
This paper is included in the Proceedings of the
12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).
May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the
12th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’15)

is sponsored by USENIX

CubicRing: Enabling One-Hop Failure Detection
and Recovery for Distributed In-Memory

Storage Systems
Yiming Zhang, National University of Defense Technology; Chuanxiong Guo, Microsoft;

Dongsheng Li and Rui Chu, National University of Defense Technology;
Haitao Wu, Microsoft; Yongqiang Xiong, Microsoft Research

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/zhang

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  529

CubicRing: Enabling One-Hop Failure Detection and Recovery for
Distributed In-Memory Storage Systems

Yiming Zhang⋆, Chuanxiong Guo†, Dongsheng Li⋆, Rui Chu⋆, Haitao Wu†, Yongqiang Xiong‡

⋆National University of Defense Technology, †Microsoft, ‡MSR
{ymzhang, dsli, rchu}@nudt.edu.cn, {chguo, hwu, yqx}@microsoft.com

Abstract
In-memory storage has the benefits of low I/O latency
and high I/O throughput. Fast failure recovery is cru-
cial for large-scale in-memory storage systems, bringing
network-related challenges including false detection due
to transient network problems, traffic congestion during
the recovery, and top-of-rack switch failures. This paper
presents CubicRing, a distributed structure for cube-
based networks which exploits network proximity to
restrict failure detection and recovery within the small-
est possible one-hop range. We leverage the Cubic-
Ring structure to address the aforementioned challenges
and design a network-aware in-memory key-value store
called MemCube. In a 64-node 10GbE testbed, Mem-
Cube recovers 48 GB of data for a single server failure
in 3.1 seconds. The 14 recovery servers achieve 123.9
Gb/sec aggregate recovery throughput, which is 88.5%
of the ideal aggregate bandwidth.

1 Introduction
Disk-based storage is becoming increasingly problemat-
ic in meeting the needs of large-scale cloud applications
in terms of I/O latency, bandwidth and throughput. As
a result, in recent years we see a trend of migrating data
from disks to random access memory (RAM) in storage
systems. In-memory storage is proposed to keep data
entirely and permanently in the RAM of storage servers.
E.g., Tenant’s CMEM [2, 4] builds a storage cluster with
thousands of servers to provide public in-memory key-
value store service, which uses one synchronous backup
server for each of the RAM storage servers. Thousands
of latency-sensitive applications (e.g., online games)
have stored several tens of TB of data in CMEM. Ouster-
hout et al. propose RAMCloud [45], an in-memory key-
value store that keeps one copy of data in storage servers’
RAM and stores redundant backup copies on backup
servers’ disks. RAMCloud uses InfiniBand networks to
achieve low latency RPC.

In-memory storage has many advantages over disk-

based storage including high I/O throughput, high band-
width, and low latency. For instance, CMEM provides
1000× greater throughput than disk-based systems [4];
RAMCloud boosts the performance of online data-
intensive applications [46] which make a large number
of sequential I/O requests in limited response time (e.g.,
generating dynamic HTML pages in Facebook [49]); and
the applications need no longer maintain the consistency
between the RAM and a separate backing store.

Fast failure recovery is crucial for large-scale in-
memory storage systems to achieve high durability and
availability. Previous studies [46] show for normal cases
(3× replication, 2 failures/year/server with a Poisson dis-
tribution) in a 10,000-server in-memory storage system,
the probability of data loss in 1 year is about 10−6 if the
recovery is finished in 1 second; and it increases to 10−4

when the recovery time is 10 seconds. On the other hand,
the relatively high failure rate of commodity servers
requires a recovery time of no more than a few seconds
to achieve continuous availability [46] in large-scale
systems. According to [7], 1000+ server failures occur
in one year of Google’s 1800-server clusters. Since the
recovery of in-memory storage server failures requires to
fully utilize the resources of the cluster [45], a recovery
time of a few seconds would result in an availability of
about four nines (99.99%, 3,150 seconds downtime/year)
if only server failures are considered, while a recovery
time of several tens of seconds may degrade the avail-
ability to less than three nines, which could become the
dominant factor for the overall availability.

RAMCloud realizes fast failure recovery by randomly
scattering backup data on many backup servers’ disks
and reconstructing lost data in parallel through high-
bandwidth InfiniBand networks. However, many realis-
tic network-related challenges remain to be addressed for
large-scale in-memory storage systems: (i) it is difficult
to quickly distinguish transient network problems from
server failures across a large-scale network; (ii) the large
number (up to tens of thousands) of parallel recovery

1

530  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

flows is likely to bring continuous traffic congestion
which may result in a long recovery time; and (iii) top-
of-rack (ToR) switch failures make fast failure recovery
even more challenging.

To address these challenges this paper presents Cubic-
Ring, a distributed structure for cube-networks-based in-
memory storage systems. CubicRing exploits network
proximity to restrict failure detection and recovery within
the smallest possible (i.e., one-hop) range, and cube net-
works could naturally handle switch failures with their
multiple paths. We leverage the CubicRing structure
to design a network-aware in-memory key-value store
called MemCube, where the storage system and the
network collaborate to achieve fast failure recovery. We
implement a prototype of MemCube on BCube [35], and
build a 64-node 10GbE testbed for MemCube evaluation.
MemCube recovers 48 GB of data from a failed server
in 3.1 seconds. In the recovery, the 14 recovery servers
achieve 123.9 Gb/sec aggregate recovery throughput,
which is 88.5% of the ideal aggregate bandwidth.

2 Preliminaries

Large-scale in-memory storage systems must provide a
high level of durability and availability. One possible
approach is to replicate all the data to the RAM of
backup servers [4]. However, this approach would
dramatically increase both the cost and the energy usage,
and in-memory replicas are still vulnerable under power
failures. On the other hand, although erasure coding
can reduce some of the cost, it makes recovery consid-
erably more expensive [46]. RAMCloud leverages high-
bandwidth InfiniBand networks and utilizes aggressive
data partitioning [19] for fast failure recovery [45].
It randomly scatters backup data across many backup
servers’ disks, and after a failure happens it quickly
reconstructs lost data in parallel. However, it is difficult
for RAMCloud’s approach to scale to large clusters with
thousands of servers because many network problems
remain to be addressed [3]. We characterize the common
network-related challenges for fast failure recovery in
large-scale in-memory storage systems as follows.

False failure detection. To quickly recover from a
failure, the timeout of heartbeats should be relatively
short. However, various transient network problems [31]
like incast and temporary hot spot may make heartbeats
be discarded (in Ethernet) or suspended (in InfiniBand),
making it difficult to be distinguished from real server
failures. Although false failure detection is not fatal (as
discussed in Section 5), the recovery of tens of GB of da-
ta is definitely very expensive. Since network problems
cannot be completely avoided in any large-scale systems,
our solution is to shorten the paths that heartbeats have to
traverse, reducing the chances of encountering transient

network problems. Ideally, if the servers only inspect
the status of directly-connected neighbors, then we can
minimize the possibility of false positives induced by
transient network problems.

Recovery traffic congestion. Fast failure recovery re-
quires an aggregate recovery bandwidth of at least tens of
GB/sec both for disks and for networks. This means that
hundreds or even thousands of servers will be involved
in the recovery. If the distributed recovery takes place in
a random and unarranged manner and the recovery flows
traverse long paths, it may bring hot spots in the network
and result in unexpected long recovery time. Even on full
bisection bandwidth networks like FatTree [34], severe
congestion is still inevitable due to the problem of ECMP
(equal-cost multi-path) routing [10]: large, long-lived
recovery flows may collide on their hash and end up on
the same output ports creating in-network bottlenecks.
To address this problem, our solution is to restrict the
recovery traffic within the smallest possible range. Ide-
ally, if all the recovery flows are one-hop, then we can
eliminate the possibility of in-network congestion.

ToR switch failures. A rack usually has tens of servers
connected to a ToR switch. In previous work [4, 45]
when a ToR switch fails, all its servers are considered
failed and several TB of data may need to be recovered.
The recovery storm takes much more time than a single
recovery. Since the servers connected to a failed switch
are actually “alive”, our solution is to build the in-
memory storage system on a multi-homed cubic topol-
ogy, each server being connected to multiple switches.
When one switch fails, the servers can use other paths to
remain connected and thus no urgent recovery is needed.

