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Abstract
Network operators measure Internet routes to trou-
bleshoot problems, and researchers measure routes to
characterize the Internet. However, they still rely on
decades-old tools like traceroute, BGP route collectors,
and Looking Glasses, all of which permit only a sin-
gle query about Internet routes—what is the path from
here to there? This limited interface complicates answer-
ing queries about routes such as “find routes traversing
the Level3/AT&T peering in Atlanta,” to understand the
scope of a reported problem there.

This paper presents Sibyl, a system that takes rich
queries that researchers and operators express as regu-
lar expressions, then issues and returns traceroutes that
match even if it has never measured a matching path in
the past. Sibyl achieves this goal in three steps. First,
to maximize its coverage of Internet routing, Sibyl inte-
grates together diverse sets of traceroute vantage points
that provide complementary views, measuring from thou-
sands of networks in total. Second, because users may
not know which measurements will traverse paths of inter-
est, and because vantage point resource constraints keep
Sibyl from tracing to all destinations from all sources,
Sibyl uses historical measurements to predict which new
ones are likely to match a query. Finally, based on these
predictions, Sibyl optimizes across concurrent queries to
decide which measurements to issue given resource con-
straints. We show that Sibyl provides researchers and op-
erators with the routing information they need—in fact,
it matches 76% of the queries that it could match if an
oracle told it which measurements to issue.

1 Introduction

Operators and researchers need Internet route measure-
ments to keep the Internet running smoothly, to under-
∗The two lead authors are listed alphabetically. They conducted

some of this research as visiting scholars at USC.

stand its behavior, and to improve it for the future [61, 75].
Route measurements help identify performance prob-
lems caused by circuitous routing [34, 58, 73], loops
and loss caused by inconsistency during route conver-
gence [11, 23, 28, 35, 36, 52, 60, 69], and outages caused
by misconfigurations [7, 31, 32, 51, 74]. Route measure-
ments can reveal malicious hijacks [76] and inadvertent
routing leaks [24]. Route measurements are also used to
understand the Internet’s structure [2, 6, 29, 41, 57, 71]
and performance [42].
The ideal: An Internet route oracle. Given the im-
portance of route measurements, one can imagine a cen-
tralized platform that could be queried for any Internet
route of interest. Which end-points in Europe route to
each other circuitously via networks in other continents?
Which routes traverse the Atlanta peering between Level3
and AT&T that seems to be experiencing congestion? Is
the problem more widespread—which routes traverse a
peering between Level3 and AT&T that is not in Atlanta?
Which routes go through Level3 in Atlanta without go-
ing through AT&T? Which Tor exit nodes have routes
to my destination that do not traverse the US? A plat-
form that can answer such questions would enable better
understanding and faster troubleshooting for researchers
and operators.
The reality: Traceroute. While such a platform would
be enormously useful, the reality today is far from it.
We are stuck with tools like traceroute. While tracer-
oute is simple, widely used, and has been incredibly use-
ful [1, 2, 6, 7, 13, 22, 27, 29, 31, 32, 41, 42, 51, 57, 61, 71,
73, 74, 75, 76], it offers a very limited capability–it can
only answer “what is the path from here to there?” We
are used to asking this question, so it seems natural, but
in fact it is only one of the many questions we might ask
about Internet routes, limiting the ability of operators and
researchers to access the routing information they need.
The Outages network operators mailing list [51] illus-
trates the problem—operators frequently send a tracer-
oute to the mailing list when experiencing problems [7],
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asking other operators to send traceroutes from their van-
tage points, in the blind (and often unsuccessful) hope
that someone will issue a measurement that illuminates
the problem.
Our contribution: A practical traceroute-based oracle.
While a complete oracle for Internet routing is clearly
infeasible without radical changes to the network, we
demonstrate that we can come surprisingly close using
only available vantage points and measurement tools.

We present Sibyl,1 our system that can serve a rich set of
queries about Internet routes. Sibyl’s interface is simple
yet powerful: a user submits a regular expression de-
scribing paths of interest (§3.2), and Sibyl returns routes
that match. Users need not worry about which vantage
points to use, how to access or configure them, or which
destinations to target. Behind the scenes, Sibyl issues
traceroutes from a diverse set of vantage points, with the
goal of satisfying a query if any vantage point has routes
that match. Our evaluation in Section 8.2 shows that
combining vantage points from multiple measurement
platforms achieves unprecedented coverage, better than
even successful crowd-sourced measurements [55, 56].
The problem: Resource constraints limit measure-
ment budgets. Although the integration of multiple sets
of vantage points offers the potential to improve cover-
age [8, 64], most vantage points are severely constrained
in the number of measurements they can issue. This
constraint occurs because the most diverse sets of van-
tage points are in home networks [55, 56, 57, 62], on
personal phones [73], and on production devices [63],
settings in which measurements cannot be allowed to in-
terfere with other uses of already scarce resources. Thus,
exhaustive probing to answer a query is infeasible, and
allocating limited measurements to maintain an up-to-
date atlas in the face of path changes is an extremely hard
problem [15].

The main challenge in building Sibyl to serve any query
is that, due to its limited probing budget, it may have
never previously measured a path that matches the query
or, even if it did, the path may have changed since. As a
result, it needs to serve queries despite uncertainty about
which measurements match the queries.
Our approach: Allocate measurement budget based
on predictions. Our primary technical contributions to
overcome this challenge are three-fold. First, we demon-
strate how Sibyl can use the structure of a query to focus
its attention on a small number of traceroutes to con-
sider issuing (§6). Second, we design a prediction engine
which uses an atlas of previously-issued traceroutes to
predict which unissued traceroutes are likely to match
input queries (§5). Third, we develop an optimization

1Named for the oracular Sibyls of ancient Greece, not the pesky Sybils
who keep undermining our P2P systems.

framework that uses the predictions to allocate Sibyl’s
probing budget to measurements that maximize how well
it satisfies input queries (§4).

Building an effective prediction engine requires ad-
dressing potential causes of inaccuracy. First, the predic-
tion engine could make an incorrect prediction from even
an up-to-date atlas, due to inaccuracies in the model-
ing of routing policy. Second, measurements in the atlas
may become out-of-date. So, we develop techniques to
evaluate how likely a prediction is to be correct (§5.2),
allowing Sibyl to incorporate the likelihood into its opti-
mizations, and we develop lightweight approaches Sibyl
can use to identify and patch or discard paths that may no
longer be correct (§7).

Our evaluation (§8) shows that, using this prediction
approach, Sibyl can serve 32% more queries than it could
without calculating likelihoods and can, despite stringent
rate limits, serve 76% of the test queries that it could if it
had an oracle informing it which measurements to issue.

2 Motivating Sibyl’s approach

Traceroute is widely supported, and when the right tracer-
oute measurement is at hand, it can prove useful for a
range of tasks. Therefore, we use traceroute measure-
ments as the basis of Sibyl and strive to overcome its
limitations.
Opportunity: Combining platforms improves cover-
age. Today, one can use a number of publicly acces-
sible measurement platforms that offer vantage points
(VPs) across the world in order to issue traceroute mea-
surements. In this paper, we focus on platforms at two
extremes—small numbers of powerful VPs in a some-
what homogeneous deployment (PlanetLab) versus large
numbers of severely limited VPs in networks around the
world (RIPE Atlas and traceroute servers). In addition,
Dasu and DIMES each offer several hundreds to several
thousands of VPs from which one can issue traceroutes.
For a few of these platforms, Figure 1a presents the num-
ber of VPs they offer and the number of ASes across
which these VPs are spread. Although Figure 1a shows
that the number of ASes in which RIPE Atlas offers VPs
is much higher than in other platforms, we see in the
Unique portions of the bars of Figure 1b that each of the
other platforms contributes significantly to improving the
number of distinct ASes covered by VPs. For all three
of PlanetLab, Dasu, and traceroute servers, 30%–60% of
ASes in which they have VPs do not host VPs for any of
the other platforms.
Challenge: Resource constraints limit probing rates.
The wide spread of RIPE Atlas and the presence of other
VPs in ASes without Atlas probes show promising cov-
erage for a unified system. But, effective use is compli-
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Platform # of VPs # of ASes
PlanetLab (PL) 422 260

RIPE Atlas (RIPE) 7699 2716
Traceroute servers (TS) 499 494

DIMES <400 –
Dasu – 288

(a) Sizes of measurement platforms.
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(b) Vantage point uniqueness.
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(c) Path diversity. Dashed lines obey rate limits.
Figure 1: Utility of combining measurement platforms: (a) Comparison of deployment sizes. (b) % of ASes hosting a
platform’s vantage points (VPs) that: (i) only host that platform; (ii) also host a RIPE Atlas VP; (iii) or host a VP from
another non-Atlas platform. (c) Path diversity, with/without rate limits that exist in practice.

cated because the most diverse sets of VPs have severe
and inevitable resource constraints. Good visibility re-
quires an ability to measure from many networks low in
the AS hierarchy [48], and researchers have argued and
demonstrated that the way to achieve this viewpoint—
especially in remote and developing regions—is to gather
measurements from mobile devices [70, 73] and home
networks [12, 17, 22, 55, 56, 57, 62], settings in which
resources are scarce and researchers are guests. To give
a sense of the constraints, measuring a traceroute ev-
ery 5 minutes to all 500,000 BGP prefixes would take
more than 40 Mbps—much higher than typical uplink
bandwidth in many parts of the world.2 And, to avoid
interfering with the hosts, the platforms limit measure-
ments to only a small fraction of this rate. Traceroute
servers also offer diverse VPs, but these machines serve
an operational role and so do not allow a fast rate of mea-
surement. Future faster rates will still strain in the face of
measurement-hungry use cases such as network tomog-
raphy [9, 14] and studying route convergence [36, 69],
which require consistent snapshots or rapid tracking of
changes, respectively.

