
This paper is included in the Proceedings of the  
12th USENIX Symposium on Networked Systems  

Design and Implementation (NSDI ’15).
May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the 
12th USENIX Symposium on 

Networked Systems Design and 
Implementation (NSDI ’15) 

is sponsored by USENIX

Attaining the Promise and Avoiding the Pitfalls  
of TCP in the Datacenter

Glenn Judd, Morgan Stanley

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/judd



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  145

Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter

Glenn Judd
Morgan Stanley

Abstract
Over the last several years, datacenter computing has
become a pervasive part of the computing landscape.
In spite of the success of the datacenter computing
paradigm, there are significant challenges remaining to
be solved—particularly in the area of networking. The
success of TCP/IP in the Internet makes TCP/IP a natu-
ral candidate for datacenter network communication. A
growing body of research and operational experience,
however, has found that TCP often performs poorly in
datacenter settings. TCP’s poor performance has led
some groups to abandon TCP entirely in the datacen-
ter. This is not desirable, however, as it requires recon-
struction of a new transport protocol as well as rewriting
applications to use the new protocol. Over the last few
years, promising research has focused on adapting TCP
to operate in the datacenter environment.

We have been running large datacenter computations
for several years, and have experienced the promises and
the pitfalls that datacenter computation presents. In this
paper, we discuss our experiences with network commu-
nication performance within our datacenter, and discuss
how we have leveraged and extended recent research to
significantly improve network performance within our
datacenter.

1 Introduction
In recent years, datacenter computing has become a per-
vasive part of the computing landscape. The most visible
examples of datacenter computing are the warehouse-
scale computers [4] used to run search engines, social
networks, and other publicly visible “cloud” applica-
tions. Less visible, but no less critical, are datacenter
computing platforms used internally by numerous orga-
nizations.

In spite of the success of the datacenter computing
paradigm, there are significant challenges remaining to
be solved—particularly in the area of networking. The
pervasiveness of TCP/IP in the Internet makes TCP/IP a
natural candidate for datacenter network communication.
TCP/IP, however, was not designed for the datacenter
environment, and many TCP design assumptions—e.g.
a high degree of flow multiplexing, multi-millisecond
RTT—do not hold in a datacenter. A growing body of
research and operational experience, has found that TCP
can perform poorly in datacenter settings.

TCP’s poor performance has led some groups to aban-
don TCP entirely [15]. This is not desirable, however,
as it requires reconstruction of a new transport protocol
as well as rewriting applications to use the new protocol.
Recent research has focused on adapting TCP to operate
in the datacenter environment. DCTCP stands out as a
particularly promising approach as it utilizes technology
available today to dramatically improve datacenter TCP
performance.

In this paper, we discuss our experiences with net-
work communication performance within our datacenter
and discuss how we have leveraged and extended recent
research to significantly improve network performance
within our datacenter, without requiring changes to our
applications.

The experimental results that we present are often in
the form of controlled tests that isolate behavior that we
encountered either in actual production TCP and DCTCP
usage, or in our efforts to introduce DCTCP into produc-
tion.

In addition, this paper makes the following specific
contributions.

• To the best of our knowledge, this paper presents
the first published discussion of DCTCP production
deployment.

• We identify shortcomings that make DCTCP as pre-
sented and implemented in [1] unusable in our en-
vironment, and we present solutions to those short-
comings that we have verified through implementa-
tion.

• We demonstrate that commonly used receive buffer
tuning algorithms perform poorly in current data-
centers.

• We empirically compare DCTCP performance
to TCP convergence, and we show that—
surprisingly—DCTCP convergence can be superi-
or to TCP convergence. We show that this is due
to DCTCP’s superior coexistence with common re-
ceive buffer tuning algorithms. With correct buffer
tuning, TCP convergence, stability, and short-term
fairness all exceed that of DCTCP.

• We also discuss results from dramatically reducing
RTOmin at scale to mitigate incast.