3 Structure

3.1 Design Choices
Large-scale in-memory storage systems aggregate the
RAM of a large number of servers (each with at least
several tens of GB of RAM) into a single storage.
This subsection discusses our choices of failure model,
hardware, data model, and structure.

Failure model. For storage systems, (i) servers and
switches may crash, which results in data loss (omis-
sion failures) [52]; and (ii) servers and switches may
experience memory/disk corruption, software bugs, etc,
modifying data and sending corrupted messages to other
servers (commission failures) [43]. Like RAMCloud,
in this paper we mainly focus on omission failures.
Commission failures can be detected and handled using
existing techniques like Merkle-tree based, end-to-end
verification and replication [43, 52], but this falls beyond
the scope of this paper and is orthogonal to our design.

Network hardware. The design of CubicRing is in-

2

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  531

dependent to network hardware and can be applied to
both Ethernet and InfiniBand. For implementation, we
follow the technical trend and focus on Ethernet, because
most data centers are constructed using commodity Eth-
ernet switches and high-performance Ethernet is more
promising and cost-effective [34]. Recent advances show
that Ethernet switches with 100 Gbps bandwidth [6] and
sub-µs latency [5] are practical in the near future, and
Ethernet NICs with RDMA support have reduced much
of the latency of complex protocol stacks [27].

Data model. We focus on a simple key-value store
that supports arbitrary number of key-value pairs, which
consist of a 64-bit key, a variable-length value, and a
64-bit version number. Our prototype provides a simple
set of operations (“set key value”, “get key” and “delete
key”) for writing/updating, reading and deleting data.

Primary-recovery-backup. Storage systems have mul-
tiple copies for each piece of data. There are two
choices, namely symmetric replication [22] and primary-
backup [16], to maintain the durability and consistency.
In symmetric replication all copies have to be kept in
the RAM of servers and a quorum-like technique [25]
is used for conflict resolution. In contrast, in primary-
backup only one primary copy is needed to be stored
in RAM while redundant backup copies could be stored
on disks, and all read/write operations are through the
primary copy. Considering the relatively high cost and
energy usage per bit of RAM, we prefer primary-backup.

We refer to the servers storing the primary copies in
RAM as primary servers, and the servers storing the
backup copies on disks as backup servers. Once a
primary server fails, the backup servers will recover the
backup copies to some healthy servers that are called
recovery servers. As discussed in Section 5, the number
of recovery servers is a tradeoff between recovery time
and recovered data locality: a larger number decreases
the recovery time but results in higher fragmentation, and
vice versa. The “primary-recovery-backup” structure
(shown in Fig. 1(a)) is adopted by many storage systems
like RAMCloud and BigTable [19], where each server
symmetrically acts as all the three roles.

3.2 CubicRing
Our basic idea is to restrict failure detection and re-
covery traffic within the smallest possible (i.e., 1-hop)
range. We improve the primary-recovery-backup struc-
ture (shown in Fig. 1(a)) with a directly-connected tree
(shown in Fig. 1(b)), where a primary server has multiple
directly-connected recovery servers, each of which has
multiple directly-connected backup servers. Here two
servers are “directly-connected” if they are connected to
the same switch. Clearly, Fig. 1(b) can be viewed as a
special case of Fig. 1(a).

In Fig. 1(b), the primary server P periodically sends
heartbeats to its recovery servers, and once the recovery
servers find P failed, they will recover the lost data from
their backup servers. Since the recovery servers directly
connect to the primary server, they can eliminate much of
the possibility of false detection due to transient network
problems (as discussed in Section 4.1); and since they
also directly connect to their backup servers, the recovery
traffic is guaranteed to have no in-network congestion.

The directly-connected tree provides great benefit for
accurate failure detection and fast recovery. We sym-
metrically map the tree onto the entire network, i.e.,
each server equally plays all the three roles of prima-
ry/recovery/backup server. Our insight is that all cubic
topologies are some variations of generalized hypercube
(GHC) [15], each vertex of which can be viewed as the
root of a tree shown in Fig. 1(b).

We take BCube [35] as an example. BCube(n,0)
is simply n servers connected to an n-port switch.
BCube(n,1) is constructed from n BCube(n,0) and n n-
port switches. More generically, a BCube(n,k) (k ≥ 1)
is constructed from n BCube(n,k − 1) and nk n-port
switches, and has N = nk+1 servers akak−1 · · ·a0 where
ai ∈ [0,n − 1], i ∈ [0,k]. Fig. 2 shows a BCube(4,1)
constructed from 4 BCube(4,0). If we replace each
switch and its n links of BCube(n,k) with an n× (n−1)
full mesh that directly connects the servers, we will get a
(k+1)-dimension, n-tuple generalized hypercube.

We design the multi-layer cubic rings (CubicRing) as
shown in Fig. 3 to map the key space onto a cube-based
network (e.g., BCube), following the primary-recovery-
backup structure depicted in Fig. 1.

• The first layer is the primary ring, which is com-
posed of all the servers. The entire key space is
divided and assigned to the servers on the primary
ring. Fig. 3 shows an example of the primary ring.

• Each primary server on the primary ring, say server
P, has a second layer ring called recovery ring that
is composed of all its 1-hop neighbors (recovery
servers). When P fails its data will be recovered
to the RAM of its recovery servers. Fig. 3 shows an
example of the recovery ring (01, 02, 03, 10, 20, 30)
of a primary server 00.

• Each recovery server R corresponds to a third layer
ring called backup ring, which is composed of the
backup servers that are 1-hop to R and 2-hop to
P. The backup copies of P’s data are stored on the
disks of backup servers. Fig. 3 shows an example
of the (six) backup rings of a primary server 00.

In the symmetric CubicRing depicted in Fig. 3, all
the 16 primary servers have the same primary-recovery-
backup structure (i.e., a directly-connected tree) with
server 00. We can easily obtain the following Theorem 1,
the formal proof of which is given in Appendix A.

3

532  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association



  

 

Figure 1: Primary-recovery-backup.

   

   

               





Figure 2: An example of BCube(4,1).

Theorem 1 On BCube(n,k) there are nk+1, (n−1)(k+
1), and (n− 1)k servers on the primary ring, recovery
ring (of each primary server), and backup ring (of each
recovery server), respectively. A backup server resides
on two backup rings of a primary server, which has
totally (n−1)2k(k+1)

2 backup servers.

For BCube(16,2), for example, there are 4096 prima-
ry servers, each of which has 45 recovery servers (each
having a 30-server backup ring) and 675 backup servers.
Note that CubicRing does not require a primary server to
employ all its recovery/backup servers. E.g., a primary
server in BCube(16,2) may employ 30 (instead of all the
45) servers on its recovery ring to reduce fragmentation,
at the cost of lower aggregate recovery bandwidth.

The construction of CubicRing is applicable to all cu-
bic topologies such as MDCube [53], k-ary n-cube [55],
and hyperbanyan [29], because they are all variations of
the GHC [15] topology which consists of r-dimensions
with mi nodes in the ith dimension. A server in a par-
ticular axis is connected to all other servers in the same
axis, and thus CubicRing can be naturally constructed:
all the servers in a GHC form the primary ring, and for
each primary server its 1-hop neighbors form its recovery
ring and 2-hop neighbors form backup rings. Next, we
will focus on BCube [35] to design a network-aware in-
memory key-value store called MemCube; extending for
arbitrary GHC is straightforward.

3.3 Mapping Keys to Rings
MemCube uses a global coordinator for managing the
mapping between the key space and the primary ring.
The coordinator assigns the key space to the primary
servers with consideration of load balance and locality:
all the primary servers should store roughly-equal size
of primary copies of data (called primary data), and
adjacent keys are preferred to be stored in one server.
Currently MemCube simplifies the load balancing prob-


























 











 

























Figure 3: The CubicRing structure.

lem by equally dividing the key space into consecutive
sub spaces, each being assigned to one primary server.
This design is flexible in dynamically reassigning the
mapping when the load distribution changes (which has
not yet been implemented in our current prototype).

