi-
croservers (built as well on FPGAs). This results in a dis-
tributed service similar to Zookeeper that exhibits a much
higher and stable performance than related work and can
be used as a blueprint for further specialized designs.

Figure 1: Zookeeper’s Atomic Broadcast

2 Background

2.1 Zookeeper’s Atomic Broadcast

There are many distributed systems that require some
form of coordination for achieving their core services,
and since implementing distributed consensus [34, 35]
correctly is far from trivial [46], reusable libraries and
solutions such as Zookeeper have emerged. Zookeeper
is a centralized service that provides distributed synchro-
nization, store configuration, and naming services for
distributed systems. It achieves fault tolerance and high
availability through replication.

At the core of Zookeeper is an atomic broadcast proto-
col (ZAB [33]) coupled with leader election that is used
to ensure the consistency of modifications to the tree-
based data store backing Zookeeper. ZAB is roughly
equivalent to running Paxos [35], but is significantly eas-
ier to understand because it makes a simplifying assump-
tion about the network. The communication channels
are assumed to be lossless and strongly ordered (thus,
Zookeeper in principle requires TCP).

We briefly describe the ZAB protocol in a 3 node setup
(Figure 1): The atomic broadcast protocol of Zookeeper
is driven by a leader, who is the only node that can
initiate proposals. Once the followers receive propos-
als, they will acknowledge the receipt of these propos-
als thus signaling that they are ready to commit. When
the leader received an acknowledgment from the major-
ity of followers it will issue a commit message to apply
the changes. Committed messages are persisted by de-
fault on a disk, but depending on the nature of the data
stored in the service and failure scenarios, writing the log
to memory can be enough. The order of messages is de-
fined using monotonically increasing sequence numbers:
the “Zxid’,’ incremented every time a new proposal is
sent, and the “epoch” counter, which increases with each
leader election round.

Zookeeper can run with two levels of consistency:
strong [26] and relaxed (a form of prefix consis-
tency [56]). In the strong case, when a client reads from
a follower node, it will be forced to consult the leader
whether it is up to date (using a sync operation), and
if not, to fetch any outstanding messages. In the more
relaxed case (no explicit synchronization on read) the
node might return stale data. In the common case, how-
ever, its state mirrors the global state. Applications using
Zookeeper often opt for relaxed consistency in order to
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increase read performance. Our goal is to make strong
consistency cheaper and through this to deliver better
value to the applications at a lower overall cost.

2.2 Reconfigurable Hardware

Field programmable gate arrays (FPGAs) are hardware
chips that can be reprogrammed but act like application-
specific integrated circuits (ASICs). They are appeal-
ing for implementing data processing operations because
they allow for true dataflow execution [45, 57]. This
computational paradigm is fundamentally different from
CPUs in that all logic on the chip is active all the time,
and the implemented “processor” is truly specialized to
the given task. FPGAs are programmed using hardware
description languages, but recently high level synthesis
tools for compiling OpenCL [6], or domain specific lan-
guages [24] down to logic gates are becoming common.

FPGAs typically run at low clock frequencies (100-
400 MHz) and have no caches in the traditional sense
in front of the DDR memory. On the other hand the
FPGA fabric contains thousands of on-chip block RAMs
(BRAM) that can be combined to form different sized
memories and lookup tables [13]. Recent chips have an
aggregated BRAM capacity in the order of megabytes.

There are good examples of using FPGA-based de-
vices in networks, e.g., smart NICs from Solarflare [55]
that add an FPGA in the data path to process packets at
line-rate, deep packet inspection [11] and line-rate en-
cryption [51]. It has also been proposed to build middle-
boxes around FPGAs [9] because they allow for combin-
ing different functional blocks in a line-rate pipeline, and
can also ensure isolation between different pipelines of
different protocols. We see our work as a possible com-
ponent in such designs that would allow middleboxes to
organize themselves more reliably, or to provide consen-
sus as a service to applications.

3 System Design

For prototyping we use a Xilinx VC709 Evaluation
board. This board has 8 GB of DDR3 memory, four
10Gbps Ethernet ports, and a Virtex-7 VX690T FPGA
(with 59 Mb Block RAM on chip). Our system consists
of three parts: networking, atomic broadcast, and to help
evaluate the implementation of the latter two, a key-value
store as consensus application (Figure 2). The network
stack was implemented using high level synthesis [60],
the other two modules are written in Verilog and VHDL.

The Atomic Broadcast module replicates requests sent
to the application (in our case the key-value store). Since
it treats the actual requests as arbitrary binary data, it
requires a thin header in front of them. The structure
of the 16 B header is explained in Table 1: It consists
of an operation “code” and ZAB-specific fields, such as

Figure 2: The target platform and system architecture

Bits Description Bits Description
[15:0] Magic number [63:32] Length of message
[23:16] Sender Node ID [95:64] Zxid (req. sequence no.)
[31:24] Operation code [127:96] Epoch number

Table 1: Structure of request header

epoch-number and Zxid. This is because the same header
structure is used for communication between nodes and
clients, and different node’s atomic broadcast units. This
means that not all messages will have a payload. As ex-
plained in Section 2.1, Zookeeper provides two levels
of consistency, from which in our system we implement
strong consistency by serving both reads and writes from
the leader node. This setup simplifies the discussion and
evaluation, however, serving strongly consistent read on
followers is also possible.