Figure 1c depicts one measure of the impact of limited
probing budgets. It plots the number of unique ASes
seen when using the vantage points in PlanetLab, RIPE
Atlas, and traceroute servers in isolation and in combi-
nation, with and without rate limits. In each case, we
consider traceroutes to the .1 address in the same 1000
IP prefixes, and we do not count the source AS (which
we accounted for in Figure 1b). We have measurements
from every PlanetLab site, RIPE vantage points in 2000
ASes not covered by PlanetLab, and traceroute servers
in 200 ASes not covered by RIPE. Ignoring rate limits,
RIPE vantage points provide routes to most destinations
through > 600 transit ASes, versus only ≈ 100 when us-
ing PlanetLab or traceroute servers alone. Figure 1c also

2Beyond constraints on the VPs, we do not want to overload upstream
devices or links with measurement traffic, and routers and other devices
increasingly rate-limit and de-preference these probes.

depicts the path diversity we can uncover if we allocate a
day’s Atlas probing budget and a day’s traceroute server
rate limit evenly across the 1000 destinations. RIPE en-
forces a per user aggregate rate limit across all sources
and destinations. Here, we split it across a quarter of
the Atlas VPs and 0.2% of the Internet’s prefixes. We
follow established research best practices [40, 59] and
limit ourselves to one traceroute every 5 minutes per pub-
lic traceroute server. These limits result in us randomly
choosing 16–17 RIPE vantage points and 57–58 tracer-
oute servers from which to probe each destination, and
the graph shows results averaged across 10 trials. Given
these severe rate restrictions, the benefit of PlanetLab—
and its very high achievable probe rate—becomes clear,
and the route diversity is much better if we combine the
rate-limited traceroute servers and Atlas platform with
the smaller, but less restrictive PlanetLab platform.
Challenge: Rate limits necessitate decisions in the face
of uncertainty. The vast gap between the full diversity
of paths seen in Figure 1c and the diversity seen when
subject to rate limits shows that we have to be quite dis-
cerning in how we allocate a limited probing budget, to
make sure we are issuing the measurements most useful
to the queries at hand. We cannot issue measurements
fast enough to have up-to-date paths to large numbers of
destinations—the rate limits imposed by Atlas and tracer-
oute servers [40, 59] mean that it would take years to
measure routes from their VPs to all 500K BGP prefixes.
Therefore, to serve queries well, it is necessary to rea-
son effectively about which traceroutes to issue despite
uncertainty about routes that measurements will traverse
and, hence, which traceroutes will satisfy queries.

3 System overview

Goal. Our goal is to provide researchers and opera-
tors with route measurements of interest to them. Our
system should allow them to express properties of inter-
est in a natural way, without the user needing to know a
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Figure 2: Sibyl architecture.
priori which (source, destination) pairs will yield paths
with those properties. Section 2 shows existing tracer-
oute platforms offer rich path diversity, if the system can
respect resource constraints while efficiently measuring
only the paths most useful in serving received queries.

3.1 Basic architecture
Figure 2 depicts Sibyl. Users submit queries to the sys-
tem (§3.2). It operates in rounds, queueing up queries
in between rounds. This round-by-round operation al-
lows us to formulate the decision as a clean optimiza-
tion, simplifies rate limiting, and aids in efficient use of a
probing budget by batching requests. RIPE Atlas, for in-
stance, is designed to perform more efficiently when given
batches of measurements. Each round, the system pre-
dicts which traceroutes might be useful to match pending
queries (§5 and §6). It then formulates an optimization
to select the traceroutes to issue given measurement re-
source constraints (§4.1–4.2) and solves the optimization
greedily (§4.3). It issues the measurements, collects the
results, and returns results that match user queries.

Sibyl currently uses vantage points from PlanetLab,
RIPE Atlas, and traceroute servers. We developed a con-
troller for each that exposes them via a common API,
including information on available vantage points and
rate limits, and commands to request and collect tracer-
outes. A central controller integrates the three platform
controllers to present the rest of Sibyl with a unified view.
In the background, we issue daily traceroutes from all
PlanetLab sites to responsive destinations across the In-
ternet [25] to bootstrap Sibyl’s knowledge of routing.

3.2 Specifying queries
Just as other work found regular expressions to be a
natural way to express properties of paths [46, 67], we
support queries in a form that we refer to as symbolic
regular expressions over IP addresses. Symbolic regu-
lar expressions are an analogue to symbolic finite au-
tomata [65], in which transitions are labeled with Boolean
predicates on IP addresses, rather than directly with IP ad-
dresses. These predicates allow, for example, the natural
expression of Sprint(x)&CHI(x) rather than listing all
Sprint IP addresses in Chicago. We will use the notation
Sprint&CHI. A predicate can delineate any subset of IP

addresses, but our UI currently supports ASes, cities, and
countries, 3 and also prefixes for sources/destinations.4

Users augment their queries with a utility function
that indicates how well a set of traceroutes satisfies their
needs. Sibyl’s UI currently supports two types of utility
functions that we believe cover a wide range of queries.
For existence queries, the user wants one matching path,
e.g., the user may want to know the path from a particu-
lar network to a specific destination. The utility is zero
if no measurements match, or a constant value if one or
more measurements match. For diversity queries, the
user wants a set of paths matching the query in as diverse
ways as possible. For example, the user may want to
know all paths that pass through a given AS link, in order
to learn the set of (source, destination) pairs that use that
link. The utility is a function of path diversity, which we
model as a constant times the number of distinct elements
seen in the set of measurements that match the query. The
user specifies the granularity of elements by selecting any
combination of (AS, city, and country). Again, if none of
the traceroutes match the query, the utility is zero.

Now, let us consider a few example queries, in POSIX
ERE-like syntax with dashes in between symbols for clar-
ity. Parentheses create a group, whereas curly braces in-
dicate that the query is a diversity query and delineate the
portion of the query to diversify over.

Reverse traceroute [30]: To query for a path from a
network r back to a source s, the user requests:

r-.*-s$

Detecting prefix hijacks with iSpy [76]: iSpy monitors
paths towards a prefix p in the background. When the AS
loses reachability to other destinations, iSpy considers it a
normal outage if the destinations share common subpaths
to the AS, or a hijack if the destinations represent a large
cut in the graph towards p. To identify diverse AS paths
for iSpy to monitor, an operator could query for:

^{.*}-p$ by <AS>

Troubleshooting a problem [51]: On January 6, 2015,
an operator emailed the Outages mailing list suspecting
a problem on paths that went between Level3 in LA and
GTT in Seattle, and he wanted to check other paths with
that subpath. He was requesting:

^{.*-(GTT&SEA-.*-Level3&LAX |
Level3&LAX-.*-GTT&SEA)-.*}$ by <AS,city>

3Mapping IP addresses to PoPs, ASes, and locations are active areas
of research. We use iPlane’s PoP and AS mappings and MaxMind’s
location data. Sibyl is agnostic to how mappings are generated, and its
results will improve as mappings do.
4Our techniques for deciding which measurements to issue in response
to a query (§5) base decisions on previous measurements of routing,
so implicitly encode routing policies and hence avoid wasting mea-
surements trying to match unlikely regular expressions, such as one
that asks for a path that traverses every Tier-1 network.
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Another operator replied that traceroutes with the prob-
lem seemed to traverse a Seattle peering between GTT
and NTT. To see if the problems occurred on GTT paths
with other peers as well, one might query for:

^.*-{[^NTT-Level3]}-GTT&SEA-
{[^NTT-Level3]}-.*$ by <AS>

Appendix I presents screenshots of Sibyl’s query inter-
face for the last of these examples.

3.3 Key problems to solve
Section 2 described two key challenges Sibyl must over-
come in integrating traceroute platforms to serve these
types of queries: severe probing rate limits induced by
resource constraints, and the need to decide how to allo-
cate these limited probes despite not knowing definitively
which traceroutes will satisfy queries. To overcome these
challenges, we address the following sub-problems:
• (§4) Suppose we can address uncertainty by capturing

the likelihood that a traceroute, if issued, will match a
query. How should Sibyl allocate its probing budget to
best serve queries?
• (§5) How can Sibyl calculate those likelihoods?
• (§6) Given that the set of possible measurements is

large, how can Sibyl limit the set of traceroutes it has to
consider issuing (and hence calculate likelihoods for)?

4 Maximizing returns from rate limits

Since Sibyl cannot issue every traceroute—or even ev-
ery traceroute that would match the queries—in a given
round, it needs to intelligently allocate its probing bud-
get to best serve a set of queries. Because Sibyl must
issue a traceroute in order to know definitively whether it
matches a query, Sibyl’s goal is to maximize the expected
utility of the traceroutes it issues. This section describes
how Sibyl allocates its budget, assuming it has an oracle
that answers, for every possible traceroute, the likelihood
that the traceroute, if issued, will match a particular query.
Section 5 describes how Sibyl estimates these likelihood
values to approximate such an oracle.