The key space held by a primary server P is further
mapped to P’s recovery servers; and for each recovery
server R, its sub space is mapped to its backup servers.
The mapping should make all the recovery servers be
assigned equal size of data, because after P fails they will
recover P’s data from their backup rings simultaneously.
In order to avoid potential performance bottleneck at
the global coordinator, the mapping from P’s key space
to P’s recovery/backup rings is maintained by P itself
instead of the coordinator, and the recovery servers have
a cache of the mapping they are involved in. After P fails
the global coordinator asks all the recovery servers of P
to reconstruct the mapping.

Dominant/non-dominant backup data. For durability,
each primary copy has f backup copies, among which
there are 1 dominant copy stored on the backup server
(according to the primary-recovery-backup mapping),
and f −1 non-dominant copies stored on f −1 secondary
backup servers (secondary servers for short) in different
failure domains [44]. A failure domain is a set of servers
that are likely to experience a correlated failure, e.g.,
servers in a rack sharing a single power source. The
mapping from a primary server P’s key space to the sec-
ondary servers is also maintained by P and cached at P’s
recovery servers. Normally only the dominant backup
copy participates in the recovery. Non-dominant copies
are used only if the primary copy and the dominant
backup copy fail concurrently. In Fig. 2, e.g., suppose
that the servers connected to the same level-0 switches
are in one rack failure domain. Given primary server P
and backup server B of a primary copy, any f −1 servers
that reside in f − 1 racks different from where P and B

4

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  533

reside can serve as secondary servers. E.g., for primary
server 00 and backup server 11, the secondary servers
(f = 3) may be 21 in rack < 0,2 > and 31 in < 0,3 >.
Normal read/write operations. When a primary server
receives a read request it directly returns. When re-
ceiving a write, it stores the new data in its RAM,
and transfers it to one (2-hop-away) backup server and
f − 1 secondary backup servers. When a backup server
receives the data, it returns after storing it in its buffer to
minimize write latency. The primary server returns after
all the backup servers return. When the buffer fills, the
backup servers use logging [48] to write buffered data to
disks and free the buffer. The backup data’s log is divided
into tracts which are the unit of buffering and I/O.

4 Recovery
4.1 Failure Detection
Primary servers periodically send heartbeats to their
recovery servers. If a recovery server R does not receive
any heartbeats from its primary server P for a certain
period, R will report this suspicious server failure to
the coordinator, which would verify the problem by
contacting P through all the k+1 paths on BCube(n,k).
If P does fail, then all the tests should report the failure
and the coordinator will initiate the recovery. Otherwise
if some tests report P is still alive, then the coordinator
will notify the available paths to the recovery servers that
lose connections to P. If some (alive) servers keep being
unreachable through a switch for a period of time, then
the switch will be considered failed.

There are a high rate of transient network problems
and a large number of small packets may be lost [31],
which might result in large-scale unavailability and con-
sequently severe disruptions. MemCube uses a relatively
short timeout to achieve fast recovery. This introduces
a risk that transient network problems make heartbeats
get lost and thus may be incorrectly treated as server
failures. Our solution is to involve as few as possible
network devices/links on the paths that heartbeats tra-
verse: MemCube achieves 1-hop failure detection which
eliminates much of the possibility of network-induced
false positives. In contrast, multi-hop detection (where,
e.g., a heartbeat traverses 01 → 11 → 10 → 00 instead of
01 → 00 in Fig. 2) will considerably increase the risk.

In some uncommon cases, however, false positives are
inevitable, e.g., a server is too busy to send heartbeats.
MemCube uses atomic recovery to address this kind of
problems, which will be discussed in Section 5.

4.2 Single Server Failure Recovery
A server failure means three types of failures corre-
sponding to its three roles of primary/recovery/backup
server. We sketch the major steps of recovering these

Pseudocode 1 Single server failure recovery

1: procedure RECOVERFAILURES(FailedServer F)
2: Pause relevant services
3: Reconstruct key space mapping of F
4: Recover primary data for primary server failure∗

◃ All recoveries with ∗ are performed concurrently
5: Recover backup data for primary server failure∗

6: Resume relevant services
7: Recover from recovery server failure∗

8: Recover from backup server failure
9: end procedure

failures in Pseudocode 1 (where for brevity no failure
domain constraint is considered). During the recovery
the backup data is read from disks of backup servers,
divided into separate groups, transferred through the
network, and received and processed (e.g., inserted into
a hash table) by the new servers. Since most recovery
flows are 1-hop, the in-network transfer is no long a
bottleneck. And due to the relatively small number of
recovery servers compared to other resources (as shown
in our evaluation in Section 6), the recovery bottleneck
is the inbound network bandwidth of recovery servers.

Pause relevant services. After a server F’s failure is
confirmed by the coordinator, the key space held by F (as
a primary server) will become unavailable. During the
recovery all the relevant recovery/backup servers would
pause servicing normal requests to avoid contention.

Reconstruct mapping. The coordinator asks all F’s
recovery servers to report their local cache of (part
of) the mapping from F’s key space to F’s recov-
ery/backup rings, and reconstructs an integrated view
of the mapping previously maintained by F . Then the
coordinator uses the mapping to initiate the recovery of
primary/recovery/backup server failures for F .

Primary data recovery of primary server failure. After
being notified the failure of a primary server F (say
00 in Fig. 2), F’s backup servers (e.g., 11) will read
backup data in tracts from disks, divide the data into
separate groups for their 1-hop-away recovery servers
(01 and 10), and transfer the groups of data to the
recovery servers in parallel. To pipeline the processes
of data transfer and storage reconstruction, as soon as
the new primary server receives the first tract it begins
to incorporate the new data into its in-memory storage.
Keys are inserted to the hash table that maps from a key
to the position where the KV resides. The new primary
servers use version numbers to decide whether a key-
value should be incorporated: only the highest version
is retained and any older versions are discarded.

Backup data recovery of primary server failure. In
addition to the primary data recovery, the (dominant)

5

534  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

backup data previously stored on the old backup rings
of the failed primary server F (00 in Fig. 2) needs to
be recovered to the backup rings of the new primary
servers R (i.e., F’s recovery servers), for maintaining the
CubicRing structure. To minimize the recovery time of
the future failure of R (e.g., 01), the backup data of F
(00) should be evenly reassigned from the old backup
ring (11, 21, 31) of R (01) to the new backup rings of
R. Suppose that each backup server B on the old backup
ring (11, 21, 31) stores β GB of F’s backup data that
is previously mapped onto R (01). Since each backup
server B (e.g., 11) is a new recovery server of R (01), B
(11) only needs to recover its backup data to its 1-hop-
away backup servers (B′) on B’s new backup ring (10,
12, 13), proportional to the number of recovery servers
served by B′: β/5 GB of backup data to 10, 2β/5 GB
to 12, and 2β/5 GB to 13. Other old backup servers
(21 and 31) have similar reassignment of their backup
data, making each of the five new backup rings of R (01),
namely, (10, 12, 13), (20, 22, 23), (30, 32, 33), (12, 22,
32) and (13, 23, 33), be assigned 3β/5 GB of backup
data from the old backup ring (11, 21, 31). For non-
dominant backup data, since it does not participate in
the normal recovery of primary data, MemCube does not
reassign it unless the failure domain constraint is broken,
as described in Section 4.3.
Resume services. After a new primary server P and
P’s backup servers complete the recovery of the new
primary/backup data, P will update its mapping of the
relevant data at its new recovery servers and the coor-
dinator, and then P will notify the coordinator that its
recovery is finished. P can choose (i) to wait for all
the other new primary servers to finish their recoveries
and then resume the services simultaneously (so that it
will not affect others’ recoveries), or (ii) to resume its
service without waiting for others (so that its data can
be accessed immediately). The two choices have no
obvious difference in MemCube since by design all the
recoveries are finished with similar time. Clients have
a local cache of (part of) the mapping so that normally
they can directly issue requests without querying the
coordinator. If a client cannot locate a key, it fetches
up-to-date information from the coordinator.
Recovery of recovery server failure. After a server F
(e.g., 00 in Fig. 2) fails as a recovery server, for each of
its primary servers P (e.g., 01), the (dominant) backup
data on F’s old backup ring (10, 20, 30) will be equally
reassigned to the backup rings of P’s remaining recovery
servers R (11, 21, 31, 02, 03), in order to minimize the
recovery time of P’s future failure. Suppose that each
backup server B on the old backup ring (10, 20, 30) stores
β GB of P’s (01) backup data that is previously mapped
onto F (00). Then after F (00) fails, the backup data of B
(10, 20, 30) will be reassigned to the 1-hop-away backup

Recovery type Size1 From/to2 Length # flows3

Primary data of α B→R 1-hop br
primary server
Backup data of α B→B 1-hop b2r
primary server B→R
Recovery server < α R→B 1-hop (b−1)br
Backup server f α B→R 2-hop f (b−1)br
1

Total recovered size (assume a primary server stores α primary data).
2

From the perspective of a failed primary server. R: recovery server.
B: backup server. Bottleneck is R’s inbound network bandwidth.