146  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

Our discussion will proceed as follows. Section 2 will
briefly describe our datacenter environment. Section 3
will discuss the three significant problems that we have
encountered with TCP in our datacenter. Section 4 will
discuss problems that delayed acknowledgements intro-
duce into datacenter networks, and will analyze solu-
tions. Section 5 will discuss reducing RTOmin to mitigate
incast. Section 6 will discuss addressing the root cause of
incast-induced packet loss using DCTCP. Section 7 will
discuss obstacles that prevent DCTCP from being used in
our environment, and solutions for those problems. Sec-
tion 8 will then compare DCTCP performance to that of
TCP. Section 9 will investigate the performance of auto-
matic TCP buffer tuning in our environment. Section 10
will briefly discuss related work, before we conclude in
Section 11.

2 Setting

The majority of recent work on TCP in the datacenter
has either implicitly or explicitly been undertaken in the
context of an Internet services setting. Of course, data-
center computation applies to a much broader spectrum
of applications, and even within a single datacenter of a
single organization, a wide variety of application types
may be found.

Figure 1: Typical Application Structure

2.1 Overview

The context of this work is a datacenter used large-
ly for two broad types of applications: Monte Carlo
simulation and data analysis. A typical application is
structured as shown in Figure 1, which shows a com-
mon communication-intensive application structure in

our datacenter. This application is constructed as a se-
ries of transformations (depicted as rectangles) on data
(depicted as ovals and rounded rectangles.) Each trans-
formation may read several data elements, and may store
several data elements.

Most data access is to one of two highly-parallel dis-
tributed data storage systems: a key-value store and a
distributed file system. The key-value store tends to gen-
erate much higher degrees of incast (discussed at length
further in this paper) due to support for bulk reading and
writing of values. The distributed file system results in
more limited incast as the number of blocks simultane-
ously read by any particular operation is limited by the
file system’s read-ahead limit. Further details of these
storage systems are outside the scope of this paper, but
both are colocated with our computation servers and—
thus—are highly parallel.

Monte Carlo simulations tend to be computationally
intensive, but even they tend to contain periods of inten-
sive communication. Data analysis applications tend to
be storage and communication intensive.

As our datacenter is shared among many applications
and distinct user groups, it is very important that applica-
tions in our datacenter are as loosely coupled as possible.

Unless otherwise specified, the applications discussed
and results presented in this paper were obtained on a 10
Gbps network with a 9K MTU. Also unless otherwise
specified, controlled experiments were conducted using
iperf as traffic generator sending at the maximum rate al-
lowed. TCP congestion control is CUBIC [6] unless oth-
erwise stated (as CUBIC is the Linux default congestion
control.) We conducted several of the controlled experi-
ments using the Linux Reno implementation, but did not
observe any significant differences. As such we have left
comparisons with Reno (and other TCP variants) as out
of scope for this work. Applications in this datacenter do
not access the public Internet.

2.2 Traffic Characteristics

To illustrate the type of traffic that our applications gen-
erate, we recorded network traffic for a two-minute inter-
val of a representative application (a Monte Carlo simu-
lation) on a single server in this application. Due to the
uniform nature of both our applications and our storage
systems, the traffic seen by other servers is very similar.
(We have verified this with additional samples on other
servers.) Figures 2, 3, and 4 summarize flow character-
istics of the recorded traffic.

TCP connections in our environment tend to be long-
lived. For the purposes of this analysis, we define a flow
as packets demarcated by TCP PUSH flags within a sin-
gle TCP connection.

2



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  147

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Figure 2: CDF of flow sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Figure 3: CDF of flow bytes

Figure 2 depicts the cumulative distribution of flow
sizes sampled, and illustrates that the vast majority of
flows in this application are very small. These small
flows largely consist of either data retrieval requests, or
simple operation results. (As stated earlier, an individual
connection will contain many flows. These flows often
occur in quick succession within the connection.)

Figure 3 illustrates the cumulative distribution of flow
bytes. (For each flow size, the corresponding point de-
picts the fraction of total bytes in flows less than or equal
to that flow size.) As shown in Figure 3, the majority of
bytes are in larger flows—in spite of the large number of
small flows. This is due to the fact that while the sim-
ple requests and operation results dominate in terms of
flow numbers, most bytes on the network are generated
by actual value storage or retrieval.

In addition, we also categorized the sampled traffic as
shown in Figure 4. This figure shows the fraction of total
traffic (measured in bytes) that falls into the given traf-
fic categories. This figure clearly shows that key-value
store traffic dominates, followed by distributed file sys-
tem traffic. Other traffic types are not a significant frac-
tion of the total traffic.