4.1 Accounting for rate limits
Since we want Sibyl to incorporate different sets of VPs to
improve coverage and path diversity, we need to account
for the different kinds of rate limits across platforms. The
rate at which a PlanetLab node can probe is limited by
the ability of our traceroute tool to send and receive and
by the available bandwidth. ISPs make traceroute servers
available through websites, but restrict how often one can
issue traceroutes from a website. RIPE Atlas users earn

credits for hosting probes, then spend credits by issuing
measurements. We host a number of Atlas probes in
order to earn credits, but RIPE caps the number of credits
a user can spend in a day regardless of credit balance.

We unify these different types of rate limits as follows.
First, we group together each set of vantage points that
are subject to a shared aggregate rate limit. For the i’th
such set, we will use the notation Vi = {vi,1,vi,2,vi,3, . . .}
to indicate the vantage points in set Vi , and let V =
{V1,V2,V3, . . .,Vn} be the collection of n sets used. For
PlanetLab, each host is in a singleton set, since the num-
ber of traceroutes sent from one PlanetLab site does not
affect the number that can be sent from another. For
traceroute servers, we group the hosts behind a common
web interface (generally the hosts in one ISP), since we
are limited in how often we can query a website without
drawing complaints. For RIPE Atlas, we group together
all vantage points in the platform, since they are subject
to a platform-wide credit budget and daily limit.

Second, in each round, Sibyl has a multi-element bud-
get of traceroutes it can issue, with one budget per set of
vantage points inV . For rate-limited vantage points like
PlanetLab or traceroute servers, the per-round traceroute
budget for a set reflects the rate limit on the set and the
duration of the round. For credit-based vantage point
platforms like RIPE Atlas, we set a per-round aggregate
budget for all traceroutes from the platform to reflect the
number of credits we earn in a round.5

4.2 Formulating the optimization
In a given round r , we have a set of queries Q =
{q1,q2, . . .,qm }, each with a corresponding utility func-
tion fq1, fq2, . . ., fqm that maps a set of traceroutes
to a score. For each set of vantage points V ∈ V ,
we have a per round budget CV . Each V defines
a set of possible traceroutes TV = {tv,d | v ∈ V, d ∈
the set of all Internet destinations D}, where tv,d is the
traceroute from v to d, and we have to select a subset
Tr,V ⊆ TV to issue in round r such that |Tr,V | ≤ CV .

Our goal is to select traceroutes, subject to budget con-
straints, to maximize the combined utility across queries:

max
Tr

f (Tr ), where Tr =
⋃
V ∈V

Tr,V

and f (Tr ) =
∑
q∈Q

fq (Tr )

subject to |Tr,V | ≤ CV ∀V ∈ V

(1)

Since we cannot know whether a traceroute satisfies a
query before issuing it, in practice, Sibyl maximizes the

5We adjust the exact budget round-by-round to allow overspending when
we have banked a surplus or exercise caution when reserves run low,
as well as to cap it to not exceed the daily platform limit.

5
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expected utility. We use the notation t ∈ q to indicate
that traceroute t satisfies query q. Assuming an ability to
determine the likelihood p(t ∈ qexist) for any traceroute t
matching an existence query qexist,6 Sibyl calculates the
expected utility E

[
fqexist (Tr )

]
as the probability that at

least one traceroute matches the query:

E
[

fqexist (Tr )
]
= 1−

∏
t ∈Tr

(
1− p(t ∈ qexist)

)
(2)

Sibyl calculates the expected utility for a diversity query
in a similar way, except that the likelihood values capture,
for every path element h at the diversification granular-
ity as defined by a Boolean predicate on IP addresses,
the probability that t satisfies qdiv and traverses h (Ap-
pendix D.3 presents an example):

E
[

fqdiv (Tr )
]
=
∑
h

��
�
1−
∏
t ∈Tr

(
1− p(t ∈ qdiv∧∃i ∈ t : h(i)

)��
�

(3)
(In practice, Sibyl scales down diversity utility scores,
which are per (query,hop), to balance vs existence queries,
which are per (query).)

4.3 Solving the optimization
We apply a greedy algorithm to select the measurements
to issue in every round. At each step, Sibyl chooses to
issue the traceroute that fits in the budget (meaning that
the source VP must be part of a set V for which budget
remains) and that provides the largest marginal expected
utility on top of those already chosen.7 It stops when
no budget remains for the round or when no traceroutes
provide additional expected utility. While it may seem
like a complicated problem, with a multi-part budget,
multiple queries, and queries that desire diverse sets of
traceroutes, in fact the greedy algorithm is known to have
a provably good approximation bound for this class of
problems. See Appendix A for details.

In addition to having good approximation performance,
the runtime of our greedy algorithm is reasonable. The
runtime is reasonable because both existence and diver-
sity queries allow us to calculate the marginal expected
benefit of each possible traceroute in time proportional
to the number of queries, without growing with the num-
ber of traceroutes already issued. Appendix A describes
other utility functions Sibyl supports. The worst-case
runtime is thus proportional to the size of the budget
(the number of greedy steps) times the number of tracer-
outes under consideration (to assess marginal benefit

6For simplicity, we assume independence in how well traceroutes satisfy
different queries, and in whether different traceroutes satisfy a query.
7The marginal expected utility of adding a traceroute t to a set of
previously selected traceroutes T is E[ f (T ∪ {t })]−E[ f (T )].

of each during each greedy step) times the number of
queries (to calculate the marginal utility of the tracer-
oute). Most traceroutes under consideration do not match
most queries, i.e., fq (t) = 0 most of the time, simplify-
ing the calculation of marginal benefit in practice. Sibyl
also limits the number of traceroutes under consideration
based on the structure of queries (§6).

5 Estimating likelihood of satisfying queries

Sibyl approximates an oracle by using the subset of paths
for which it has relatively fresh measurements to pre-
dict other paths, checking whether the predictions match
queries, and estimating how confident it is in the predic-
tions. PlanetLab paths are stable relative to how often
we can refresh PlanetLab measurements. Further, while
paths from diverse RIPE Atlas and traceroute server VPs
in general change more than PlanetLab paths and cannot
be refreshed frequently, the portions of paths near these
VPs tend to be quite stable.8 Based on these observa-
tions, our design predicts paths by composing the relative
freshness of paths to destinations from PlanetLab with
the long-term stability of the beginning portions of paths
from other VPs in order to predict unknown paths from
these VPs, overcoming the rate limits that keeps us from
measuring a full map in a timely fashion.

5.1 Predicting unknown paths
We adapt iPlane’s path splicing approach [39] to predict
whether a particular unmeasured path is likely to match
a query. To predict the path from s to d, iPlane splices a
path from s (to some destination) with a path to d (from
some source), if they traverse a common point of presence
(PoP, a set of routers in the same location and same AS),
which we refer to as the splice PoP.

Although iPlane’s approach provides a basic mecha-
nism for using measured paths to predict unknown paths,
it has two major limitations for our needs. First, iPlane’s
predictions can be wrong; our experiments found 32% of
its AS path predictions to be incorrect. Second, iPlane
does not calculate how confident it is in its prediction.
Even if iPlane predicts (vantage point, destination) pairs
as candidates to match a query, it fails to provide guid-
ance on which paths are more likely to match the query
than others, given limited measurement budgets.

We overcome these shortcomings in iPlane’s path splic-
ing approach as follows. For a (vantage point v, desti-
nation d) pair, while iPlane selects a single best guess
for the route between them, we instead consider all pos-
sible ways to splice previously measured paths from v

with previously measured paths to d. We then estimate

8Measurements supporting these claims appear in Appendix B.
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our confidence in the correctness of each spliced path in
the set S of all possible spliced paths from v to d. We
denote the confidence as p(v→ d = s) (normalized such
that
∑

s∈S p(v→ d = s) ≤ 1). Given these confidence es-
timates, we compute the likelihood p(v→ d ∈ q) of the
traceroute from v to d matching a query q as the sum of
confidence in the spliced paths that match the query:9

p(v→ d ∈ q) =
∑

s∈S∧s∈q
p(v→ d = s) (4)

Appendix D.2 illustrates how the above process works.

5.2 Assigning confidence to predictions
To assess the confidence in each spliced path, we employ
RuleFit, a supervised machine learning technique [20].
We describe how we train and apply a RuleFit model.
The model takes the set of spliced paths of a particu-
lar prediction and assigns confidence to each based on
features of the paths.
Training the RuleFit model RuleFit is a supervised
machine learning technique based on rule ensembles. In
our case, we supply RuleFit with a training set that maps
from features of a predicted (spliced) path (e.g., the pre-
dicted path’s AS-path length and the latency from the
source to the splice point; Appendix C describes all fea-
tures) to the similarity between the spliced path and the
actual path. As a measure of similarity, we use the PoP-
level Jaccard index. RuleFit then generates thousands
of rules that combine features in logical expressions and
builds a model using rules that help predict the Jaccard
index. RuleFit automatically generates and selects rules
(and indirectly, features) using techniques such as deci-
sion trees and lasso constraints. See the RuleFit paper
for details [20]. Each rule selected by RuleFit has an
associated value, with positive (negative) values for rules
meant to identify predicted paths similar (dissimilar) to
the real path, indicating high (low) Jaccard index. Impor-
tant features may change over time, as the Internet and
the set of Sibyl VPs evolves. We track the accuracy of
predictions over time to identify if performance drops and
can re-initiate training. For the evaluation in Section 8,
we use traceroutes from 100 PlanetLab sites to 500 des-
tinations and from all RIPE Atlas (Atlas) and traceroute
server (TS) sites to 50 destinations to generate spliced
paths from Atlas and TS sites to the 500 destinations.
We randomly chose 2.5% of the spliced paths to train a
RuleFit model.