When the atomic broadcast unit is used in conjunc-
tion with the key-value store, one can distinguish be-
tween two types of client requests: local ones (reads)
and replicated ones (writes). Local requests are read op-
erations that a node can serve from its local data store
bypassing the atomic broadcast logic completely. Write
requests need to be replicated because they change the
global state. These replicated requests are “trapped”
inside the atomic broadcast module until the protocol
reaches a decision and only then are sent to the applica-
tion, which will process them and return the responses to
the client. For reaching consensus, the atomic broadcast
module will send and receive multiple messages from
other nodes. Since the atomic broadcast unit does not di-
rectly operate on the message contents, these are treated
as binary data for the sake of replication.

4 Networking

The FPGA nodes implement two networking protocols:
TCP/IP and an application specific one, used for point-
to-point connections. As Figures 2 and 3 show, the net-
work module connects to the Ethernet Network Interface
provided by the FPGA vendor that handles Layer 1 and
2 (including MAC) processing before handing the pack-
ets to the IP Handler module. This module validates IP
checksums and forwards packets to their protocol han-
dlers. Additionally, data arriving from other FPGAs, us-
ing the application specific network protocol, shortcut
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Figure 3: Network stack overview

Figure 4: TCP stack details

the TCP/IP stack and are instead processed by an ap-
plication specific network module. The ARP, ICMP and
DHCP modules in Figure 3 provide the functionality nec-
essary for integrating the FPGA into a real network.

4.1 TCP/IP in Hardware

The network stack is a modified version of earlier
work [53]. The original design addresses the problem
of very low connection counts in existing network stacks
for FPGAs (typically in the tens or low hundreds). The
changes introduced in this paper aim to further reduce the
latency of the stack and reduce its memory footprint by
tailoring the logic to the consensus and replication traffic.

The main benefit of using hardware for implement-
ing a network stack is that it allows for building true
dataflow pipelines and also for the isolation of send and
receive paths so that they do not influence each other’s
performance negatively. Figure 4 shows the resulting ar-
chitecture of the TCP stack in hardware: two pipelines
that share connection state through the data structures.
These data structures are: session lookup, port and state
table, and an event engine backed by timers. The session
lookup table contains the mapping of the 4-tuple (IP ad-
dress and TCP port of destination and source) to session
IDs, and is implemented as a content-addressable mem-
ory directly on the FPGA [32]. It holds up to 10k ses-
sions in our current configuration. The port table tracks
the state of each TCP port and the state table stores meta-
information for each open TCP connection. The event
engine is responsible for managing events and incoming
requests from the Send Interface, and instructs the TX
Engine accordingly.

4.2 Application-aware Receive Buffers

TCP operates on the abstraction of data streams, however
data packets on the application level are usually very well
defined. We take advantage of this application knowl-

edge to reduce the latency of our network stack. The
original version [53] of the network stack implemented
“generic” receive buffers. In this version we replaced the
DRAM buffer on the receive path with low latency on-
chip BRAM. The smaller buffer space has no negative
impact on throughput due to two reasons: 1) The ap-
plication logic is designed to consume data at line-rate
for most workloads, 2) In the datacenter TCP packets
are in the common case rarely reordered [49]. Conse-
quently, a smaller on-chip BRAM buffer will lower the
latency without negatively impacting performance and
frees up DRAM space for the consensus and applica-
tion logic. Internally the BRAM buffers are organized
as several FIFOs that are assigned dynamically to TCP
sessions. By pushing down some knowledge about the
application protocol (header fields), the BRAM buffers
can determine when a complete request is available in a
FIFO and then forward it to the application logic. In case
all FIFOs fill up, we rely on TCP’s built in retransmis-
sion mechanisms in order to not lose any data. For this
reason on the transmit path a much larger buffer space
is required, since packets have to be buffered until they
are acknowledged. Therefore the high capacity DRAM
buffer from our original design was kept.

4.3 Tailoring TCP to the Datacenter

TCP gives very strong guarantees to the application level,
but is very conservative about the guarantees provided by
the underlying network. Unlike the Internet, datacenter
networks have well-defined topologies, capacities, and
set of network devices. These properties, combined with
knowledge about the application, allow us to tailor the
TCP protocol and reduce the latency even further without
giving up any of the guarantees provided by TCP.

Starting from the behavior of consensus applications
and key-value stores we make two assumptions for the
traffic of the key-value store and consensus logic to op-
timize the TCP implementation: a client request is al-
ways smaller than the default Ethernet MTU of 1500 B
and clients are synchronous (only a single outstanding
request per client). Additionally, we disable Nagle’s
algorithm which tries to accumulate as much payload
from a TCP stream to fill an entire MTU. Since it waits
for a fixed timeout for more data, every request small
than MTU gets delayed by that timeout. The combi-
nation of disabling Nagle’s algorithm, client requests
fitting inside an MTU, and synchronous clients means
that we can assume that in the common case and ex-
cept for retransmission between the FPGAs, requests are
not fragmented over multiple MTUs and each Ethernet
frame holds a single request. Disabling Nagle’s algo-
rithm is quite common in software stacks through the
TCP NODELAY flag. Having our own hardware imple-
mentation we did an additional optimization to reduce
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latency by disabling Delayed Acknowledgments as de-
scribed in RFC1122 [4], which says that a TCP imple-
mentation should delay an Acknowledgment for a fixed
timeout such that it either can be merged with a sec-
ond ACK message or with an outgoing payload message,
thereby reducing the amount of bandwidth which is used
for control messages. Since in our setup the network
latencies between the FPGAs are in the range of a few
microseconds, we decided to not just reduce the time-
out but completely remove it. This way each message
sent is immediately acknowledged. Obviously removing
Delayed Acknowledgments and disabling Nagle’s algo-
rithm comes with the tradeoff that more bandwidth is
used by control messages. Still, our experiments show
that even for small messages we achieve a throughput of
more than 7 Gbps considering only “useful” payload.