3
flows after the 1st failure. b: # backup servers on the backup ring.
r: # recovery servers on the recovery ring. f : disk replication factor.

Table 1: Recovery summarization.

servers (B′) on the backup rings of R (11, 21, 31, 02, 03),
proportional to the number of recovery servers served
by B′: e.g., 10 will retain β/5 GB of backup data (for
recovery server 11), transfer 2β/5 GB to 12 (for 11 and
02), and transfer 2β/5 GB to 13 (for 11 and 03). 20 and
30 have similar reassignment, making each of the five
remaining backup rings be assigned 3β/5 GB of backup
data previously stored on 00’s backup ring (10, 20, 30).
Recovery of backup server failure. After a server F
(e.g., 00 in Fig. 2) fails as a backup server, its (dominant)
backup data for each of its primary servers P (e.g., 11)
is evenly divided and recovered from P (11) to P’s 2-
hop-away remaining backup servers (02, 03, 20, 30) on
P’s two backup rings where F (00) previously resided, to
minimize the recovery time of P’s future failure. Non-
dominant backup data of F is recovered similarly.
Summarization. We summarize different types of
recoveries in Table 1. (i) The primary/backup data
recoveries of primary server failures are crucial to avail-
ability and performed concurrently. We note that there
is contention between the two recoveries (B→R), but
since the data size transferred to R in the backup data
recovery (SB→R

Backup) is proportional to the number of new
recovery servers served by R, it can be proved that
SB→R

Backup is between 1
2b−1 and 1

b the size transferred to R
in the primary data recovery, where b is the number of
servers on the backup ring. Clearly it is negligible with
relatively large b. (ii) The recovery of recovery server
failures is not crucial but has no contention with primary
server recovery, and thus could also be performed con-
currently. (iii) The recovery of backup server failures
has contention with primary server recovery (B→R), and
thus should wait until the crucial recovery is finished.
The deferred recovery has little affect on availability,
and during this period the involved primary servers can
service requests as usual, except that there is one less
backup copy for the unrecovered backup data. The
version numbers are used when multiple backup writes
conflict (e.g., one from a new client write while another
from the recovery of backup server failures).

6

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  535

4.3 Additional Failure Scenarios

Multiple failures. If multiple failures take place one
by one, i.e., one failure happens after the previous fail-
ure has been completely recovered, MemCube recovers
from each failure independently. Clearly the number
of failures that the CubicRing structure can tolerate is
bounded by the number of servers on each recovery ring:
if all recovery servers of a primary server fail then the
CubicRing structure fails. (If all backup servers of a
recovery server R fail then it can be viewed as a failure
of R.) In the worst case, e.g., the CubicRing structure on
BCube(16,2) can tolerate at least 44 failures, while the
structure on BCube(4,1) can tolerate at least 5 failures.
Note that a CubicRing failure does NOT mean any data
loss. This is because even though the data cannot
be recovered to the recovery ring after the CubicRing
structure fails, it still can be recovered to any healthy
servers in MemCube.

Concurrent failures. When multiple failures happen
concurrently, MemCube separately recovers from each
failure, unless they are 1-hop or 2-hop neighbors. (i) If
two directly-connected neighbors fail, e.g., during the
recovery of a failed server F the coordinator cannot get
responses from one of F’s recovery servers, MemCube
excludes them from each other’s recovery ring, and
recovers each failure as if it is a single failure. (ii) If a
primary server and its backup server fail, the recovery
server asks secondary servers for non-dominant copies.

Failure domain. MemCube guarantees after recovery
none of the f backup copies are in the same domain.
For instance, in the example of backup data recovery
of a primary server (00) failure in Section 4.2, some
dominant backup data may be reassigned to the same
rack where the non-dominant data resides. E.g., the
backup data previously stored on 11 is reassigned to
(01, 21, 31) for the new primary server 10. In this case
MemCube will reassign the affected non-dominant data
to a new secondary server in a different rack.

Switch failures. In traditional storage systems a ToR
switch failure results in a recovery storm, where all the
abandoned servers connected to that switch are actually
alive. In contrast, MemCube handles switch failures
simply by leveraging the multiple paths between any two
servers. Since any k switch failures in BCube(n,k) result
in only graceful degradation [35] but no data loss or
unavailability, it is not critical and the failed k switches
can be replaced in a relatively long period of time.

5 Discussion

Over-provisioning ratio. If a primary server fails, its
recovery servers must have enough RAM to accommo-
date the recovered data. So the RAM of all the servers

need to be over-provisioned beforehand. We obtain the
following Theorem 2 for the over-provisioning ratio (θ),
the formal proof of which is given in Appendix B. In
BCube(16,2), e.g., if θ = 1.15 then at least 6 failures can
be tolerated; and if θ = 1.4375 then at least 14 failures
can be tolerated. In contrast, RAMCloud does not have
a deterministic θ due to its randomized data placement.
Note that similar to the CubicRing failure discussed
in Section 4.3, if no enough RAM available on some
specific servers MemCube can be simply “degraded” to
RAMCloud without any data loss.

Theorem 2 Consider a MemCube on BCube(n,k) and
suppose that before any failures each server installs α
GB of RAM and stores β GB of data. We define the over-
provisioning ratio as θ = α/β . If we want to keep the
CubicRing structure after the rth failure in the worst case,
we should have θ ≥ 1+ r

nk+n−k−r .

Fragmentation. After a primary server fails MemCube
recovers its data to multiple new servers, on which the
recovered fragmented data may lost locality. Although
locality has no effects on our current data model, this
issue might become important if MemCube supports
richer models in the future. Given a set of KVs (S), we
define the fragmentation ratio (µ) as the initial number
of primary servers responsible for S divided by the
current number of servers for S. Higher µ means lower
fragmentation and thus is desired for better locality. As
discussed in Section 3.2, the number of recovery servers
involved in a recovery is configurable. Larger numbers
increase the aggregate bandwidth but result in higher
fragmentation, and vice versa. We study the tradeoff
between aggregate bandwidth and µ in Section 6.4. A
simple method for defragmentation is to replace the
failed server with a new one and restore the data.
Heterogeneity and stragglers. The backup servers may
have different parameters of disk/CPU/RAM/network
resources. MemCube handles heterogeneity by assigning
backup data according to the bottleneck resource. E.g.,
if the network bandwidth of backup servers is the bot-
tleneck for recovery, MemCube will assign backup data
to them proportional to their bandwidth [45] so that they
can finish the recovery with similar time.

MemCube uses a simple method to handle stragglers.
Since the numbers of servers on the recovery/backup
rings and the bandwidth of each server are known,
MemCube can compute the expected recovered size for
each server given a time window. A recovery server (R)
periodically computes for each of its backup servers (B)
the ratio (πB

R) of the data size recovered from B to the
expected recovered size from B within the last period. If
πB

R is lower than a pre-defined threshold, then B will be
considered as a straggler and R will use B’s secondary
server instead. The coordinator identifies stragglers from

7

536  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

recovery servers in a similar way, and it will reassign
the straggler’s responsible data to other healthy recovery
servers. In both cases non-local recovery will occur, but
we expect little impact on the overall performance.

Consistency guarantees. A complete discussion of
consistency guarantees is beyond the scope of this work,
and here we briefly discuss the main factors affecting
consistency. False positives are inevitable in failure
detection. Therefore, MemCube adopts atomic recovery,
where once the coordinator declares a server P dead, it
will ask all P’s backup servers to (i) reject any further
backup requests from P and (ii) indicate P to stop its
service. Buffered backup writes from P before the
declaration should be finished since they have been
returned. Primary servers also periodically contact with
their backup servers so that they can stop servicing pure
read requests after being declared dead. Therefore, false
detection in MemCube is not fatal (but expensive).