Other

Distributed File System

Key-value Store

Figure 4: Flow Type Categorization

In summary, key-value store traffic dominates the traf-
fic in the measured application. Most flows generated by
this application are very small—too small for tradition-
al congestion control to prevent problems such as incast.
The majority of traffic, however, is in contained in larger
flows. Thus, congestion control plays an important role
in preventing larger flows from experiencing congestion,
and in preserving buffer space for small flows.

3 TCP in the Datacenter

Communication intensive datacenter applications
present datacenter networks with several performance
problems [5]. This is largely due to the fact that TCP—
the foundation of many datacenter applications—was
not originally designed with the characteristics of
modern datacenters in mind. In this section we discuss
three significant problems with TCP that we have
encountered: delayed ACK induced stalls, incast, and
problems with receive buffer tuning.

3.1 Stalls Due to Delayed ACKs

Delayed ACKS in TCP allow TCP to substantially re-
duce the number of packets sent. Delayed ACKs work by
delaying the sending of an ACK for multiple segments.
The delayed ACK effectively merges ACKs by cumula-
tively acknowledging multiple received segments.

Delayed ACKs have an associated timeout to prevent
the sender from stalling forever due to a lack of ACKs
from the receiver. The default timeout is tens to hundreds
of milliseconds. In a datacenter with sub-millisecond
RTT, the default delayed ACK timeout is far too large,
and we have observed application-level timeouts that
were caused by delayed ACKs. Section 4 will discuss
resolving this issue.

3



148  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

3.2 Incast
The most vexing problem that TCP encounters in our dat-
acenter network is “TCP incast” [12]. TCP incast occurs
whenever a single receiver receives data from multiple
senders in a short amount of time. This is a frequent com-
munication pattern in datacenter applications. As depict-
ed in Figure 5, when this situation occurs, the switch to
which the receiver is attached is often overloaded: the
senders send more data than the receiver can receive; the
switch cannot store all of the data; and so the switch dis-
cards data that it does not have room for [13]. Unlike
delayed ACK-induced timeouts, incast is much more dif-
ficult to remedy, and we will spend much of this paper
discussing this problem.

Sender

Sender

Sender

Sender

Switch Receivern * L L

L = Link bandwidth

n senders

Discards

Figure 5: Incast

Previous work discussing incast and other datacenter
TCP problems has focused on Internet service applica-
tions and shown that TCP performs poorly in datacenters
that are servicing these applications. While the nature
and structure of our datacenter applications are very dif-
ferent, we still experience similar problems with TCP in
our datacenter.

Consider our typical application structure discussed
previously and depicted in Figure 1. Each transformation
may read several data elements from our distributed stor-
age systems, and may store several data elements into our
distributed storage systems. As a result, reads from our
distributed storage systems often result in a high degree
of TCP incast. Writes to the distributed storage systems
also contribute to incast as many writers may be writing
to the same storage node.

At a high level, we find that incast produces the fol-
lowing problems at the application layer:

• Communication timeouts and retransmissions

• Lost throughput

• Increased latency

• Latency variance (jitter)

These problems can afflict even “innocent” applica-
tions and servers uninvolved in the communication. At
the business level, further problems result:

• Application failures

• Idle servers waiting for communication, and in-
creased costs associated with procuring and oper-
ating additional servers.

• Application failures even for “innocent bystanders”

• Development effort to work around communication
problems

• Effort lost troubleshooting network problems in in-
nocent applications

• Effort lost coordinating among different develop-
ment groups to avoid communication problems.

3.3 Receive Buffer Tuning
In addition, a very significant problem that we have en-
countered with TCP in the datacenter is receive buffer
tuning [16]. The receive buffer size has a dramatic im-
pact on TCP performance and server RAM utilization.

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

Flow 1
Flow 2

Figure 6: TCP convergence

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

Flow 1
Flow 2

Figure 7: DCTCP convergence

4



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  149

To illustrate this, consider the results of a simple two-
flow throughput experiment. Both flows were sent from
distinct servers to a common receiver. The first flow ran
for 20 seconds. The second flow started 5 seconds later,
and ran for a total of 10 seconds. The results are shown
in Figure 6.