9The likelihood value for an (v, d) pair need not directly or inversely
correlate with the number of spliced paths between the pair, as it
depends on how confidence varies across spliced paths and on which
spliced paths match the query. For example, if p(v→ d = s1) = 0.5
and p(v→ d = s2) = 0.25, p(v → d ∈ q) could be 0.25 (s2 ∈ q),
0.5 (s1 ∈ q), 0.75 (s1 ∈ q and s2 ∈ q), or 0 (neither matches).

Using the RuleFit model To use the model to estimate
the Jaccard index of a predicted (spliced) path from v

to d, Sibyl calculates the features of the predicted path,
then uses the RuleFit model to score the path. The score
for a spliced path is the sum of rule values for rules
that match the spliced path’s features; e.g., if the spliced
path’s AS-path length is among the shortest, then increase
the confidence (score) that it is very similar to the actual
path. It repeats this process for every spliced path between
(v,d).

Sibyl translates these estimates of similarity between a
(known) spliced path and (unknown) actual path into a
confidence estimate that a query that matches (does not
match) the spliced path will also match (not match) the
actual path. We assign each predicted path a confidence
proportional to its RuleFit score, normalized to sum to the
highest predicted Jaccard index among all spliced paths
for v→ d. Sibyl uses these confidence values to estimate
the likelihood that a traceroute will match a query, using
Eq. 4, which it then uses to optimize the expected utility
of the traceroutes it chooses to issue, in Eq. 1.

Section 8.3 evaluates the accuracy of Sibyl’s likelihood
estimates, Appendix E evaluates the accuracy of its Jac-
card index predictions, and Appendix C describes the
RuleFit model in more detail.

6 Limiting traceroutes to consider

Thus far, our description has assumed that we estimate
the likelihood of matching a query for every possible
traceroute from every vantage point, and then use these
likelihood values to choose the subset of traceroutes that
Sibyl should measure in order to maximize utility, given
rate limits. However, due to the non-negligible computa-
tion associated with the estimation of likelihood values,
running this computation on all (vantage point, destina-
tion) pairs is not practical.

Instead, Sibyl computes the likelihood of matching a
query q only on a subset of candidate paths it deems likely
to match the query. The goal of candidate generation is
to identify (vantage point v, splice PoP r , destination
d) tuples such that Sibyl has a previous traceroute from
v going through r that matches a prefix of the query
q (possibly the empty prefix), and has a traceroute to
d through r that matches the remaining suffix (possibly
empty). For example, candidate generation for the query
Level3-Cogent-.*-SmallISP could find a path that
traverses a Level3-Cogent link on the way to some r ,
then another path that traverses r on its way to SmallISP.
The process works as follows.

1. Given the query q, construct a symbolic finite au-
tomaton Aq that accepts Lq , the language of paths
that match the expression q.

7
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2. Run Aq over all traceroutes previously gathered from
Sibyl’s VPs, which consists of evaluating the hops’
IP addresses against Aq’s transition predicates, test-
ing, for example, AS membership. Label each
(source, PoP) tuple with all of the state-to-state tran-
sitions that Aq can follow in consuming one of the
PoP’s IP addresses when processing a traceroute
from that source.

3. Build AR
q by swapping Aq’s initial and final states

and reversing transitions. AR
q accepts the language

LR
q consisting of the reverse of all paths in Lq .

4. Run AR
q over all traceroutes, starting from the des-

tinations and proceeding backwards, labeling each
(destination d, PoP r) tuple with all the transitions
that AR

q can follow in consuming r starting from d.

5. If a PoP ends up labeled as following a transition
in one direction from a source and in the opposite
direction from a destination, then the spliced path
matches the entire query.

Appendix D.1 presents an example of this sequence of
steps.

7 Patching & pruning stale measurements

Previous sections assume the availability of an atlas of
historical measurements that serve as the basis for pre-
dictions. Resource-constrained VPs do not have enough
resources to refresh all measurements regularly, and so
routes may change between measurements. Therefore,
Sibyl needs to balance between discarding old measure-
ments to reduce the risk of out-of-date ones causing faulty
predictions, versus using them in predictions to aid cov-
erage (since many old measurements may still be valid).
Given that most (s, d) pairs use a single route the vast ma-
jority of the time [15, 52], we err on the side of retaining
routes and apply three mechanisms to infer and remove
stale data from Sibyl ’s atlas. In the first two, a traceroute
from s to d reveals a change in one path, and we use the
new path to patch other paths either from s or to d that
overlapped the old path from s to d.
Traceroute-based destination patching. Since Internet
routing is destination-based, if two traceroutes to the same
destination (possibly from different sources) converge, we
patch the old measurement to match the new measurement
from the convergence point to the destination. Flach et
al. found that the most common reason for violations of
destination-based routing is load balancing [18], which
can be filtered using Paris traceroute [5, 66]. Exclud-
ing load balancing, that study found only 10% of routers
caused IP-level deviations from destination-based rout-
ing and only 2% caused AS-level deviations, for reasons

including traffic engineering and tunneling. In the future,
we could apply these earlier techniques to identify and
exclude these exceptions from our patching.

Traceroute-based source patching. Destination-based
routing helps us keep the tail of paths collected from con-
strained VPs up-to-date using measurements from less-
constrained VPs such as PlanetLab. To remove stale data
from the beginning of paths, we assume a path change
observed on the path from a constrained VP to one des-
tination will also impact its paths to other destinations
that traverse the path segment that changed. Violations
to these assumptions result in incorrect updates to paths.
However, a single error is unlikely to impact Sibyl ’s pre-
dictions, as Sibyl can continue to make equivalent pre-
dictions if it knows other non-stale paths from the VP
that traverse a subset of the PoPs that were on the stale
segment.

BGP-based destination pruning. Traceroute-based
patching still requires issuing a measurement to de-
tect the change. We supplement these approaches with
lightweight BGP monitoring, which requires only passive
observation of BGP feeds via the following steps. First,
we convert all traceroutes in the atlas into AS paths in the
following process. (a) We use PeeringDB data to build a
database of IXP prefixes and remove these IP addresses
from traceroutes. (b) We map remaining IP addresses
to the ASes that originate their prefixes. (c) We group
addresses into routers using CAIDA’s Midar [33] for IP
aliasing resolution, assigning a router to an AS only if
all its interfaces belong to the same AS. (d) We partition
the traceroute into segments in which every router has
been assigned an AS (but a segment can contain multiple
ASes). Second, we monitor RouteViews and RIPE RIS
BGP feeds for BGP changes. When we observe an AS
A change its next hop AS to a destination d, we mark as
stale any traceroutes that routed via A and its old path
to reach d, and we do not use these traceroutes to make
predictions. Whereas traceroute-based staleness checks
provide a way to patch old measurements, BGP checks
on their own do not.

8 Evaluation

We evaluate Sibyl from two perspectives. First, we show
that Sibyl is able to serve queries effectively. On a large
set of test queries, it satisfies three-quarters of the queries
it could if it had an oracle to provide the result of a tracer-
oute before issuing it. Thereafter, we evaluate individual
components of the system in isolation to show that Sibyl’s
components operate efficiently and make decisions that
enable it to make good use of its probing budget.

8
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8.1 Efficiency in serving queries

Datasets and experimental design. To evaluate Sibyl
end-to-end, we run the system in an offline mode, stub-
bing out the component that issues traceroutes. We first
collect a large set of traceroutes. We then run Sibyl as
normal, except that, when it decides to issue a traceroute
from a vantage point to a destination, instead of issuing
a new measurement, it fetches the existing measurement
between that pair. Offline analysis allows us to compare
choices made by Sibyl with other measurements it chose
not to issue or that we did not give it access to.

Between January 13–16 2016, we issued traceroutes
from 2660 vantage points–2000 RIPE Atlas vantage
points, 560 traceroute servers, and 100 PlanetLab sites–to
1000 destinations, chosen at random from a list known to
be responsive [25]. Within a platform (Atlas, traceroute
servers, or PlanetLab), each vantage point is in a different
AS, although these is some overlap across platforms.10

In each experiment, we generate a starting corpus of
paths that Sibyl has access to. The corpus includes all
traceroutes from PlanetLab sites, giving it traceroutes to
destinations to splice to for predictions. For rate limited
platforms (traceroute servers and RIPE Atlas), the corpus
starts with 10 randomly chosen measurements from each
vantage point, a number previous work shows captures
upstream diversity for path prediction [40].