4.4 Application Specific Networking

In addition to the regular TCP/IP based channels, we
have also developed a solution for connecting nodes to
each other on dedicated links (direct connections, as we
will refer to them in the paper, labeled D.C. in Figure 2),
while remaining in-line with the reliability requirements
(in-order delivery, retransmission on error). Packets are
sent over Ethernet directly, and sequence numbers are
the main mechanism of detecting data loss. These are
inserted into requests where normally the ZAB-specific
magic number is in the header – so the sequence number
is actually increased with each logical request, not with
each packet. Since the links are point-to-point, conges-
tion control is not necessary beyond signaling backpres-
sure (achieved through special control packets). If data
was dropped due to insufficient buffer space on the re-
ceiving end, or because of corruption on the wire, the
receiver can request retransmissions. To send and re-
ceive data over this protocol, the application uses special
session numbers when communicating with the network
stack, such that they are directly relayed to the applica-
tion specific network module in Figure 3.

The design of the buffers follows the properties of the
connections as explained above: the sending side main-
tains a single buffer (64 KB) per link from which it can
resend packets if necessary, and the receiving side only
reserves buffer space for request reassembly. Since the
latency between nodes is in the order of microseconds,
this buffer covers a time window of 50 µs on a 10 Gbps
link, more than enough capacity for our purposes.

At the moment, our design only accommodates a lim-
ited number of nodes connected together with this pro-
tocol because there is no routing implemented and the
FPGAs have only four Ethernet interfaces each. The Cat-
apult platform [50] is a good example of what is possible
over such secondary interconnects: it includes a 2D torus
structure where FPGAs route packets over the dedicated

Figure 5: Overview of the atomic broadcast module

network, while using a simple application-specific proto-
col. We plan to eventually evaluate our system at larger
scale using such a network interconnect.

5 Atomic Broadcast in Hardware

The overall benefit of using hardware for implementing
consensus is that nodes have predictable performance,
thereby allowing the protocol to function in the“best case
scenario” most of the time. Latencies are bound and pre-
dictable, so with careful adjustments of on-chip buffers
and memories, the hardware solution can for instance
avoid in most cases to access the log in DRAM and read
the cached head from on chip memory instead. Even
the “less common” paths in the algorithm can perform
well due to the inherent parallelism of FPGA resources,
and the ability to hide memory access latencies through
pipelining for instance. Another example is the timeout
used for leader election that is much lower than what
would be feasible in software solutions. In conclusion,
the high determinism of hardware, low latency and in-
herent pipeline parallelism are a good fit for ZAB and
there was no need to write a new solution from scratch.

By design, the atomic broadcast logic treats the data
associated with requests as arbitrary binary data. This
decouples it from the application that runs on top. For
the purpose of evaluation, in this paper we use a key-
value store but integrating other applications would be
straightforward as well.

Inside the consensus module the control and data
planes are separated, and the Control State Machine and
the Log/Data Manager shown in Figure 5 can work in
parallel to reduce latencies more easily. There are two
additional blocks in the figure to complete the consen-
sus functionality. The Splitter splits the incoming re-
quests into command word and payload, and the Recom-
bine unites commands with payloads for output. Headers
(i.e., command words) are extracted from requests and
reformatted into a single 128 bit wide word, so that they
can be manipulated and transmitted internally in a single
clock cycle (as compared to two on the 10Gbps data bus
that is 64 bits wide). Similarly, payload data is aggre-
gated into 512 bit words to match the memory interface
width. When the control state machine (controller) is-
sues a command (header) that has no encapsulated data,
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Figure 6: Abstract states used for implementing the
Zookeeper Atomic Broadcast in the FPGA

such as the acknowledgment or commit messages of the
ZAB protocol, this passes through the Recombine mod-
ule without fetching a payload from the log. If, on the
other hand, there is encapsulated data to be sent then the
controller will request the data in parallel to creating the
header. The system is pipelined, so it is possible to have
multiple outstanding requests for data from memory.

5.1 State Machine

The state machine that controls the atomic broadcast is
based on the ZAB protocol as described in [43]. Fig-
ure 6 shows the “super states” in which the state ma-
chine can be (each such oval on in the figure hides several
states of its own). Transitions between states are trig-
gered by either incoming packets or by means of event
timers. These timers can be used for instance to imple-
ment timeouts used in leader election, detection of failed
nodes, etc., and operate in the range of tens of µs.

Table 2 shows an overview of how many clock cycles
the more important states of the state machine take to
be processed. Most of them are linear in cost with the
number of nodes in a setup (Cnodes), or the time it takes
to seek in the command log as the parameter LcLog (3
cycles in the average case in our current design). The
theoretical maximum throughput achievable by the con-
trol unit shown in Table 2 for the 3 node setup we use in
the Evaluation is higher than the maximum throughput
in reality as our system is limited by 10Gbps networking
most of the time. If we wanted to scale our system up to
40 Gbps networking, this component could be clocked up
to 300 MHz (independently from the rest of the pipeline)
and then it would have enough performance to handle the
increased message rate. The rest of the logic inside the
atomic broadcast module handles the payloads only, and
these paths could be made wider for 4 x throughput.