TCP convergence, fairness, and stability in this test are
all extremely poor. TCP should be able to converge with-
in a few RTT, not several seconds. (While [11] discusses
some detailed problems with TCP-CUBIC convergence,
the behavior shown in Figure 6 is far worse than is ex-
pected.)

Figure 7 repeats this test for DCTCP. Surprisingly,
while [2] finds that DCTCP converges more slowly than
TCP, Figure 7 shows DCTCP dramatically outperform-
ing TCP with respect to stability, convergence, and short-
term fairness.

The source of this unexpected behavior is receive
buffer tuning. This will be addressed in detail in Sec-
tion 9.

3.4 Summary
The problems discussed above are significant, and histor-
ically we worked around them at the application layer. In
the following sections, we discuss how we have large-
ly eliminated these problems, dramatically increased
our network performance, and removed the need for
application-level workarounds.

4 Delayed ACKs
As discussed earlier, delayed acknowledgements can
cause significant problems. Delayed ACK timeouts
are—by default—far too large for a datacenter setting.
Fortunately, there are two simple alternatives to remedy
this problem: 1) eliminate delayed acknowledgements,
or 2) reduce the delayed acknowledgement timeout. We
have investigated both approaches.

If ACKs could be generated without cost, the ideal
ACK delay would be zero, and an ACK would be gener-
ated for every single packet. Unfortunately, while elim-
inating delayed ACKs eliminates the possibility of any
sender stall, it does so at the cost of generating a signif-
icant number of packets. We do not find this increased
load to be a problem in our network, but we do find it to
be problematic on our end servers.

Figure 8 illustrates this behavior. In this test, one or
two senders send to a single receiver. Delayed ACKs are
delayed a maximum of 0 (i.e. no delayed ACKs), 1, or 40
milliseconds. The total CPU % utilized by IRQ daemons
on the receiver for the given test is plotted for each test
(100% is the equivalent of 1 CPU completely busy). This
test exhibits essentially no difference for delays of 1 and
40 milliseconds. Turning delayed acknowledgements en-
tirely off, however, produces a sharp increase in CPU uti-

lization for both one and two flows. (Repeating this test
yields similar results with insignificant variation.)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

IR
Q

 C
PU

 U
til

iza
tio

n

Maximum ACK Delay (ms)

1 Flow

2 Flows

Figure 8: Delayed ACK CPU Utilization

For this reason, in our network we now lower the de-
layed ACK timeout as much as possible without turning
delayed ACKS off. Those constraints yield a delayed
ACK setting of 1 ms. We will still incur an occasional
stall, but the stall is not long enough to cause significant
issues at our application layer. (Some applications, how-
ever, may benefit from turning off delayed ACKs entire-
ly.)

5 Reducing RTOmin

During the most communication-intensive phases of our
application, we found that our applications were expe-
riencing large numbers of incast-induced TCP timeouts.
At the application layer, this resulted in a long tail on our
task completion times. The effects of incast are clear-
ly seen in Figure 9 which shows a TCP sequence graph
from a single flow of a production application during a
heavy all-to-all incast. The duplicate sequence numbers
visible are packet losses and retransmissions that were
successfully handled by TCP. The 200 ms pauses in the
flow, however, are due to whole-window loss induced
TCP timeouts incuring the RTOmin penalty.

Previous work [13] has proposed a simple technique
to mitigate the effects of incast-induced TCP timeouts:
reduce RTOmin. We employed this technique in our dat-
acenter, and the benefits can be seen in Figure 10 which
shows TCP sequence plot of a flow experiencing incast.
As with Figure 9, loss is visible, as is a timeout, but time-
outs are reduced to 5 ms which is the minimum effective
RTOmin that our servers support.

As shown in Figures 9 and 10, reducing RTOmin sig-
nificantly improved the performance of TCP in our dat-
acenter by mitigating the effect of TCP timeouts. It did

5



150  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

150000 

100000 

  50000 

            0 

Sequence 
Number 

0 50 
Time (ms) 

100 150 200 250 300 350 400 450 500 550 

RTO 

RTO 

Figure 9: RTOmin 200 ms

7000 

6000 

5000 

4000 

3000 

2000 

1000 

      0 

Sequence 
Number 

0 
Time (ms) 

20 40 60 80 100 

RTO 

Figure 10: RTOmin 5 ms

not, however, prevent timeouts. In fact, the rate of packet
loss in our network increased significantly after we ap-
plied the RTOmin change. This is expected as lowering
the RTOmin does not prevent packet loss and timeouts, it
just mitigates the effects. Moreover, lower timeout val-
ues will increase the number of contending flows which
will tend to increase the overall number of lost packets.