The experiments test how efficiently Sibyl can allo-
cate a limited number of additional traceroutes from rate-
limited vantage points in order to serve queries. We em-
ulate a series of rounds, with a per round measurement
budget and query arrival rate configured per experiment
and described with the experiments below. In each round,
Sibyl decides how to allocate its probing budget to issue
traceroutes, we assess how well these traceroutes matched
the queries, and then we add these traceroutes to Sibyl’s
corpus for the next round. Unsatisfied queries do not
carry over to the next round.
Existence queries. We first evaluate Sibyl’s ability to
serve existence queries, where the goal is to find one
traceroute that matches. To generate test queries, we se-
lect one of the traceroutes not (yet) available to Sibyl and
generate a query that will match it. This way, we know
that there is at least one measurement that Sibyl could
issue to match the query. To create a query, we sampled
hops in the path to generate regular expressions accord-
ing to four different Sibyl use cases (e.g., find paths that
traverse a given link toward a destination; more details in
Appendix F). We evaluated Sibyl with a range of budgets
and query volumes, and the results are qualitatively sim-

10We worked with the RIPE Atlas staff to gather data faster than their
normal rate limits. They allowed this just for the purpose of our
evaluation, it required tight coordination between our team and theirs,
and it does not appear they will support this on a regular basis.
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Figure 4: Incremental contribution of Sibyl’s components
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techniques allow it to allocate budget smartly and approach
the performance it would see if it could issue every candidate
traceroute it generated (no rate limit line).

ilar, so we present results for just one setting, a per-round
probing budget that allowed an average of one traceroute
per query.
Performance by query granularity. We used this query
generation approach at different granularities (by map-
ping the traceroutes to PoPs, ASes, and a mix of ASes
and countries). Figure 3 shows the fraction of existence
queries that Sibyl can satisfy at these granularities in each
round. At all granularities, Sibyl satisfies a high fraction
of queries. As expected, the coarser the granularity, the
higher the fraction of satisfied queries, from around 75%
at the PoP level to 90% at the AS/country level. Also,
Sibyl is able to efficiently allocate its budget at different
granularities, including answering queries that combine
ASes and country codes, which may overlap in complex
ways (e.g., traverse a link between AT&T and Level3 in
the US on the way to Europe).
Incremental contribution of Sibyl components. Sibyl’s
performance is good across queries of different gran-
ularities, and so we focus the rest of our analysis on
fine-grained PoP-level queries to stress the system. For
PoP-level queries, Sibyl allocates its probing budget well,
satisfying 32% more queries than a baseline approach that
relies only on existing measurements to answer queries.
Figure 4 breaks down the incremental benefit of the sys-
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tem’s various modules. First, candidate generation uses
Sibyl’s module that splices previously measured paths to
identify (s,d) pairs that may match a query (§6). Without
access to the rest of Sibyl, it then assumes that each of
these pairs will indeed match the query and distributes
measurements uniformly across queries, picking candi-
dates at random for each query. Second, we add iPlane
filtering to candidate generation, using iPlane to predict a
(more accurate) PoP-level path for each candidate and fil-
tering out candidates whose predicted paths do not match
any query. Third, iPlane prediction extends iPlane filter-
ing to consider all spliced paths iPlane can generate for a
given candidate (s,d) pair (§5.1). Unlike the full system,
this comparison point assigns an equal confidence value
to every spliced path between the pair when calculating
likelihood of matching a query. Finally, the Sibyl line
adds in confidence (§5.2) into the likelihood estimation
to arrive at the full system. As we add the techniques,
each contributes to satisfying 5-8% additional queries,
justifying their use.
Why does Sibyl fail to satisfy some queries? The
two central challenges are (a) limited probing budgets
and (b) uncertainty about whether traceroutes will match
queries before issuing them. Because the evaluation uses
a 1:1 query:budget ratio and all queries have at least one
traceroute that satisfies them, without uncertainty, we
could satisfy 100% of queries. Sibyl could miss satisfying
a query either because it failed to generate any candidate
traceroutes that, if issued, would satisfied the query, or
because it did generate the candidate but calculated that
it was unlikely to match the query. The Sibyl (no rate
limit) teases apart these two causes, as it allows Sibyl to
issue every candidate traceroute. Without a rate limit,
Sibyl satisfies 88% of queries (vs. 76% with a 1:1 ratio),
suggesting that half of Sibyl’s unsatisfied queries were
because its corpus of measured paths did not suffice to
generate candidates that could satisfy them, and half were
instances in which Sibyl generated a candidate that would
have satisfied the queries, but rated them as having less
expected value than other candidates, so did not allocate
probing budget to them. This result suggests the potential
benefit of future work to improve candidate generation
and likelihood estimation.
Can Sibyl efficiently service satisfiable queries in the
face of unsatisfiable ones? Our evaluation thus far is
on queries that are satisfiable, generated from traceroutes
Sibyl could choose to issue. Appendix H presents an ex-
periment demonstrating that the fraction of these queries
that Sibyl can satisfy is robust to the simultaneous intro-
duction of realistic but unsatisfiable queries.
Diversity queries. Next, we assess Sibyl’s ability to
respond to diversity queries by finding a set of paths
that match the query in diverse ways. We create diver-
sity queries by supplementing the PoP-level queries from
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Figure 5: Fraction of distinct PoPs returned for diversity
queries, relative to the number of distinct PoPs that could
be returned if Sibyl had budget to issue every candidate
traceroute it considered. Even with limited RIPE Atlas and
traceroute server budgets, Sibyl usually uncovers a signifi-
cant fraction of the relevant diversity, providing substantial
benefit over an approach that lacks the ability to predict
which paths are most likely to provide diversity in order to
optimize use of the budget.

above by asking Sibyl to maximize diversity of all wild-
card tokens (.*) in the regular expression. The diversity
utility function for a query awards a unit of utility for
each unique PoP in the set of matching traceroutes. We
set a 1:4 query:budget ratio (but Sibyl may distribute this
budget unevenly across queries according to its expected
diversity optimization in Eq. 3).

Figure 5 depicts the ratio between the number of dis-
tinct PoPs on matching paths that Sibyl uncovers sub-
ject to the rate limit versus the number it could have
uncovered with an unlimited budget to probe all candi-
dates it generates. The candidate generation baseline—
which already uses some of Sibyl’s novel functionality
to identify promising traceroutes to issue—is unable to
find any matching paths for 32% of queries, and it un-
covers less than half of the matching path diversity for
75% of queries. In contrast, by optimizing based on its
estimation of the expected chance of a given traceroute
traversing each PoP while satisfying the query, Sibyl satis-
fies 83% of queries with at least one traceroute, uncovers
half the path diversity for 67% of queries, and, for 13%
of queries, uses its very limited budget to uncover all of
the diversity that was found using unlimited probes.

8.2 Coverage of vantage point platforms

Coverage by vantage point AS. Our ideal is to service
any routing query, but Sibyl is limited by available vantage
points. No one platform has achieved overwhelming cov-
erage, and the types of ASes that host vantage points can
vary across platforms, so we designed Sibyl to accommo-
date a range of platforms. Figure 6 depicts the locations
of the vantage points of different platforms in terms of
their coverage of ASes by customer cone sizes [3]; the
customer cone of an AS is its customers, its customers’
customers, etc.. For example, even though Atlas covers
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by far the most ASes (Table 1a), the figure shows that
traceroute servers have better presence in large ASes, en-
abling Sibyl’s union of platforms to have presence in all
ASes with customer cone size greater than 2000, whereas
this coverage is below 80% when combining all other
platforms excluding traceroute servers. Based on data
provided by the Dasu team, incorporating Dasu would
not significantly improve Sibyl’s vantage point diversity,
although it would increase probing budget. Coverage
across AS sizes will improve as existing measurement
platforms expand and new ones become available.
Impact of combining vantage point platforms on ability
to satisfy queries. We now consider how combining
platforms helps Sibyl satisfy queries. Using the same
queries and probing budget as in Section 8.1, Figure 7
shows the fraction of queries Sibyl can satisfy using only
PlanetLab, PlanetLab plus traceroute servers, PlanetLab
plus RIPE, and all three platforms combined. The Sibyl
lines from the Figure 4 are the same as the Sibyl lines in
this graph. We observe that all platforms contribute to
the number of satisfied queries. Even though the number
of RIPE Atlas vantage points is four times larger than the
number of traceroute servers, traceroute servers provide
additional diversity and are useful in satisfying queries.

8.3 Accuracy of likelihood estimation
We evaluate Sibyl’s likelihood estimation (§5) during our
end-to-end evaluation of existence queries (§8.1). Fig-
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ure 8 shows the fraction of candidates that match a query
as a function of estimated likelihood (Eq. (4)) for 20,895
candidates generated for 2273 queries. We bucketed can-
didates by rounding the estimated likelihood to the closest
0.1. The graph shows high correlation between likelihood
and the probability of satisfying a query. Appendix E
shows the number of candidates in each bucket.

8.4 Impact of staleness
Sibyl always issues and returns fresh traceroutes to serve
queries, so staleness cannot result in false query matches.
Staleness can however lead to wrong predictions and sub-
optimal allocation of probing budget.

We evaluate the impact of staleness on Sibyl’s ability to
service queries over time, using weekly traceroute mea-
surements from 1800 RIPE Atlas nodes toward a set of
1000 destinations collected between Jun. 20th and Aug.
20th, 2015. We partition the set of RIPE Atlas VPs in two:
we choose 150 VPs at random to use as constrained VPs,
and use the remaining 1650 VPs as unconstrained VPs.
As in Section 8.1, we consider existence queries, give
Sibyl a probing budget of one traceroute per query, and
build an initial corpus of traceroute paths that includes
10 measurements from each of the 150 constrained VPs
plus all measurements from the 1650 unconstrained VPs.

We test the performance of three different strategies
for dealing with stale traceroutes. Keep last 14 days
uses only paths collected during the last 14 days and dis-
cards older paths. Keep all accumulates all the traceroute
paths collected by Sibyl regardless of their age, without
applying any sanitation technique to mitigate staleness.
Sibyl(patching and pruning) also accumulates all the col-
lected traceroutes, but attempts to filter-out stale hops
using Sibyl’s techniques described in Section 7.