On each node there is a table to hold the state of the
other nodes in the cluster. The table resides in BRAM
and in the current implementation holds up to 64 en-
tries. Each entry consists of information associated with
Zookeeper atomic broadcast (Zxid, epoch, last acknowl-
edged Zxid, etc.), a handle to the session opened to the
node, and a timestamp of the node’s last seen activity.
Since the mapping from session number to network pro-

Operation/State Cost Max for: Max for:
(clock cycles) 3 nodes 7 nodes

L1 Create and send proposal 2+Cnodesx2 19.5 M/s 9.75 M/s
F1 Recv. proposal and send
acknowledgment

2 78 M/s 78 M/s

L2 Recv. acknowledgment
and check majority

2+Cnodes+LcLog 17.3 M/s 13 M/s

F2 Commit 1+LcLog 39 M/s 39 M/s
L3 Commit 3+Cnodes 26 M/s 15.6 M/s
Consensus round (leader) L1 +L2 +L3 7.1 M/s 4.1 M/s
Consensus round (follower) F1 +F2 26 M/s 26 M/s

Table 2: Cost of ZAB operations and the theoretical max-
imum consensus rounds per second over 10GbE

tocol or even network interface is made in the networking
module, the controller is independent of the network de-
tails and works the same for messages received over any
protocol or connection.

5.2 Quorums and Committing

Zookeeper atomic broadcast allows the pipelining of re-
quests, so when the leader’s controller receives a client
request that needs to be replicated it will send out the
proposal and mark its Zxid as the highest that has already
been sent but not acknowledged or committed. When
an acknowledgment is received from another node, the
leader’s controller will test if a quorum (majority) has
been reached on that Zxid. This is done by iterating
through the active nodes in the state table: if enough
nodes have already acknowledged, the leader’s controller
will send out commit messages to all nodes that already
acknowledged the proposal. Then the leader will instruct
the log unit to mark the operation as successful and to
return the payload so that the application can process the
original request. On the follower, the receipt of a commit
message will result in the same operations of updating
the log and preparing the data for the application. In case
a node sends its acknowledgment after the operation has
already been committed, the leader will issue a commit
to that node as a response.

The system offers tunable consistency by allowing the
quorum-checking function to be updated at runtime. To
be more specific, one can change between either waiting
for a majority or waiting for all nodes to respond. The
latter behavior could be useful in cases when failures of
nodes are assumed to be transient, but updates have to
happen absolutely at the same time on all nodes (like
changing a policy on a set of middleboxes). While in
software this could lead to much higher response times,
in the Evaluation section we show the benefits of the low
latency hardware.

5.3 Maintaining a Log

After the payload is separated from the command it is
handed to the Log and Data Manager (bottom half of
Figure 5). The payload is added to an append-only log,
and read out later to be sent to other nodes with the pro-

6



USENIX Association  13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 431

posal commands. When an operation commits, this event
is also added to the log (a physically different location,
reserved for command words) with a pointer to the pay-
load’s location. In case a synchronization has to happen,
or the node needs to read its log for any other reason, the
access starts with the part of the log-space that contains
the commands. Since each entry is of fixed size, it is
trivial to search a command with a given Zxid.

To reduce the latency of accessing this data structure
we keep the most recent entries in on-chip BRAM, which
is spilled to DRAM memory in large increments. Of
course if the payloads are large only a small number will
fit into the first part of the log. However, this is not re-
ally an issue because in the common case each payload is
written once to the log when received and then read out
immediately for sending the proposals (it will still be in
BRAM at this point), and then read again later when the
operation commits. The aspect where the atomic broad-
cast unit and the application need to work together is log
compaction. In the case of the key-value store, the log
can be compacted up to the point where data has been
written to the key-value store, and the key-value store
notifies the atomic broadcast unit of each successful op-
eration when returning the answer to the client.

Our design is modular, so that the log manager’s im-
plementation could change without requiring modifica-
tions in the other modules. This is particularly important
if one would want to add an SSD to the node for per-
sistent log storage. We have mechanisms to extend the
FPGA design with a SATA driver to provide direct ac-
cess to a local SSD [59]. Although we have not done
it in the current prototype, this is part of future work as
part of developing a data appliance in hardware. Alterna-
tively, one can use battery backed memory [5], which in
the context of the FPGA is a feasible and simpler option.

5.4 Synchronization

When a node fails, or its network experienced outages
for a while it will need to recover the lost messages from
the leader. This is done using sync messages in the ZAB
protocol. In our implementation, when a follower detects
that is behind the leader it will issue a sync message. The
leader will stream the missing operations from the log to
the follower. These messages will be sent with an opcode
that will trigger their immediate commit on the other end.
In the current design the leader performs this operation
in a blocking manner, where it will not accept new input
while sending this data. It is conceivable to perform this
task on the side, but for simplicity we implemented it this
way for this prototype design.

If for some case the other node would be too far behind
the leader, and syncing the whole log would take longer
than copying the whole data structure in the key-value
store (or the log has already been compacted beyond the

requested point) there is the option of state transfer at
bulk: copying the whole hash table over and then sending
only the part of the log that has been added to the table
since the copy has begun. Of course this tradeoff depends
on the size of the hash table, and is an experiment that we
defer to our future work.