In short, we found that reducing RTOmin greatly re-
duced the impact of incast on our applications. Network
and server stability were not impacted by this change
even when running on a cluster of over 2,000 servers. In-
nocent applications (applications not involved in the in-
cast) were, however, still impacted. Moreover, network
performance was still far from ideal. We were still incur-
ring (much smaller) timeouts and the usual TCP latency.
In the next section, we discuss addressing the root cause
of incast.

6 DCTCP
Subsequent work on datacenter TCP has proposed sever-
al techniques to actually reduce packet losses due to in-
cast, rather than just mitigate the effects of lost packets.
Of these techniques, one of the most promising for de-
ployment in our datacenter is DCTCP. DCTCP possess-
es several features that make it a particularly promising
approach for us: it relies on capabilities that are avail-
able in current hardware and software, an implementa-
tion is available [8], and it does not contain features that
we cannot use. (In particular, we decided against lever-
aging work that relies on flow priority or deadlines as our
connections are long-lived and utilized for many differ-
ent types of communication. As a result, communicat-
ing priority or deadline information to the network layer
would be difficult or impossible for our applications.)

Our primary objectives for moving to DCTCP were to:
eliminate TCP timeouts (or nearly eliminate them), re-
duce latency, and reduce the network-induced coupling
of applications. In particular, we wanted to protect “in-
nocent bystanders” from aggressive applications.

In the following sections, we first discuss obstacles to
reaping these benefits, and how we extended DCTCP to
overcome these obstacles, followed by some discussion
of our extended DCTCP’s performance.

7 DCTCP Deployment Challenges
7.1 Coexistence with TCP
In motivating the design of DCTCP, [1] states “[a data-
center] network is largely homogeneous and under a sin-
gle administrative control. Thus backward compatibility,
incremental deployment and fairness to legacy protocols
are not major concerns.” For actual usage in our data-
center, however, these are all major concerns. We do not
have the luxury of a “big bang” deployment for several
reasons.

• There are multiple applications running in our data-
center with distinct ownership. It is critical that one
application moving to DCTCP does not negatively
impact any application using conventional TCP. Re-
call that one of our major arguments for deploying
DCTCP is to reduce the coupling of applications.

• Many critical services cannot be moved to DCTCP.
Even for applications with owners willing to make
the move to DCTCP, there are services used by
those applications that we simply cannot move to
DCTCP. For instance, many of our applications
leverage file servers that do not support DCTCP.

Unfortunately, DCTCP and TCP do not naturally co-
exist well. To demonstrate this, we conducted a simple
test where one TCP flow and one DCTCP flow both send

6



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  151

at maximum rate from distinct servers to a single receiv-
er. (Again, these experiments are conducted on a 10
Gbps network using iperf as sender and receiver.) The
TCP flow lasts for a total of 20 seconds. The DCTCP
flow lasts for 10 seconds and starts 5 seconds after the
TCP flow starts.

The results are shown in Figure 11. As soon as the
DCTCP flow starts, the TCP flow almost completely
stops while the DCTCP flow completely saturates the
link. This is an extremely negative result, and essential-
ly the complete opposite of what we require. (Note that
it is possible to delay the onset of this behavior through
configuration settings, but this will not solve the funda-
mental problem.)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

CUBIC
DCTCP

Figure 11: DCTCP Coexistence with TCP

ECT

Marking Threshold

Not-
ECT

ECT
CE

ECT
CE

Not-
ECT

Not-
ECT

Packets without ECT discarded above marking threshold

Figure 12: Switch RED ECN Implementation

The reason that DCTCP traffic dominates convention-
al TCP traffic is due to RED/ECN AQM behavior which
is as follows for a switch configured for DCTCP. As de-
picted in Figure 12, when the switch queue length is be-
low the marking threshold (there is only one threshold
for DCTCP), any packet that arrives is simply queued
irrespective of ECT status. When the queue length is
over the marking threshold, however, all ECT packets
are marked with CE, but non-ECT packets are dropped.
In DCTCP, the marking threshold is set very low value
to reduce queueing delay, thus a relatively small amount
of congestion will exceed the marking threshold. During
such periods of congestion, conventional TCP will suffer

packet losses and quickly scale back cwnd. DCTCP, on
the other hand, will use the fraction of marked packets to
scale back cwnd. Only when all packets are marked will
cwnd be scaled back as far as conventional TCP. Thus
rate reduction in DCTCP will be much lower than that
of conventional TCP, and DCTCP traffic will dominate
conventional TCP traffic traversing the same link.