Figure 9 measures Sibyl’s ability to service the queries
over time. We also show linear fits for each curve to
make the trends more clear. Keep last 14 days loses
path diversity over time, as it only keeps traceroutes from
parts of the Internet that were recently targeted by queries,
and this narrow focus over time limits its ability to serve
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Figure 9: Queries satisfied over time using different ap-
proaches to maintain historical traceroutes as a basis for
predictions. By pruning/patching paths it detects as stale,
Sibyl performs much better than an approach that only
keeps recent measurements and slightly better than an ap-
proach that keeps all measurements. The dip at week 3 is
caused by corrupted traceroute files that week.

queries about some other parts of the Internet. Keep
all maintains diversity, but loses some accuracy due to
staleness. Sibyl (patching and pruning) strikes a balance,
adding measurements to its corpus over time to generate
more candidates while minimizing the impact of staleness
by patching paths likely to be out of date. Appendix G
evaluates the coverage and accuracy of Sibyl’s various
approaches to patching and pruning stale paths.

9 Related work

Traceroute tool: Van Jacobson’s traceroute tool [26]
first enabled measurements of the Internet route from the
machine on which the tool is executed to any destination.
Followup work addressed limitations in the tool. Paris
traceroute modified traceroute to account for load balanc-
ing [4]; reverse traceroute enabled a source to measure the
route back to it from any destination [30]; and researchers
assessed how common interpretations of the tool’s out-
put can lead to overestimating route changes [44]. Sibyl
goes beyond enabling measurement of the route from/to a
specific source, and instead chooses (source, destination)
pairs that it should measure in order to obtain routes that
match specified input criteria.
Measurement platforms and systems: Many dis-
tributed platforms have been deployed to cater to the
needs of researchers and network operators to perform
measurements of Internet routing. DIMES [57], Ark [2],
public traceroute servers [63], and RIPE Atlas [55] ex-
plicitly serve this goal, whereas other platforms such as
PlanetLab [53], MobiPerf [72], and Dasu [56] enable
traceroutes among several other capabilities. Leverag-
ing the measurement capabilities offered by these plat-
forms, a large number of systems have been developed

that rely on making measurements of the Internet for
various purposes such as topology discovery [2], fault
diagnosis [31, 32, 74], prefix hijack detection [76], etc.
In all of these cases, researchers have relied on issuing
traceroutes along paths whose routes match particular
criteria relevant to their system, but they have only used
small numbers of vantage points due to the overhead of
incorporating different platforms and the difficulty in dis-
cerning which measurements will be most useful. Sibyl
can enable these prior systems as well as future ones to
take advantage of available measurement platforms.
Studies of Internet routing: Several research efforts
have studied the temporal stability of Internet routes [15,
52], attempted to infer routing policies [1, 3, 21, 27, 45],
and modeled the evolution of the Internet’s topology [49].
We similarly model properties of Internet routing, in our
case in service of identifying the measurements that are
most beneficial for Sibyl in serving user queries.
Route prediction: Many prior efforts have developed
techniques to predict Internet routing at the AS [43, 54]
and PoP [37, 40, 41] levels. However, in our results, even
the state of the art prediction techniques offer only 68%
accuracy in correctly predicting AS-level paths. There-
fore, instead of attempting to predict a single route for
any (source, destination) pair, we focus on estimating the
probability that the route will match a query; our approach
shows significant gains in prediction accuracy.

10 Conclusion

Internet route measurements are crucial to our ability to
troubleshoot and understand the Internet, yet our interface
to them remains crude: for decades, the only query that
has been easy to answer is, “What is the path from here
to there?” This limitation leads to inefficient approaches
and incomplete understanding. We built and evaluated
Sibyl, a system that accepts regular expression-based
queries and returns fresh path measurements matching
the queries. To achieve broad coverage, Sibyl includes
vantage points (such as traceroute servers and RIPE At-
las probes) that are severely rate-limited, which led to
the central challenge in building the system—how can
it accurately respond even though, for many queries, it
will not have issued traceroutes that match in the recent
past? Therefore, we designed Sibyl to predict which mea-
surements, if issued, will help fulfill queries, in order to
efficiently service requests while subscribing to rate lim-
its. Our evaluation shows that these predictions allow
Sibyl to easily outpace other schemes in its ability to an-
swer questions about Internet routes, performing nearly
as well as if it had access to an oracle to tell it which
measurements to issue.
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Appendices
A Optimization details

Sibyl’s optimization has good greedy performance.
While the constraints in Eq. 1 (§4.2) enforce multiple
budgets, we designed them so that each traceroute only
counts against one budget, and so the constraints function
as a partition matroid [68]. The utility functions we use
for existence queries and diversity queries exhibit dimin-
ishing returns as we add to the set of traceroutes to issue,
and so the objective function is submodular (essentially,
a set function that displays diminishing returns) [47].
The greedy optimization of submodular functions given
partition constraints both has a good theoretical lower
bound [16, 68]11 and has been frequently observed to be
near-optimal in practice.

In addition to the greedy heuristic only being guar-
anteed to find a solution within a factor of optimal, the
optimization problem itself can lose utility compared to
a global optimal due to the following factors:
• Candidate generation can miss useful traceroutes, if no

previous traceroutes splice to generate the candidate.
• Prediction errors can lead to errors in expected utility.
• Our formulation assumes the correctness of different

predictions is independent, but destination-based rout-
ing [19] and other factors mean that the correctness of
different predictions may be intertwined.

Section 8.1 assessed the first two factors. The third is an
interesting future direction for improving predictions.
Utility functions supported by Sibyl. Section 4.2
formalizes the utility functions supported by our UI, but,
in general, Sibyl will work with any utility function fq
for a query q that satisfies the following properties:

• fq takes a set of traceroutes T and returns a nonneg-
ative value.

• fq (T ) > 0 if and only if ∃ t ∈ T that satisfies q.

11The greedy algorithm we use has an approximation ratio of 0.5. A
randomized variant has a ratio of 1−1/e ≈ 0.63 [68].
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Figure 10: Fraction of paths for which AS-level routes differ
in snapshots measured a week apart.

• Non-decreasing: fq (T ) ≤ fq (T ∪ {t}) ∀T,∀t.

• S ⊆ T ⇒ fq (S∪ {t})− fq (S) ≥ fq (T ∪ {t})− fq (T )
∀S,∀T,∀t. In other words, adding additional tracer-
outes provides diminishing returns.

• The expected utility of issuing a set of traceroutes
must be computable within Sibyl’s prediction frame-
work, in which a traceroute is predicted as a set of
PoP-level paths, each with a confidence.

To be computationally efficient, the expected util-
ity function should also be “incrementally computable”:
if Sibyl already calculated E[ fq (T )], then computing
E[ fq (T ∪ {t})] takes time proportional to the time to cal-
culate E[ fq ({t})], not proportional to |T |.

B Assessing path stability

Section 5 describes how Sibyl predicts paths by splic-
ing the small number of traceroutes from resource-
constrained vantage points onto traceroutes from less-
constrained vantage points to a large number of destina-
tions. We assessed path stability to justify this approach.
We probed 1000 prefixes from all PlanetLab sites and
from 2000 RIPE Atlas vantage points. We repeated these
measurements twice, a week apart. Figure 10 shows, for
every vantage point, the fraction of prefixes for which
the AS-level routes differ across a week, revealing more
RIPE Atlas paths change than PlanetLab paths.

Internet paths are generally considered to have an up-
hill portion, traversing from customers to providers, fol-
lowed by a downhill portion from providers to customers,
possibly with a peering link in between. Figure 10 also
plots the fraction of prefixes that have different AS-level
routes in the two snapshots if we consider only the uphill
portions of the paths. The uphill paths differ much less
frequently than the full paths, implying that most of the
differences are on the downhill portions of paths. By
combining the uphill (more stable) portion of paths from

13
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rate-limited RIPE Atlas/traceroute server vantage points
with the downhill portions of (frequently-refreshed) Plan-
etLab paths, Sibyl minimizes the impact of path instability
on its predictions.

C Features used by RuleFit

In this section we provide more details on the RuleFit
model we train to estimate the correctness of a path pre-
diction (§5.2). To identify important features, we adopted
a multi-round refinement process, starting from a large set
of features that we reduced each round, retaining features
RuleFit found to have predictive power. We describe
features retained at the end of this process.
Source path features: The greatest challenge in identi-
fying which spliced path is correct is to pick the correct
route out from the source, since Internet routing is pre-
dominantly destination-based and the source’s portion of
the source path has a destination different from the one
we are predicting. Traffic engineering practices such as
hot and cold potato routing may also exacerbate this is-
sue. We characterize the source path using the following
features: the number of PoPs and ASes along the source
path, the round-trip latency from the source to the splice
point [39], and the degree of the source AS (from CAIDA
data [3]). The intuition behind these features is that a pre-
diction is more likely to be correct if the source’s part of
the path is short (so quickly intersects a known path to the
destination) and if the source AS is small (so has fewer
routing options we can incorrectly pick). We do not con-
sider the age of measurements as a feature since we take
steps to prune out-of-date measurements, as described in
Section 7. Most (source, destination) pairs have a path
that is prevalent over long time periods [15, 52].
Splice point features: We considered the characteristics
of the splice point as additional features such as (i) the
type of AS splice point (i.e. educational, transit, access,
transit/access, content, enterprise, educational/research,
non-profit network, from CAIDA data [10]); and (ii) the
business relationship between the AS of the splice point
and its neighbors in the predicted path (from CAIDA
data [38]). The type and the AS relationships allow Rule-
Fit to learn to favor spliced paths that follow common
routing policies, such as valley-free [21].
iPlane-derived features: iPlane picks the correct
spliced path more often than not [39], and so, for each
spliced path, we calculate the features that iPlane uses,
as well as comparisons between that spliced path and the
one that iPlane picks (inflation in terms of RTT up to
the splice point and in terms of AS- and PoP-level path
lengths). We also included the rank order assigned by
iPlane to the spliced path, to account for mechanisms
added to improve iPlane’s prediction accuracy [41].