MemCube uses ZooKeeper [39] enabled coordinators
to store its global mapping information between the key
space and the primary servers. There are one active
coordinator and several standby coordinators which are
competing for a single lease, ensuring at most one
coordinator to be responsible at a time. After the active
coordinator fails, some standby coordinator will acquire
the lease and become active. If a server fails concurrently
with a coordinator failure, e.g., the recovery servers R
cannot get response from the coordinator, R will ask the
ZooKeeper service to locate the new active coordinator
and then report the failure to it. Afterwards the normal
recovery procedure is performed.

Since there are k + 1 paths between any two servers
in BCube(n,k), MemCube is unlikely to have a network
partition. If this happens, an operator can stop the entire
system and wait until the network recovers. Similarly,
non-transitive failures [52] are unlikely since all paths to
a suspiciously failed server are tested.

Operational Issues. MemCube is designed on top of
BCube, which has similar cost and wiring complexity
with FatTree. For isntance, both BCube and FatTree use
128 wires for building our 64-server testbed (discussed in
Section 6). Clearly there might be a bandwidth waste in
MemCube if the network is not busy, but the advantages
of BCube include not only high bandwidth and through-
put, but also fast failure detection and recovery, graceful
degradation during switch failures, etc. Also we note that
BCube uses COTS switches/NICs, and thus the extra cost
is low and acceptable.

As described in Line 2 of Pseudocode 1 in Section 4.2,
for minimizing the recovery time MemCube stops all the
relevant services during the recovery. For BCube(16,2)
with 4096 servers, for example, given the normal fail-
ure rate (about 1 ∼ 2 failures/server/year [7]) and the

recovery time (a few seconds as shown in Section 6), the
“background” network utilization of recovery traffic is
less than 10−4.

A dangerous situation is that the entire system loses
power at once. A simple way to address this problem
is to install on each server a small backup battery. The
battery ONLY needs to extend the power long enough to
ensure that the backup server’s buffered backup data (that
is yet to be written to disks) be flushed. When power
returns the cold start is performed like many concurrent
recoveries of all servers.

6 Evaluation
We have implemented a prototype of MemCube by
adding a MemCube module to memcached-1.4.15 on
Linux, which contains: (i) a connection manager that
maintains the status of neighbors and interacts with other
servers; (ii) a storage manager that handles set/get/delete
requests in a server’s RAM and asynchronously writes
backup data to disks by appending the data to its on-
disk log that is divided into 8MB tracts; and (iii) a
recovery manager that reconstructs primary/backup data
(and the corresponding mapping) on the new prima-
ry/backup servers and inspects the recovery process.
We also implement a simple global coordinator that
maintains the configuration, the addresses of servers, and
the mapping between the key space and the servers along
with the size of data stored in each server’s RAM.

6.1 Testbed
We have built a testbed with 64 PowerLeader servers and
five Pronto 3780 48-port 10GbE switches. Each server
has 12 Intel Xeon E5-2640 2.5GHz cores and 64 GB
RAM, and installs six Hitachi 7200 RPM, 1 TB disks
and one 10GbE 2-port NIC.

We use four switches to construct a 64-node
BCube(8,1) network to run MemCube, where each
switch acts as four 8-port virtual switches and connects
to 32 servers. We also use the five switches to build a
64-node tree and a 64-node FatTree to emulate and test
RAMCloud [45] on Ethernet. For tree, we simply have
each of four switches connect to 16 servers and the fifth
switch act as the aggregate switch, getting a relatively
high over-subscription ratio of 1 : 16. For FatTree, we
use three switches in the first level and two in the second.
In the first level we use two switches to connect to 24
servers each and act as three 8-port virtual switches, and
use the third switch to connect to 16 servers and act
as two virtual switches; and each switch has the same
number of ports connected to the second level switches
as that to the servers. In the second level each switch
acts as four 8-port virtual switches. We also build a
1 : 4 oversubscribed FatTree where the first level has

8

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  537

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16 18A
g

g
re

g
at

e
R

ec
o

v
er

ed
 D

at
a

(1
0

9
 B

y
te

s)

Time (sec)

MemCube
RAMCloud on Tree (1:16)

RAMCloud on FatTree (1:4)
RAMCloud on FatTree (1:1)

Figure 4: Single server failure recovery.

4 switches each being connected to 16 servers and the
second level has the fifth switch being connected to four
ports of each of the first-level switches. FatTree uses
ECMP routing with hash-based path selection to achieve
load balancing. Our testbed therefore supports both
MemCube on BCube and RAMCloud on tree/FatTree.

All experiments use a disk replication factor of 3, i.e.,
1 primary copy in RAM and 3 backup copies on servers’
disks. Clearly, given the disk bandwidth of 100∼200
MB/sec and the number (6) of disks per server, the net-
work bandwidth of 10 Gb/sec, and the ratio of recovery
servers to backup servers (14/49), the bottleneck is at the
inbound network bandwidth of recovery servers.

A client initially fills the 64 primary servers each with
48 GB of primary data. During the process we measure
the write throughput of one MemCube primary server.
We slightly modify the Redis benchmark [13, 26] to
adapt to MemCube, which uses a configurable number of
busy loops asynchronously writing KVs. The maximum
write throughput of a single MemCube primary server is
about 197.6K writes per second when it runs 8 single-
threaded service processes each corresponding to 200
loops. In contrast, the maximum throughput of an un-
modified Memcached server is about 225.5K writes per
second when it runs 4 single-threaded service processes
each corresponding to 250 loops.

After a failure happens, the recovery is conducted
following Pseudocode 1. Our evaluation answers the
following questions: How fast can MemCube recover a
single server failure, even with stragglers (§6.2)? How
well does MemCube perform under various patterns of
failures (§6.3)? And what is the impact of using different
number of recovery/backup servers (§6.4)?

6.2 Single Server Failure Recovery
We first evaluate the recovery of a single server failure
in MemCube. The client sends a magic RPC to a
primary server that kills its service process. The recovery
procedure is started after waiting 300 milliseconds of
heartbeat timeout. The coordinator waits until all the

(n,k) (4,3) (8,2) (8,3) (16,1) (16,2)
servers 256 512 4096 256 4096
MemCube 1.20 1.01 0.51 1.44 0.48
RAMCloud 26.59 42.98 83.40 22.68 40.59

Table 2: Simulated recovery time (in seconds).

primary/backup data is recovered and reports the size
of the aggregate recovered (primary) data over time.
We also evaluate RAMCloud [45] both on tree and on
FatTree with ECMP [34], where each primary server
uses 14 recovery servers and 49 backup servers (which
are the same as in MemCube).

The result is depicted in Fig. 4. Each point is an
average of 5 runs except the last points because the fast
runs may have completed. MemCube recovers 48 GB of
data in 3.1 seconds. The aggregate recovery throughput
is about 123.9 Gb/sec, very close to the optimal ag-
gregate bandwidth bounded by the NIC bandwidth and
the number of recovery servers. Every recovery server
achieves the recovery throughput of about 8.85 Gb/sec.

The recovery process of RAMCloud is also depicted
in Fig. 4. On tree, RAMCloud has similar performance
with MemCube in the beginning but gets a dramatic
degradation after 2 seconds. This is because the recov-
ery servers randomly choose their new backup servers
without a global view of the network, and the tree has an
over-subscription ratio of 1 : 16 which generates severe
congestion at the root. At beginning local flows within a
switch saturate the recovery servers’ NICs, the aggregate
bandwidth of which is the same as that in MemCube.
But after the local flows complete the aggregate recovery
bandwidth will drop. Non-blocking FatTree is designed
to alleviate this problem, but since ECMP randomly
selects paths for the flows, the full bisection bandwidth
is not guaranteed but only stochastically likely across
multiple flows. Thus long-lived recovery flows are
problematic with ECMP and RAMCloud (both on tree
and on FatTree) experiences long recovery time. Note
that the results in Fig. 4 are worse than that in [45], where
RAMCloud recovers 35 GB of data in 1.6 seconds in a
60-node cluster. This is because in [45] (i) RAMCloud
uses 5 32Gbps-InfiniBand switches to build the testbed
(while we emulate 16 8-port 10GbE switches); and (ii) it
uses all the nodes as recovery servers for the failed server
(while we use only 14 recovery servers).