5.5 Bootstrapping and Leader Election

On initial start-up each node is assigned a unique ID by
an outside entity, e.g., a configuration master [36]. This
ID is a sequence number that is increased as nodes are
added. If a node joins after the initial setup, it gets the
next available ID and all other nodes are notified. If a
node fails and then recovers, it keeps its ID. When think-
ing of smart network devices or middleboxes connected
together in a coordination domain, it is reasonable to ex-
pect much less churn than with regular software nodes.

We implement the leader election following the algo-
rithm in the ZAB paper [33], with the optimization that
the followers will propose prospective leaders in a round-
robin fashion, i.e., proposing the next higher ID once the
current leader is unreachable. Nodes transition to leader
election once no message or heartbeat has been received
from the leader for a given timeout (based on the maxi-
mum consensus time in our use-case we set this to 50µs).
We perform the synchronization phase after the leader
election (discovery phase in the ZAB paper) in a pull-
based manner. This means that the newly elected leader
will explicitly ask the most up to date follower to send it
the requests with which it might be behind instead of fol-
lowers actively sending their histories. Requests arriving
from clients during leader election and synchronization
will be dropped by default, to allow the clients to recon-
figure based on a timeout mechanism. One simple opti-
mization that we implement is responding to requests ar-
riving during the leader election with a message that will
prompt the client to switch over to the next leader directly
without timeouts. Further, more sophisticated optimiza-
tions are possible, but are deferred to future work.

6 Use-case: Key-value Store

In order to test the atomic broadcast unit with a realistic
application running on the same FPGA we implemented
a key-value store that at its core uses the hash table de-
sign from our earlier work [29]. It is compatible with
memcached’s ASCII protocol and implements the set,
get, delete and flush all commands. In addition, it sup-
ports memcached’s check-and-set (cas) as well. The de-
sign is aggressively pipelined and handles mixed work-
loads well. As we previously demonstrated, the internal
pipeline can process more than 11 million memcached
requests per second, enough to saturate a 10Gbps con-
nection even with keys and values as small as 16 B.
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Figure 7: Internal pipeline of the key-value store

32B Request 512B Req. 1KB Req.
Ethernet loopback 0.6µs 1.4µs 2.2µs
TCP loopback 1.5µs 3.8µs 6.5µs
Direct Conn. loopback 0.7µs 1.5µs 2.3µs
DRAM access latency 0.2µs
Ping from client 15µs 35µs –

Table 3: Latencies of different components of the system

Keys are hashed with a hash function that is based
on multiplication and shifting and processes the input
one byte at a time (similar to a Knuth’s hash function).
To meet the line-rate requirements we rely on the par-
allelism of the FPGA and create multiple hashing cores
that process the keys in the order of arrival. We solve
collisions by chaining, and the first four entries of every
chain are pre-allocated and stored in memory in such a
way that they can be read in parallel. This is achieved by
dividing each physical memory line (512b on our plat-
form) into four equal parts belonging to different entries,
and tiling keys over multiple physical memory addresses.
The start address of each bucket is at a multiple of 8
memory lines, which allows for keys of up to 112 B long
(the header of each entry is 16 B) to be stored. This size
should be enough for most common use-cases [10].

In order to hide the memory latency when accessing
the data structures in off-chip DDR memory, the hash
table is implemented as series of pipelined stages itself.
Multiple read commands can be issued to the memory,
and the requests will be buffered while waiting for the
data from memory. While with this concurrency there
is no need for locking the hash table entries in the tradi-
tional sense, the pipeline has a small buffer on-chip that
stores in-flight modifications to memory lines. This is
necessary to counter so called read-after-write hazards,
that is, to make sure that all requests see a consistent state
of the memory. A benefit of no locking in the software
sense, and also hiding memory latency through pipelin-
ing instead of caching, is that the hash table is agnostic
to access skew. This is an improvement over software
because in the presence of skew any parallel hash table
will eventually become bottlenecked on a single core.

Similarly to the related work in software [7] and hard-
ware [30], we store the values in a separate data struc-
ture from keys. This allows for more flexible memory
allocation strategies, and also the option to provide more
complex ways of managing memory in the future without
modifying the hash table data structure. At the moment
we use a simple block based memory allocation scheme

Figure 8: Evaluation setup of our prototype system

that allocates memory linearly. When a key is inserted
into the hash table, and its value placed in memory, its
slot in the value store is reused for subsequent updates as
long as the modified value is smaller than or equal in size
to the previous one.

7 Evaluation

7.1 Setup

For evaluation, we use 12 machines connected to a
10Gbps 48 port Cisco Nexus 5596UP switch and three
FPGAs connected to the same switch (Figure 8). FP-
GAs communicate either over TCP or the specialized
network, i.e., direct connections. The three node setup
mirrors the basic fault-tolerant deployment of Zookeeper
that can tolerate one faulty node. The client machines
have dual-socket Xeon E5-2609 CPUs, with a total of
8 cores running at 2.4 GHz, 128 GB of memory and an
Intel 82599ES 10Gbps network adapter. The machines
are running Debian Linux (jessie/sid with kernel version
3.12.18) and use the standard ixgbe drivers. Our load
generator was memaslap [2] with modifications to in-
clude our ZAB header in the requests.