Spliced Path Feature Importance

1. PoP-level similarity with the other paths 1
2. PoP-level path length inflation vs iPlane’s top-ranked path .90
3. Total number of PoP splice points .60
4. Total number of AS splice points .55
5. AS splice point type .52
6. AS splice point relationship with neighbors .49
7. Number of PoPs in iPlane’s top-ranked path .44
Other features ≤ .34

Table 1: Feature importance according to RuleFit.

Spliced path set features: Finally, we compute some
features by comparing the spliced path with the other
spliced paths from the vantage point to the destination.
We used the Jaccard Index to estimate the average sim-
ilarity between the spliced path and other paths both at
the PoP and AS level. We aim to inform RuleFit whether
or not the other paths confirm this one. We also include
as features the total number of spliced paths and the total
number of ASes containing splice points.
Most important features: RuleFit computes the impor-
tance of each rule as a function of how often it gets applied
and how much it impacts the correctness of the predic-
tion. For each feature, it computes this as the sum of the
importance of the rules that use the feature.

Table 1 reports the resulting ordering of features with
normalized importance computed by RuleFit. Several
features turned out to play an important role in estimating
the similarity of a spliced path to the true path. The
first, third, and fourth most important features capture
how similar the spliced paths are; intuitively, if there
are few splicing points and all spliced paths are similar,
then there is less diversity and spliced paths are likely
similar to the true path. The second and seventh most
important feature follows from Internet routing protocols
that prefer short paths. The fifth and sixth most important
features capture AS routing relationships at the splicing
point, which enables RuleFit, e.g., to reduce confidence
in splices that violate the valley-free model.

D Examples

D.1 Candidate generation
We first provide an example of how Sibyl generates can-
didate traceroutes to consider issuing (§6). For ease of
exposition, assume that an IP address maps to an AS
and PoP corresponding to the address’s first octet (e.g.,
1.0.0.1 is in AS1 and PoP1; 5.0.0.1 is in AS5, PoP5). As-
sume Sibyl has three existing traceroutes it can combine
to generate new candidates:

1. 1.0.0.1 (AS1, PoP1), 2.0.0.1 (AS2, PoP2), 3.0.0.1 (AS3,
PoP3), 4.0.0.1 (AS4, PoP4), 5.0.0.1 (AS5, PoP5)

2. 6.0.0.1 (AS6, PoP6), 7.0.0.1 (AS7, PoP7), 8.0.0.1 (AS8,
PoP8), 9.0.0.1 (AS9, PoP9), 10.0.0.1 (AS10, PoP10)
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Figure 11: (a) Forward and (b) reverse FSAs corresponding
to a query for a traceroute through AS2 and AS9.

3. 11.0.0.1 (AS11, PoP11), 12.0.0.1 (AS12, PoP12), 3.0.0.1
(AS3, PoP3), 9.0.0.1 (AS9, PoP9), 13.0.0.1 (AS13,
PoP13)

Say a user issues an existence query: “I want a tracer-
oute that traverses AS2 and AS9, in that order, consec-
utively or not,” is expressed as the following regular ex-
pression:

^.*AS2.*AS9.*$.

This regular expression is then translated to an FSA
shown in Figure 11(a). Sibyl then runs the FSA over
each traceroute, maintaining a record of the transitions in
the FSA taken when consuming the PoPs in each of its
existing traceroutes, as shown in Table 2(a).

Next, the FSA is reversed (Figure 11(b)), and the re-
verse FSA is run over the traceroutes from destination to
source. Table 2(b) shows the transitions used in this case.

In our example, PoP 3 is labeled with the transition
(S2

.*−−→ S2) when the forward FSA is applied on Trace 1,
and the same PoP is labeled with the reverse of that transi-
tion when the reverse FSA is applied on Trace 3. Hence,
Sibyl splices Traceroute 1 (PoP1→PoP2→PoP3. . . ) and
Traceroute 3 (. . . PoP3→PoP9→PoP13) at PoP3 to gen-
erate a candidate. The candidate pair is constructed from
the source of Traceroute 1 and the destination of Tracer-
oute 3 which gives (1.0.0.1, 13.0.0.1).

D.2 Likelihood estimation
We next walk through an example of how Sibyl calculates
how likely a traceroute is to satisfy a query (Eq. 4 in §5).
Assume that, in addition to (1.0.0.1, 13.0.0.1), Sibyl also
finds (15.0.0.1, 16.0.0.1) as a possible candidate. Once
Sibyl identifies the candidates for a query, it uses iPlane
to generate a set of possible paths for each candidate
(source, destination) pair. Sibyl uses its RuleFit-trained

Forward FSA PoPs Traversed
Transition

S1
.*−−→ S1

Trace 1: PoP 1, 2, 3, 4, 5
Trace 2: PoP 6, 7, 8, 9, 10
Trace 3: PoP 11, 12, 3, 9, 13

S1
AS2−−−→ S2 Trace 1: PoP 2

S2
.*−−→ S2 Trace 1: PoP 3, 4, 5

S2
AS9−−−→ S3 -

S3
.*−−→ S3 -

(a)
Reverse FSA PoPs Traversed
Transition

S3
.*←−− S3

Trace 1: PoP 5, 4, 3, 2, 1
Trace 2: PoP 10, 9, 8, 7, 6
Trace 3: PoP 13, 9, 3, 12, 11

S2
AS9←−−− S3

Trace 2: PoP 9
Trace 3: PoP 9

S2
.*←−− S2

Trace 2: PoP 8, 7, 6
Trace 3: PoP 3, 12, 11

S1
AS2←−−− S2 -

S1
.*←−− S1 -

(b)
Table 2: Transitions activated by PoPs in each traceroute
on the (a) forward and (b) reverse FSAs.

Candidate Splice Jaccard Predicted AS-Level Path
(1.0.0.1, A 0.7 AS1 AS2 AS3 AS9 AS13
13.0.0.1) B 0.5 AS1 AS20 AS21 AS9 AS13
(15.0.0.1, C 0.6 AS15 AS2 AS3 AS9 AS16
16.0.0.1) D 0.6 AS15 AS2 AS4 AS9 AS16

Table 3: All spliced paths for each candidate and their
RuleFit-predicted Jaccard indexes.

model to estimate the Jaccard indexes for each spliced
path compared to the corresponding (unknown) actual
path. It uses these estimates to compute the likelihood of
each candidate matching the query. Consider the example
paths and estimated Jaccard indexes in Table 3, where we
show AS-level paths for ease of exposition.

For the candidate pair (1.0.0.1, 13.0.0.1), Sibyl es-
timated that spliced path A is more likely to be cor-
rect than spliced path B (0.7 vs 0.5), which (via §5.2)
normalize to 0.41 = 0.7 × 0.7/(0.7 + 0.5) and 0.29 =
0.7×0.5/(0.7+0.5). Spliced path A matches the user’s
query, whereas B does not traverse AS2. The final likeli-
hood that candidate (1.0.0.1, 13.0.0.1) matches the query
is 0.41, from Eq. 4.

For (15.0.0.1, 20.0.0.1), spliced paths C and D have
lower estimated Jaccard indexes than spliced path A, but
both satisfy the user’s query. These spliced paths result
in a likelihood of matching the query equal to 0.6 = 0.6×
0.6/(0.6+0.6)+0.6×0.6/(0.6+0.6), making (15.0.0.1,
16.0.0.1) a stronger candidate to satisfy the user’s query.
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D.3 Diversity queries
To illustrate the usefulness of diversity queries, we will
use an example of Sibyl finding diverse AS paths that
a system such as iSpy [76] can use to monitor for prefix
hijacks in BGP. Since issuing traceroutes from all vantage
points is not feasible, we want Sibyl to find a set of vantage
points to use that maximizes AS path coverage to a prefix
204.57.0.0/21. Since we want to diversify over AS, we
build the following query:

^{.*}-204.57.0.0/21$ by AS

For simplicity of exposition, we assume Sibyl predicts
a single path for each candidate and has complete con-
fidence in all predictions, removing the probabilistic ex-
pected value calculation of Eq. 3. Sibyl predicts tracer-
outes with the following AS paths toward 204.57.0.0/21:

1. AS3356, AS209, AS2722, AS47

2. AS1299, AS10490, AS2722, AS47

3. AS3257, AS209, AS2722, AS47

4. AS1273, AS209, AS2722, AS47

5. AS6939, AS226, AS2914, AS2497, AS47

6. AS3257, AS209, AS2722, AS47

7. AS701, AS2914, AS209, AS2722, AS47

Sibyl greedily selects traceroutes that offer the highest
diversity utility first. The greedy selection starts out with
an empty AS set. Traceroutes are then selected based on
how many new ASes a path is predicted to add. In the
above example, Traceroute 5 is selected first since it has
a utility of 5 ASes (contains 5 new ASes). Traceroute 7
would be greedily selected next since it has a marginal
utility of 4 ASes. The current AS set is now:

AS6939, AS226, AS2914, AS2497, AS47, AS701,
AS2914, AS209, AS2722

Of the remaining traceroutes, Traceroutes 1, 3, 4, and
6 each offer only one new AS compared to the above set,
whereas Traceroute 2 has 2 new ASes. Hence, Traceroute
2 is selected. In subsequent rounds, Traceroutes 3 and
4 would be selected if budget allowed, but Traceroute 6
would not be since it adds no new ASes.