We also evaluate the recovery for larger scales of
MemCube (on BCube(n,k)) and RAMCloud (on non-
blocking FatTree) through simulations. Since in most
cases the bottleneck is at the bandwidth of recovery
servers, we simplify the simulations by using NS2 [8]
to simulate the process of transferring primary/backup
data for the failed server which has 48 GB of primary
data. The result is summarized in Table 2, where the first

9

538  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5A
g

g
re

g
at

e
R

ec
o

v
er

ed
 D

at
a

(1
0

9
 B

y
te

s)

Time (sec)

Straggler
2nd failure
3rd failure

Figure 5: Straggler and multiple failures.

row lists different combinations of (n,k) and the numbers
of servers, and the next two rows respectively show the
corresponding recovery time (in seconds) for MemCube
and RAMCloud. Note that we only simulate the process
of primary/backup data transfer and ignore the failure
detection time (a few hundred milliseconds), the coordi-
nation time (100+ milliseconds), the time of reading the
first tract from disks (about 100 milliseconds), and the
potential bottleneck at CPU which is because a recovery
server uses k NIC ports for recovery. Therefore, although
the simulated recovery time for both BCube(8,3) and
BCube(16,2) is only about half a second, in practice it
would be difficult to recover faster than 1 second.

We emulate a straggler during the recovery by lim-
iting a backup server’s outbound bandwidth to 1/3 the
bandwidth in normal recovery (123.9

49×3 ≈ 0.84 Gb/sec). In
this experiment, every new primary server R computes
πB

R (defined in Section 5) for each of its backup server
B every half a second, the threshold is set to 0.7, and
the straggler occurs 1 second after the recovery begins.
The recovery procedure is depicted in Fig. 5 (denoted as
Straggler), each point of which is an average of 5 runs.
The result shows that MemCube performs well after the
straggler occurs by using other backup flows to saturate
the recovery server’s spare bandwidth. After 1.5 seconds
MemCube will detect the straggler and use its secondary
server instead, which finishes its recovery at about 3.5
seconds. The additional time compared to MemCube’s
normal recovery is because the straggler recovers less
data than others between 1 and 1.5 seconds.

6.3 Multiple Server Failures Recovery
We evaluate the recovery of multiple failures with the
one-by-one pattern, i.e., one failure happens after the
previous failure has already been completely recovered.
All subsequent failures happen on the same recovery
ring of the first failure, which generates the worst-case
scenario. The result is depicted in Fig. 5, which shows
the size of recovered data over time for the second
and third failures. Each point is an average of 5 runs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14A
g

g
re

g
at

e
R

ec
o

v
er

ed
 D

at
a

(1
0

9
 B

y
te

s)

Time (sec)

Rack failure

Figure 6: Rack failure recovery.

This figure shows that there is a graceful degradation
of recovery performance as failures happen one by one,
mainly due to the decrease of the number of recovery
servers and the increase of the primary data size.

We then emulate a rack failure by sending a magic
RPC to the 8 servers connected to an 8-port virtual
switch to kill their MemCube processes. Currently our
prototype only supports rack failure recovery of prima-
ry/backup data for primary servers failures (Lines 4 and 5
in Pseudocode 1), but extending for supporting the other
two types of recovery (Lines 7 and 8) is straightforward.
The recovery procedure is depicted in Fig. 6, where
each point is an average of 5 runs and the differences
to the mean are less than 5% (omitted here for clarity).
MemCube recovers a rack failure of 8 primary servers
in about 13.2 seconds, Compared with the single failure
recovery, the recovered data size increases by 8×, the
total number of recovery servers increases by 4×, and
the recovery time increases by about 4×, meaning the
per-server recovery throughput is only about 1/2 that in
single failure recovery. This is because both primary
data and backup data are recovered from all servers
to all servers, in contrast in single failure recovery (as
discussed in Section 4.2) only 1

2b−1 = 1/13 of the backup
data recovery contends with the primary data recovery,
where b = 7 is the number of servers on a backup ring.
Clearly, even when multiple primary-recovery-backup
structures overlap there is still no severe competition
during the recoveries of multiple concurrent failures.

MemCube handles a switch failure with graceful per-
formance degradation by leveraging the multiple paths
of BCube. To evaluate this, we first measure the
write throughput of a primary server, disable a switch
connected to that server, wait for 1 second, and then
measure the write throughput again. Running 8 single-
threaded server processes, before the switch failure the
write throughput ≈ 197.6K writes/sec. After the switch
failure the write throughput ≈ 162.2K writes/sec with a
degradation of less than 18%, which is mainly because
the redundant paths traverse more intermediate nodes.

10

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  539

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 9 10 11 12 13 14
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

A
g

g
r.

 R
ec

o
v

er
y

 B
/W

 (
N

o
rm

al
iz

ed
)

F
ra

g
m

en
ta

ti
o

n
 R

at
io

Recovery Servers per Primary Server

Aggregate bandwidth
Frag. ratio (1 failure)

Frag. ratio (2 failures)

Figure 7: Tradeoff of different # recovery servers.

6.4 Impact of # Recovery/Backup Servers

We study the impact of different number of recovery
servers used by a primary server on the average ag-
gregate recovery bandwidth and the fragmentation ratio
(introduced in Section 5). The bandwidth is computed
as the recovered size (of primary data) divided by the
recovery time and normalized to the baseline with all
the 14 recovery servers being used. Each recovery
server adopts all its 7 backup servers. As shown in
Fig. 7, with the increase of the number of recovery
servers, MemCube gets an almost linear speedup for
the bandwidth, while the ratio decreases (meaning more
severe fragmentation) after the recovery of both 1 and 2
failures. In practice MemCube can choose the tradeoff
between fragmentation and recovery bandwidth by using
different number of recovery servers accordingly.

We study the impact of different number of backup
servers (b) used by a recovery server on the aggregate
recovery bandwidth. The primary server uses all its 14
recovery servers. Since when b is small the bandwidth
of backup servers (BWB) may become the bottleneck
instead of the bandwidth of recovery servers (BWR),
the primary data is assigned to the recovery servers R
according to R’s min(BWR,∑B∈Ring(R) BWB). As shown
in Fig. 8, when the number of backup servers is small
(b = 2,3) the bandwidth of backup servers is the bottle-
neck. This is because the data sent by backup servers
is twice as much as that received by recovery servers
due to the concurrent recovery of backup data (and note
that 1 backup server serves 2 recovery servers). When
b increases to 4, the aggregate bandwidth is almost
the same as the baseline (b = 7), because since then
the performance is again bounded by the bandwidth of
recovery servers. Although the number of backup servers
has little impact on the recovery time when b ≥ 4, we
suggest to use all the backup servers to (i) achieve high
CubicRing durability, and (ii) prevent the aggregate disk
bandwidth to become a bottleneck when the number of
disks per server is smaller than our configuration (= 6).

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2 3 4 5 6 7

A
g

g
r.

 R
ec

o
v

er
y

 B
/W

 (
N

o
rm

al
iz

ed
)

Backup Servers per Recovery Server

Aggregate bandwidth

Figure 8: Impact of different # backup servers.

7 Related Work

Efficient KV. The idea of permanently storing data in
RAM is not new. E.g., in-memory databases [30] and
transaction processing systems [40] keep entire data-
bases in the RAM of one or several servers and support
full RDBMS semantics. RAMCloud [45] is proposed
as a large-scale in-memory key-value store where the
data is kept entirely in RAM and the backup copies are
scattered across many servers’ disks. RAMCloud uti-
lizes high-bandwidth InfiniBand networks to achieve fast
failure recovery. MemCube inherits some key designs
of RAMCloud including the primary-recovery-backup
architecture and the coordinator for key space manage-
ment. MemCube improves RAMCloud by leveraging
CubicRing to address several critical network-related
issues, including false failure detection due to transient
problems, recovery traffic congestion, and ToR switch
failures. Besides, MemCube is implemented on Ethernet
which has cost and scalability benefits.

Redis [13] is a key-value store that keeps all data in
RAM. Redis has a richer data model than MemCube,
e.g., atomic increment and transactions. However, it can
prevent data loss ONLY when it is used in the flushing
mode, where every write has to be logged to disks before
it returns. MemC3 [28] improves Memcached [9] by
incorporating the CLOCK replacement algorithm [1] and
Concurrent Cuckoo hashing [47]. It serves up to 3× as
many queries per second. MemCube can easily migrate
from Memcached to MemC3 for higher throughput.