7.2 Baselines

The performance of consensus protocols is sensitive to
latency, so we performed a series of micro-benchmarks
and modeling to determine the minimal latencies of dif-
ferent components of our system with differently sized
packets. As the results in Table 3 show, the transmission
of data through TCP adds the most latency (ranging be-
tween 1 and 7µs), but this is expected and is explained
by the fact that the packet goes through additional check-
summing and is written and read from a DRAM buffer.
An other important result in Table 3 is that round trip
times of ping messages from software are almost an or-
der of magnitude higher than inter-FPGA transmission
times, which highlights the shortcomings of the standard
networking stack in software. The measurements were
taken using the ping-flood command in Linux. In the
light of this, we will mainly report consensus latencies
as measured on the leader FPGA (we do this by insert-
ing two timestamps in the header: one when a message
is received and the other when the first byte of the re-
sponse is sent), and show times measured on the client
for experiments that involve the key-value store more.
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Figure 10: Load vs. Latency on leader

7.3 Cost of Consensus

Systems such as Zookeeper require hundreds of mi-
croseconds to perform a consensus round [48, 20] even
without writing data to disk. This is a significant over-
head that will affect the larger system immediately, and
here we explain and quantify the benefits of using hard-
ware for this task. Instead of testing the atomic broadcast
module in isolation, we measure it together with the ap-
plication on the chip, using memaslap on a single thread
sending one million consecutive write requests to the
key-value store that need to be replicated. We chose very
small request size (16 B key and 16 B value) to ensure
that measurements are not influenced by the key-value
store and stress mostly the atomic broadcast module.

Figure 9(a) depicts the probability distribution of a
consensus round as measured on the leader both when
using TCP and direct connections to communicate with
followers. Clearly, the application-specific network pro-
tocol has advantages over TCP, reducing latencies by a
factor of 3, but the latter is more general and needs no
extra infrastructure. Figure 9(b) shows that the latency of
consensus rounds increase only linearly with the request
size, and even for 1KB requests stay below 16µs on TCP.
To put the hardware numbers in perspective we include
measurements of Libpaxos3 [3] and the Raft implemen-
tation used in Etcd [1]. We instrumented the code of both
to measure the latency of consensus directly on th leader
and deployed them on three nodes in our cluster. Unsur-
prisingly the software solutions show more than an or-
der of magnitude difference in average latency, and have
significantly higher 99th percentiles even for this experi-
ment where the system handles one request at a time.

Figure 10 shows how the FPGA system fares under
increasing load of replicated requests. As later shown in
the experiments, with small payloads (<48 B) the system
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can reach up to 2.4 million consensus rounds per second
over TCP and almost 4 million over direct connections
before hitting bottlenecks. In our graph the latencies do
not increase to infinity because we increased throughput
only until the point where the pipeline of the consensus
module and the input buffers for TCP could handle load
without filling all buffers, and the clients did not need to
retransmit many messages. Since we measured latency
at the leader, these retransmitted messages would lead to
false measurements from the leader’s perspective.

7.4 Quorum Variations

The leader can be configured at runtime to consider a
message replicated either when a majority of nodes ac-
knowledged or all of them. The second variant leads to
a system of much stronger consistency, but might reduce
availability significantly. We measured the effect of the
two strategies on consensus latency, and found that even
when the system is under load waiting for an additional
node does not increase latencies significantly. This is de-
picted in Figure 11 both for TCP and direct, “2/3” be-
ing the first strategy committing when at least two nodes
agree and “3/3” the second strategy when all of them
have to agree before responding to the client.

7.5 Distributed Key-value Store

The rest of the evaluation looks at the atomic broadcast
module as part of the distributed key-value store running
on the FPGAs. We measure the round trip times (latency)
on the clients and report maximum throughput with mul-
tiple client machines. As seen in Figure 12, for a single
threaded client round trip times are 30µs larger than the
measurements taken on the leader. The reason for this is
the inefficiency of the software network stack, and is in
line with the ping micro-benchmarks. Interestingly, even
though these numbers are measured on a system with a
single client and one TCP connection, software still adds
uncertainty to the high percentiles.
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When varying the size of the values in the write re-
quests to the key-value store, we can exercise differ-
ent parts of the system. The key size is kept at a con-
stant 16 B for all experiments. Figure 13 and Figure 14
show the achievable throughput for write-only and mixed
workloads (for the former all requests are replicated, for
the latter only a percentage). Naturally, the write-only
performance of the system is limited by the consensus
logic when using direct connections, and by the combi-
nation of the consensus logic and the TCP/IP stack other-
wise. This is because the transmit path on the leader has
to handle three times as many messages as the receive
path, and random accesses to DRAM limit performance.
To further explore this aspect we ran experiments with
a 4 node FPGA setup as well, and seen that the perfor-
mance scales as expected.

For mixed workloads and small requests the clients’
load generation capability is the bottleneck, while for
larger messages performance is bound by the network
capacity. This is illustrated by the two workloads in
Figure 14, one with 10% writes and the other with
20%. Since they show the same performance, the atomic
broadcast logic is not the bottleneck in these instances.
The workload with 20% writes is actually slightly faster
because the average size of responses to the clients gets
smaller (each read request to the key-value store will re-
turn the key, value and headers, while write requests only
return headers and a success message).