E Evaluation of RuleFit model

Section 8.3 showed that Sibyl’s estimates of how likely
a candidate traceroute is to satisfy a query are accurate
enough to use as expected utilities. In this section we look
at the distribution of likelihood values across candidates
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Figure 12: Distribution of candidates by likelihood.

and at the accuracy of the Jaccard index estimates (§5.2)
that Sibyl uses to calculate the likelihoods.
Distribution of likelihood estimates. Figure 12 parti-
tions the range of likelihood values ([0, 1]) into 11 buck-
ets ([0, 0.05], [0.05, 0.15], . . ., [0.95, 1]), and shows the
number of candidates in each bucket, broken down by
whether the candidates satisfy their queries or not. We
also add two comparison points: (1) iPlane: iPlane pro-
vides a single predicted path for a candidate and does
not have a notion of varying confidence [40], and so we
assign a candidate a likelihood of 1 if iPlane’s prediction
matches the query and 0 if it does not. (2) iPlane with
confidence ranking: for iPlane predictions that match
their queries, we extend iPlane by assigning a likelihood
equal to our RuleFit model’s estimated confidence in the
prediction. As seen in the graph, Sibyl’s likelihood es-
timation provides benefit over iPlane. In the bucket of
likelihood [0.95, 1], Sibyl only includes candidates that
satisfy queries, while iPlane includes some candidates
that do not satisfy queries. Sibyl only assigns a likelihood
of 1 to a candidate when all its spliced paths satisfy the
query and RuleFit rates it high confidence. Sibyl also pro-
vides benefit over iPlane by removing some candidates
that can satisfy queries from the [0, 0.05] bucket. This im-
provement comes at the cost of moving some candidates
that do not satisfy queries from the [0, 0.05] likelihood
bucket to other low-likelihood buckets, which we con-
sider to be acceptable since Sibyl gives low priority to
issue measurements for candidates with low likelihood.

Together, Figures 8 and 12 show that Sibyl computes
likelihoods that can reasonably reflect the probability of
matching a query, and it assigns most candidates either
very high or very low likelihood values, enabling it to
distinguish between candidates that it should or should
not select to satisfy queries.
Accuracy of confidence values. Figure 13 evaluates
RuleFit’s capability to predict the PoP-level similarity
of spliced paths to the actual paths they are predicting,
which it does without access to the actual paths. We use
RuleFit to estimate the Jaccard index for 4 million spliced
paths (not included in the training set), then calculate the
actual Jaccard index by comparing the spliced path to
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Figure 13: Spliced paths’ predicted vs actual Jaccard index
with respect to the actual path.

the actual path. We group the spliced paths by their
predicted Jaccard index and show the 10th, 25th, 50th,
75th, and 90th percentiles of the true Jaccard values for
each group. We see that our estimated Jaccard indexes
are well correlated to the true Jaccard values.

F Queries used in evaluation

We used several types of queries when evaluating
Sibyl (§8.1). For each traceroute that Sibyl does not have
access to, we generate all possible queries that the tracer-
oute matches for the following query types:

1. ^.*A.*D$ Traverse A on the way to destination D.

2. ^[^A]+A.*D$ Traverse, but do not start at, A on the
way to destination D.

3. ^.*AB.*D$ Traverse link A-B on the way to desti-
nation D.

4. ^.*A.*B.*C.*$ Traverse A, B, and C in sequence.

Among all possible queries of these types, our evalu-
ation randomly selected an equal number of each type.
Queries of types 1 and 2 represent queries reverse tracer-
oute uses as part of its measurements [30]. Query
type 3 represents queries operators might ask when trou-
bleshooting performance problems towards a destination,
to assess paths that use a particular link. All three look
for routes toward a destination D traversing a specific net-
work region. Query type 4 does not specify a destination
and could be used to study inter-AS routing policing and
business relationships [38] or to look for routes that take
long detours in between two nearby hops (e.g., [22]).

G Efficacy of staleness patching & pruning

Section 8.4 evaluated the impact of staleness on Sibyl’s
end-to-end ability to satisfy queries, showing that its tech-
niques for dealing with stale measurements allow it to
outperform techniques that either keep or discard all old

measurements. In this section we evaluate the accuracy
and coverage of its techniques (§7) in isolation.

Traceroute-based source/destination patching. First,
we validate Sibyl’s approaches of using a path change
observed on one path to update other previously measured
paths (from the same source or to the same destination)
that traverse the path segment that changed. For this,
we issued traceroutes from all PlanetLab sites to 150K
prefixes on Dec. 5 and on Dec. 6 2014. We calculated
the probability that paths undergo identical path changes,
given their Dec. 5 routes traversed a shared segment that
changed in one of the routes on Dec. 6. For 65% of path
changes, all paths experience an identical change. Results
on measurements one week apart are similar.

BGP-based destination pruning. We evaluate Sibyl’s
BGP-based filtering of stale paths on RIPE Atlas mea-
surements gathered between July 2 and August 27, 2015,
using daily BGP paths from BGPStream [50]. We
mapped the traceroute destinations to the longest pre-
fix in the collected BGP data, excluding prefixes longer
than 24.

First, for coverage, of the (AS, destination) pairs in our
traceroutes, only 5% of the ASes appear in BGP feed
paths towards the destinations, demonstrating both the
superior coverage of our traceroute vantage points com-
pared to available BGP feeds and also a limitation with
BGP-based filtering. However, 84% of our traceroutes
include at least one pair seen in the BGP feeds. Of the
pairs seen in both data sources, the AS paths are the same
in 57% of cases. The other 43% reflect a mix of large
ASes using multiple paths, of errors in translating tracer-
outes to AS paths, and of misalignment in time because
we do not have an exact timestamp for the traceroutes.

Second, we evaluate the accuracy of BGP-based fil-
tering. Every time we refreshed an Atlas traceroute to a
destination d, for every AS A on the traceroute, we check
three conditions. 1:(BGP-change) Is the BGP path to d
different than it was at the time of the original traceroute
to d? 2:(TR-change) Did A’s traceroute AS path change
between the two measurements? 3:(TR-match) Did A’s
original traceroute AS path match A’s BGP path at the
time it was issued? Comparing every instance of BGP-
change with the subset that are also TR-change, 72% of
BGP changes were also reflected in traceroutes. Compar-
ing instances that are both BGP-change and TR-change
with the subset that are also TR-match, the percentage
increases to 77% if we add the stricter condition that the
BGP and traceroute paths matched to begin with. Over-
all, BGP monitoring prunes 9% of the traceroute changes
if we require the TR-match check and 13.8% if we do not.
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Figure 14: Screenshot of Sibyl’s interface to build predicates.

(a) All paths traversing GTT in Seattle then Level3 in Los Angeles. (b) Paths through GTT peers other than NTT and Level3 in Seattle.
Figure 15: Screenshots of example queries from Section 3.2, built by composing predicates such as the one in Fig. 14.

H Unsatisfiable Queries

Section 8 uses queries that are satisfiable–since we gen-
erate them from traceroutes Sibyl could choose to issue.
Here we evaluate whether Sibyl can avoid wasting budget
on queries it has no hope of satisfying, to avoid having
them impede its performance on queries it can satisfy.
We generated sensible unsatisfiable queries by generat-
ing existence queries as in Section 8.1, removing Sibyl’s
access to 10% of the RIPE Atlas and traceroute server
VPs, then identifying queries that can only be satisfied by
measurements from the removed vantage points.12

In our experiment, we add unsatisfiable queries to the
set of queries submitted to Sibyl while keeping the prob-
ing budget fixed. As we move from all queries satisfi-
able to an even mix of satisfiable and unsatisfiable, Sibyl
still matches just as many queries, 76% on average as in
Figure 3. It does generate some candidates to consider
issuing for some of the unsatisfiable queries. However,
Sibyl’s ability to rate the likelihood of matching allows
it to prioritize measurements with high expected utility,

12We do not include trivial unsatisfiable queries such as asking for paths
originated from ASes hosting the removed VPs.

concentrating budget on queries that can be satisfied. In
practice, it could inform a user when it had no candidates
likely to match the user’s query.

To verify that this result was because the system as-
sessed that its vantage points were unable to satisfy the
queries, not because it found the queries to be unsatis-
fiable in general, we reintroduced the 10% of vantage
points back into the system and ran it with just the previ-
ously unsatisfiable queries. Sibyl satisfied an average of
48% of the queries, suggesting that they are hard but not
impossible when suitable vantage points are available.
When we then combined the two batches of queries, in-
creasing the absolute traceroute budget to maintain the
1:1 query:budget ratio, Sibyl satisfied an average of 58%
of queries, balancing the budget well across the two sets to
nearly equal the (76+48)/2 = 62% average performance
when it could dedicate itself to one set.

I Sibyl’s query interface

We built a web-based user interface to guide users in
specifying queries. Figure 14 presents a screenshot of
the widgets used to build a predicate. Users can build
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a broad class of predicates that accept (or, via negation,
reject) a user-specified set of values (e.g., particular cities
or ASes) at any or all granularities. Users can then build
queries by specifying a sequence of predicates they want
paths to traverse. Figures 15(a) and (b) show examples
of simplified versions of queries from Section 3.2.
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