Flash memory is receiving increasing attention
for flash-based storage systems (e.g., SILT [42],
FAWN [12], FlashStore [23], SkimpyStash [24], and
HashCache [11]). One disadvantage of in-memory stor-
age systems is the high cost and energy usage per bit.
However, when considering cost per operation, RAM is
about 1000× more efficient than disk and 10× than flash
memory [46]. Andersen et al. [12] and Ousterhout et
al. [46] separately generalize Jim Gray’s rule [33] and
conclude that (i) for high access rates and small data

11

540  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

sizes RAM is the cheapest; and (ii) the applicability of
in-memory storage will be continuously increasing.

Detection/recovery. Failure detection has been widely
studied in the context of monitoring remote elements by
using end-to-end timeouts [18, 14, 20, 50, 37]. E.g.,
the ϕ -accrual detector [37] provides a measurement of
detection confidence and lets applications decide corre-
sponding actions. Recently, Falcon [41] and Pigeon [36]
propose to install sensors to obtain low-level informa-
tion of hardware, OS, processes, and routers/switches,
to aid diagnosis. These works are complementary to
MemCube and can help to provide more accurate detec-
tion. E.g., MemCube could use Pigeon to check backup
servers’ SMART [51] data to pre-warn disk problems.
MemCube’s local detection eliminates the necessity of
installing code in switches (which makes Pigeon less
applicable in real deployment) for congestion detection.
Host failure recovery techniques (e.g., microreboot [21,
17]) focus on masking and containing failures, which can
be directly applied to MemCube: a MemCube recovery
will not take place until failures cannot be masked.

FDS [44] is a locality-oblivious blob store. It recovers
92 GB of data in parallel in 6.2 seconds on a 256-
server 10GbE FatTree, which is less efficient compared
with MemCube. Thus although FDS claims “locality is
unnecessary”, we show locality does matter in fast failure
recovery. Similar to FDS, D-Streams [54] use parallel
recovery for reliable distributed stream processing.

8 Conclusion
This paper’s top-level contribution is architectural: We
suggest to exploit network proximity in distributed sys-
tems to restrict failure detection and recovery within
the smallest possible range, in order to minimize the
uncertainty and contention induced by the network. We
apply this principle to fast failure recovery of an in-
memory key-value store (MemCube) by constructing the
CubicRing structure: All the servers form a primary
ring, and for each primary server its 1-hop neighbors
form a recovery ring and 2-hop neighbors form backup
rings. As failures happen, MemCube (i) leverages the
CubicRing structure to quickly recover lost data, and (ii)
maintains the structure.

We plan to improve MemCube in several aspects
including rich data model, indices, efficient log clean-
ing/optimizing, super columns [19], strong consistency
(i.e., linearizability [38, 32]) guarantees, and low-latency
serializable transactions [56]. We also plan to implement
automatic reassignment of the key space mapping when
the load distribution dynamically changes. On the other
hand, MemCube depends on cubic topologies, and how
to apply the proposed principle to tree-based networks
(e.g., FatTree) is still an open issue.

Acknowledgement
This work was supported by the National Basic Re-
search Program of China (973) under Grant No.
2011CB302601, and the National Natural Science Foun-
dation of China (NSFC) under Grant No. 61379055
and 61222205. We thank Ji Wang, Huiba Li, Zhihui
Sun, Rodrigo Fonseca, the Pronto tech support team,
and the anonymous reviewers for their help to improve
this paper. This work was performed when the first
author was visiting MSRA, and we thank Guohan Lu
and Jiaxin Cao for the insightful comments. Some parts
of the paper were written when the first author was
visiting the NetOS group of Computer Lab at University
of Cambridge, and we thank Professor Jon Crowcroft for
his accommodation and Anil Madhavapeddy, Ripduman
Sohan and Hao Liu for the discussion. Some preliminary
results of this work were presented at HotCloud’12.

Appendix

A. Proof of Theorem 1

BCube(n,k) is equal to an n-tuple, k + 1 dimensional
generalized hypercube and there are nk+1 servers on the
primary ring. Each primary server connects to k + 1
switches, each with n − 1 recovery servers. So there
are (n − 1)(k + 1) servers on the recovery ring. Each
recovery server connects to k switches (except the one it
uses to connect to its primary server), each with n− 1
backup servers. So there are (n − 1)k servers on the
backup ring. The backup servers is two hops away
from their primary server, and thus they have exactly
two digits different from their primary server. Thus each
backup server services 2 recovery servers irrespective of
n and k. Therefore each primary server has totally (n−
1)(k+1)× (n−1)k/2 = (n−1)2k(k+1)

2 backup servers.

B. Proof of Theorem 2

By Theorem 1, at the beginning there are (n−1)(k+1)
servers on the recovery ring. Let m = (n − 1)(k +
1). After the first server fails, MemCube must satisfy
β + β

m = β (1 + 1
m) ≤ α; after the second server fails,

which in the worst case may be a recovery server of
the first failed server, MemCube should satisfy β +
β
m + 1

m−1 (β + β
m) < β (1 + 1

m−1)
2 ≈ β (1 + 2

m−1) ≤ α;
. . .; and by parity of reasoning, after the rth failure
(reasonably assuming m − r >> 1), MemCube should
satisfy β (1+ r

m−r+1)≤ α . Therefore, if we want to keep
the CubicRing structure after the rth failure in the worst
case (where a subsequent failure always happens on a
server that is a recovery server in the previous failure
recovery), the over-provisioning ratio θ should satisfy
θ = α/β ≥ 1+ r

m+1−r = 1+ r
nk+n−k−r .

12

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  541

References
[1] http://books.google.com/books?id=5wDQNwAACAAJ.

[2] http://kylinx.com/papers/cmem1.4.pdf.

[3] https://ramcloud.stanford.edu/wiki/

pages/viewpage.action?pageId=8355860

sosp-2011-reviews-and-comments-on-ramcloud.

[4] http://wiki.open.qq.com/wiki/CMEM.

[5] http://www.aristanetworks.com/en/products/

7100series.

[6] http://www.broadcom.com/press/release.php?

id=s634491.

[7] http://www.datacenterknowledge.com/archives/

2008/05/30/failure-rates-in-google-data-centers/.

[8] http://www.isi.edu/nsnam/ns/.

[9] http://www.memcached.org/.

[10] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic flow schedul-
ing for data center networks. In NSDI (2010), pp. 281–296.

[11] ANAND, A., MUTHUKRISHNAN, C., KAPPES, S., AKELLA,
A., AND NATH, S. Cheap and large cams for high performance
data-intensive networked systems. In NSDI (2010), USENIX
Association, pp. 433–448.

[12] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHAN-
ISHAYEE, A., TAN, L., AND VASUDEVAN, V. Fawn: a fast
array of wimpy nodes. In SOSP (2009), J. N. Matthews and T. E.
Anderson, Eds., ACM, pp. 1–14.

[13] ANTIREZ. An update on the memcached/redis
benchmark. http://antirez.com/post/

update-on-memcached-redis -benchmark.html.

[14] BERTIER, M., MARIN, O., AND SENS, P. Implementation and
performance evaluation of an adaptable failure detector. In 2002
International Conference on Dependable Systems and Networks
(DSN 2002), 23-26 June 2002, Bethesda, MD, USA, Proceedings
(2002), pp. 354–363.

[15] BHUYAN, L. N., AND AGRAWAL, D. P. Generalized hypercube
and hyperbus structures for a computer network. IEEE Trans.
Computers 33, 4 (1984), 323–333.

[16] BUDHIRAJA, N., MARZULLO, K., SCHNEIDER, F. B., AND
TOUEG, S. The primary-backup approach, 1993.

[17] CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIEDMAN, G.,
AND FOX, A. Microreboot - A technique for cheap recovery. In
6th Symposium on Operating System Design and Implementation
(OSDI 2004), San Francisco, California, USA, December 6-8,
2004 (2004), pp. 31–44.

[18] CHANDRA, T. D., AND TOUEG, S. Unreliable failure detectors
for reliable distributed systems. J. ACM 43, 2 (1996), 225–267.