We ran Zookeeper and Etcd on three machines each
and performed the same mixed-workload experiment as
before. To make sure that they are not impacted by
hard drive access times, we set up ram disks for persist-
ing logs. Figure 14 shows that their performance is not
bound by the network, and is mostly constant even for
large messages. Both are almost an order of magnitude
slower for small messages than hardware.
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7.6 Leader Election

To exercise leader election and recovery we simulate a
node failure of the leader, which results in a leader elec-
tion round without significant state transfer since the FP-
GAs do not drift much apart under standard operation.
Hence leader election over TCP/IP takes approximately
as long as a consensus round (10µs in average), not
counting the initial timeout of the followers (50µs) Fig-
ure 15 depicts the experiment: we generate write-only
load from several clients for a three node FPGA cluster
communicating over TCP and at the 56 s mark the leader
node fails and a new leader is elected. To make client
transition possible we modified memaslap and added a
timeout of 100 ms before trying an other node (the clients
retry in the same round robin order in which the FPGAs
try to elect leaders). The graph indicates that the dip in
performance is due to the 100 ms inactivity of clients,
since leader election takes orders of magnitude less.

Synchronization of state between nodes happens for
instance when a new node joins the cluster. In Figure 15
we shows the previously failed node recovering after 2
minutes and prompting the new leader to synchronize.
Since at this point the log has been compacted, the leader
will bulk transfer the application state that consists of the
hash table and value area, occupying 256MB and 2GB,
respectively. During synchronization the leader will not
handle new write requests to keep the state stable, hence
the clients will repeatedly time out and resume normal
operation only once the leader has finished the state
transfer. The results show that, as expected, this step
takes between 2-3 seconds, the time necessary to send
the state over 10Gbps network plus clients resuming.

This experiment allows us to make two observations.
First, leader election can be performed very quickly
in hardware because detecting failed nodes happens in
shorter time frames than in software (i.e., in order of 10s
of µs). Hence, leader-change decisions can be taken
quickly thanks to low round-trip times among nodes.
Second, the cost of performing bulk transfers shows that
in future work it will be important to optimize this opera-
tion. The hardware could benefit from the approach used
by related work, such as DARE [48], where the followers
synchronize the newly added node. This leads to smaller
performance penalty incurred by state transfer at the cost
of a slightly more complex synchronization phase.
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Component LUTs BRAM DSPs
PHY and Ethernet (x3) 16k 18 0
TCP/IP + App-spec. 23k 325 0
Memory interface 47k 127 0
Atomic broadcast 10k 340 0
Key-value store 28k 113 62
Total used (% of available) 124k (28%) 923 (63%) 62 (2%)

Table 4: Detailed breakdown of the resource usage

7.7 Logic and Energy Footprint

To decide whether the hardware consensus protocol
could be included in other FPGA-based accelerators or
middleboxes we need to look at its logic footprint. FP-
GAs are a combination of look-up tables (LUTs) that
implement the “logic”, BRAMs for storage, and digital
signal processors (DSPs) for complex mathematical op-
erations. In general, the smaller the footprint of a mod-
ule, the more additional logic can fit on the chip besides
it. Table 4 shows that the ZAB module is smaller than
the network stack or the key-value store, and uses only a
fraction of the LUTs on the chip. The resource table also
highlights that a big part of the BRAMs are allocated
for networking-related buffers and for log management.
While it is true that some of these could be shrunk, in our
current setup where there is nothing else running on the
FPGA, we were not aiming at minimizing them.

One of the goals of this work is to show that it is pos-
sible to build a Zookeeper-like service in an energy effi-
cient way. The power consumption of the FPGAs, even
when fully loaded, is 25 W – almost an order of magni-
tude lower than the power consumption of a x86 server.

8 Related Work
8.1 Coordination in Systems

Paxos [34, 35] is a family of protocols for reaching con-
sensus among a set of distributed processes that may
experience failures of different kinds, including ones in
the communication channels (failure, reordering, multi-
ple transmission, etc.). While Paxos is proven to be cor-
rect, it is relatively complex and difficult to implement,
which has led to alternatives like Raft [46], ZAB [27, 43]
or chain replication [58]. There is also work on adapting
consensus protocols for systems that span multiple phys-
ical datacenters [38, 40, 15], and while they address dif-
ficult challenges, these are not the same problems faced
in a single data-center and tight clusters.

Paxos and related protocols are often packaged as
coordination services when exposed to large systems.
Zookeeper [27] is one such coordination service. It is
a complex multi-threaded application and since its aim is
to be as universal as possible, it does not optimize for ei-
ther the network or the processor. Related work [48, 20]
and our benchmarks show that its performance is capped
around sixty thousand consensus rounds per second and
that its response time is at least an order of magni-

tude larger than the FPGA (300-400µs using ram disks).
Etcd [1], a system similar to Zookeeper, written in Go
and using Raft [46] at its core has lower throughput than
Zookeeper. This is partially due to using the HTTP pro-
tocol for all communication (both consensus and client
requests) which introduces additional overhead.

Many systems (including e.g., the Hadoop ecosys-
tem) are based on open source coordination services
such as Zookeeper and Etcd, or proprietary ones (e.g.,
the Chubby [14] lock server). All of them can bene-
fit from a faster consensus mechanisms. As an illustra-
tion, Hybris [20] is a federated data storage system that
combines different cloud storage services into a reliable
multi-cloud system. It relies on Zookeeper to keep meta-
data consistent. This means that most operations per-
formed in Hybris directly depend on the speed at which
Zookeeper can answer requests.

8.2 Speeding up Consensus

Recently, there has been a high interest in speeding up
consensus using modern networking hardware or remote
memory access. For instance DARE [48] is a system
for state machine replication built on top of a proto-
col similar to Raft and optimized for one-sided RDMA.
Their 5 node setup demonstrates very low consensus la-
tency of <15µs and handles 0.5-0.75 million consensus
rounds per second. These numbers are similar to our re-
sults measured on the leader for 3 nodes (3-10µs) and,
not surprisingly, lower than those measured on the un-
optimized software clients. While this system certainly
proves that it is possible to achieve low latency consen-
sus over Infiniband networks and explores the interest-
ing idea of consensus protocols built on top of RDMA,
our hardware-based design achieves higher throughput
already on commodity 10 GbE and TCP/IP.

FaRM [23] is a distributed main-memory key value
store with strong consensus for replication and designed
for remote memory access over 40Gbps Ethernet and
Infiniband. It explores design trade-offs and optimiza-
tions for one-sided memory operations and it demon-
strates very high scalability and also high throughput for
mixed workloads (up to 10M requests/s per node). FaRM
uses a replication factor of three for most experiments
and our hardware solution performs comparably both in
terms of key-value store performance (the hardware hash
table reaches 10 Gbps line-rate for most workloads [29])
and also in terms of consensus rounds per second, even
though the FPGA version is running on a slower network.

NetPaxos [18] is a prototype implementation of Paxos
at the network level. It consists of a set of OpenFlow ex-
tensions implementing Paxos on SDN switches; it also
offers an alternative, optimistic protocol which can be
implemented without changes to the Open- Flow API
that relies on the network for message ordering in low
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traffic situations. Best case scenarios for NetPaxos ex-
hibit two orders of magnitude higher latency than our
system, FARM, or DARE. It can also sustain much lower
throughput (60k requests/s). The authors point out that
actual implementations will have additional overheads.
This seems to indicate that it is not enough to push con-
sensus into the network but it is also necessary to opti-
mize the network and focus on latency to achieve good
performance. In more recent work [17] the same authors
explore and extend P4 to implement Paxos in switches.
While P4 enables implementing complex functionality in
network devices, the high level of abstraction it provides
might make it difficult to implement the kind of proto-
col optimizations we describe in this paper and that are
necessary to achieve performance comparable to that of
conventional systems running over Infiniband.

Similar to the previously mentioned work, Speculative
Paxos[49] suggests to push certain functionality into the
network, e.g., message ordering. The design relies on
specific datacenter characteristics, such as the structured
topology, high reliability and extensibility of the network
through SDN. Thereby, it could execute requests specu-
latively and synchronization between replicas only has to
occur periodically. Simulations of the proposed design
show that with increasing number of out-of-order mes-
sages the throughput starts to decrease quickly, since the
protocol and application have to rollback transactions.

8.3 Quicker and Specialized Networking

One of the big challenges for software applications fac-
ing the network is that a significant time is spent in the
OS layers of the network stack [47, 31] and on multi-
core architectures response times can increase as a result
of context switching and memory copies from the NIC
to the right CPU core. As a result, there are multiple
frameworks for user-space networking [28, 31], and on
the other end of the spectrum, operating systems [12, 47]
that aim to speed up networking by separating schedul-
ing and management tasks. The use of RDMA [22, 44] is
also becoming common to alleviate current bottlenecks,
but there are many (legacy) systems that rely on the guar-
antees provided by TCP, such as congestion control, in-
order delivery and reliable transmission. Although some
functionality of the network stack is offloaded to the
NIC, processing TCP packets still consumes significant
compute resources at the expense of the applications.
Hardware systems, as we present in this paper, are imple-
menting network processing as a dataflow pipeline and
thereby can provide very high performance combined
with the robustness and features of TCP.

A good example of what can be achieved with user-
space networking is MICA [37], a key-value store built
from the ground up using Intels DPDK [28] library. The
results of this work are very promising: when using

a minimalistic stateless protocol the complete system
demonstrates over 70 million requests per second over
more than 66Gbps network bandwidth (using a total of
8 network interfaces and 16 cores). It is important to
note however that in MICA and similar systems skewed
workloads will experience slowdowns due to the parti-
tioned nature of the data structures. Additionally, a sig-
nificant part of the servers logic (for instance comput-
ing the hash function on keys, or load balancing) is of-
floaded to clients. Our aim with the hardware solution on
the other hand was to offer high throughput, low latency
while relying on simple clients and commodity networks.

8.4 Hardware for Middleboxes

There is a wide spectrum of middlebox implementations
ranging from all-software [42, 21, 8, 39], through hy-
brid [52, 9], to all-hardware [19]. One advantage of us-
ing FPGA-based solutions over software is that data can
be processed at line-rate and only a minimal overhead in
terms of latency is added. In ClickOS [42], for instance,
adding a 40ms delay to get load balancing or congestion
control is considered a good tradeoff. A hardware-based
solution like the one we propose can perform even more
complex operations, possibly involving coordination and
consensus, in a fraction of that overhead.

9 Conclusion
In this paper we have explored a number of research
questions aiming at determining whether the overhead
of consensus can be removed as a bottleneck in dis-
tributed data processing systems. First, we have shown
that it is possible to reduce the cost of reaching consensus
without compromising reliability or correctness, through
the means of specialized hardware. Second, based on
the low latency and high throughput achieved, we have
shown how to use the hardware consensus to implement
a fully functional version of Zookeeper atomic broadcast
with a corresponding key-value store. Third, we have ar-
gued that the proposed consensus module is agnostic to
the actual request contents sent to the application and,
hence, it could easily be integrated with middleboxes or
other accelerators/microservers built with FPGAs. Fi-
nally, we have explored the benefits of using a custom
messaging protocol for reducing latency, establishing the
basis for further research into application specific proto-
cols over secondary networks.
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