[19] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A.,
AND GRUBER, R. Bigtable: A distributed storage system for
structured data. In OSDI (2006), pp. 205–218.

[20] CHEN, W., TOUEG, S., AND AGUILERA, M. K. On the quality
of service of failure detectors. IEEE Trans. Computers 51, 5
(2002), 561–580.

[21] CULLY, B., LEFEBVRE, G., MEYER, D. T., FEELEY, M.,
HUTCHINSON, N. C., AND WARFIELD, A. Remus: High
availability via asynchronous virtual machine replication. (best
paper). In 5th USENIX Symposium on Networked Systems
Design & Implementation, NSDI 2008, April 16-18, 2008, San
Francisco, CA, USA, Proceedings (2008), p. 161.

[22] DANIELS, D., DOO, L. B., DOWNING, A., ELSBERND, C.,
HALLMARK, G., JAIN, S., JENKINS, B., LIM, P., SMITH, G.,
SOUDER, B., AND STAMOS, J. Oracle’s symmetric replication
technology and implications for application design. In SIGMOD
(1994), ACM Press, p. 467.

[23] DEBNATH, B. K., SENGUPTA, S., AND LI, J. Flashstore: High
throughput persistent key-value store. PVLDB 3, 2 (2010), 1414–
1425.

[24] DEBNATH, B. K., SENGUPTA, S., AND LI, J. Skimpystash:
Ram space skimpy key-value store on flash-based storage. In
SIGMOD Conference (2011), T. K. Sellis, R. J. Miller, A. Ke-
mentsietsidis, and Y. Velegrakis, Eds., ACM, pp. 25–36.

[25] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. In SOSP (2007), pp. 205–220.

[26] DORMANDO. Redis vs memcached (slightly better bench).
http://dormando.livejournal.com/525147.html.

[27] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND H-
ODSON, O. Farm: Fast remote memory. In 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 14) (Seattle, WA, 2014), USENIX Association, pp. 401–
414.

[28] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3:
Compact and concurrent memcache with dumber caching and
smarter hashing. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013,
Lombard, IL, USA, April 2-5, 2013 (2013), pp. 371–384.

[29] FERNER, C. S., AND LEE, K. Y. Hyperbanyan networks: A new
class of networks for distributed memory multiprocessors. IEEE
Transactions on Computers 41, 3 (1992), 254–261.

[30] GARCIA-MOLINA, H., AND SALEM, K. Main memory database
systems: An overview. IEEE Trans. Knowl. Data Eng. 4, 6
(1992), 509–516.

[31] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding
network failures in data centers: measurement, analysis, and
implications. In SIGCOMM (2011), pp. 350–361.

[32] GLENDENNING, L., BESCHASTNIKH, I., KRISHNAMURTHY,
A., AND ANDERSON, T. E. Scalable consistency in scatter. In
SOSP (2011), pp. 15–28.

[33] GRAY, J., AND PUTZOLU, G. R. The 5 minute rule for trading
memory for disk accesses and the 10 byte rule for trading memory
for cpu time. In Proceedings of the Association for Computing
Machinery Special Interest Group on Management of Data 1987
Annual Conference, San Francisco, California, May 27-29, 1987
(1987), U. Dayal and I. L. Traiger, Eds., ACM Press, pp. 395–
398.

[34] GREENBERG, A. G., HAMILTON, J. R., JAIN, N., KANDULA,
S., KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND
SENGUPTA, S. Vl2: a scalable and flexible data center network.
Commun. ACM 54, 3 (2011), 95–104.

[35] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y.,
TIAN, C., ZHANG, Y., AND LU, S. Bcube: a high performance,
server-centric network architecture for modular data centers. In
SIGCOMM (2009), pp. 63–74.

[36] GUPTA, T., LENERS, J. B., AGUILERA, M. K., AND WALFISH,
M. Improving availability in distributed systems with failure
informers. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013,
Lombard, IL, USA, April 2-5, 2013 (2013), pp. 427–441.

[37] HAYASHIBARA, N., DÉFAGO, X., YARED, R., AND KATAYA-
MA, T. The Φ accrual failure detector. In 23rd International
Symposium on Reliable Distributed Systems (SRDS 2004), 18-20
October 2004, Florianpolis, Brazil (2004), pp. 66–78.

13

542  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

[38] HERLIHY, M., AND WING, J. M. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang.
Syst. 12, 3 (1990), 463–492.

[39] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
Zookeeper: Wait-free coordination for internet-scale systems. In
USENIX ATC (2010), pp. 1–14.

[40] KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN,
A., ZDONIK, S. B., JONES, E. P. C., MADDEN, S., STONE-
BRAKER, M., ZHANG, Y., HUGG, J., AND ABADI, D. J. H-
store: a high-performance, distributed main memory transaction
processing system. PVLDB 1, 2 (2008), 1496–1499.

[41] LENERS, J. B., WU, H., HUNG, W., AGUILERA, M. K., AND
WALFISH, M. Detecting failures in distributed systems with the
falcon spy network. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles 2011, SOSP 2011, Cascais,
Portugal, October 23-26, 2011 (2011), pp. 279–294.

[42] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
Silt: a memory-efficient, high-performance key-value store. In
SOSP (2011), pp. 1–13.

[43] MAHAJAN, P., SETTY, S. T. V., LEE, S., CLEMENT, A.,
ALVISI, L., DAHLIN, M., AND WALFISH, M. Depot: Cloud
storage with minimal trust. In 9th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2010,
October 4-6, 2010, Vancouver, BC, Canada, Proceedings (2010),
pp. 307–322.

[44] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O.,
HOWELL, J., , AND SUZUE, Y. Flat datacenter storage. In OSDI
(2012).

[45] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J. K., AND ROSENBLUM, M. Fast crash recovery in
ramcloud. In SOSP (2011), pp. 29–41.

[46] OUSTERHOUT, J. K., AGRAWAL, P., ERICKSON, D.,
KOZYRAKIS, C., LEVERICH, J., MAZIÈRES, D., MITRA,
S., NARAYANAN, A., PARULKAR, G. M., ROSENBLUM, M.,
RUMBLE, S. M., STRATMANN, E., AND STUTSMAN, R. The
case for ramclouds: scalable high-performance storage entirely
in dram. Operating Systems Review 43, 4 (2009), 92–105.

[47] PAGH, R., AND RODLER, F. F. Cuckoo hashing. J. Algorithms
51, 2 (2004), 122–144.

[48] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. In SOSP (1991),
pp. 1–15.

[49] RUMBLE, S. M., ONGARO, D., STUTSMAN, R., ROSENBLUM,
M., AND OUSTERHOUT, J. K. It’s time for low latency. In
HotOS (2011).

[50] SO, K. C. W., AND SIRER, E. G. Latency and bandwidth-
minimizing failure detectors. In Proceedings of the 2007 Eu-
roSys Conference, Lisbon, Portugal, March 21-23, 2007 (2007),
pp. 89–99.

[51] STEVENS, C. E. At attachment 8 - ata/atapi command set.
Technical Report 1699, Technical Committee T13 (2008).

[52] WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P.,
KIRUBANANDAM, J., ALVISI, L., AND DAHLIN, M. Robust-
ness in the salus scalable block store. In Proceedings of the
10th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013
(2013), pp. 357–370.

[53] WU, H., LU, G., LI, D., GUO, C., AND ZHANG, Y. Mdcube:
a high performance network structure for modular data center
interconnection. In CoNEXT (2009), J. Liebeherr, G. Ventre,
E. W. Biersack, and S. Keshav, Eds., ACM, pp. 25–36.

[54] ZAHARIA, M., DAS, T., LI, H., HUNTER, T., SHENKER, S.,
AND STOICA, I. Discretized streams: Fault-tolerant streaming
computation at scale. In SOSP (2013).

[55] ZHANG, Y., AND LIU, L. Distributed line graphs: A universal
technique for designing dhts based on arbitrary regular graphs.
IEEE Trans. Knowl. Data Eng. 24, 9 (2012), 1556–1569.

[56] ZHANG, Y., POWER, R., ZHOU, S., SOVRAN, Y., AGUILERA,
M. K., AND LI, J. Transaction chains: achieving serializability
with low latency in geo-distributed storage systems. In SOSP
(2013), pp. 276–291.

14