As both TCP and DCTCP must service the same
servers in our network, we resort to utilizing IP DSCP
bits to segregate DCTCP traffic from conventional TCP
traffic. AQM is applied to DCTCP traffic, while TCP
traffic is managed via drop-tail queueing.

7.2 Non-compliant switches
While we are fortunate enough to have support for ECN
marking on our top-of-rack switches, this is the on-
ly location in our network that supports ECN marking.
Higher-level switches are purely drop-tail. DCTCP must
gracefully support transit over non-ECN switches with-
out impacting either the behavior of DCTCP traffic or
conventional traffic. Our tests show that DCTCP suc-
cessfully resorts to loss-based congestion control when
transiting a congested drop-tail link.

7.3 Non-technical challenges
Even without any technical challenges, altering the net-
work in a major enterprise is a difficult undertaking. Net-
work administrators are, necessarily, risk-averse. A reli-
able network is a business-critical requirement. Thus,
network innovations are often viewed as presenting sig-
nificantly more risk than reward.

We were able to present a compelling case for DCTCP
implementation due to the following:

• Reduction in coupling. Application coupling was a
known phenomenon in our datacenter. Convention-
al TCP’s strong coupling of unrelated applications
causes problems as discussed previously. DCTCP’s
promise to greatly reduce the coupling between ap-
plications meant that our network administrators
would directly benefit from reduced troubleshoot-
ing requests from applications experiencing myste-
rious network performance issues caused by unre-
lated applications.

• Timing. We timed our DCTCP roll-out to coincide
with the deployment of new network switches in our
environment. We worked with our network admin-
istrators to ensure that the switch features necessary
to support DCTCP were available from day one.

• Primum non nocere. Our support for conventional
TCP and non-ECN compliant switches enabled us
to guarantee that we would not harm existing appli-
cations.

7



152  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

7.4 Connection Establishment

Segregating DCTCP from conventional TCP removed
one potential showstopper from our DCTCP deployment
effort. Nevertheless, we encountered one other major
problem in DCTCP that had the potential to prevent
DCTCP adoption in our network: we found that under
load, DCTCP would fail to establish network connec-
tions due to a lack of ECT in SYN and SYN-ACK pack-
ets.

[1] does not discuss setting ECT on SYN and SYN-
ACK packets. The Stanford implementation [8] does
not set ECT on either SYN or SYN-ACK packets. This
is in line with RFC 3168 [14] which states “A host
MUST NOT set ECT on SYN or SYN-ACK packets.” RFC
5562 [10] (derived from ECN+ [9]) proposes setting
ECT on SYN-ACK packets, but maintains the restriction
of no ECT on SYN packets.

RFC 3168 and RFC 5562 prohibit ECT in SYN pack-
ets due to security concerns regarding malicious SYN
packets with ECT set. These RFCs, however, are intend-
ed for general Internet use, and do not directly apply to
DCTCP. In our internal network, we do not tolerate the
compromised servers necessary for an attacker to send
such packets. Moreover, the Stanford implementation’s
adoption of these RFCs likely owes more to its leverag-
ing of the existing ECN support in Linux than anything
else.

We find that setting ECT on SYN and SYN-ACK is
critical for the practical deployment of DCTCP. With-
out this feature, SYN and SYN-ACK packets will be
dropped whenever there is even minor congestion. As
discussed in Section 7.1, and depicted in Figure 12,
whenever the queue length is greater than the mark-
ing threshold, non-ECT packets are dropped. Thus, if
SYN and SYN-ACK packets are non-ECT they will be
dropped with high probability. We modified DCTCP to
apply ECT to both SYN and SYN-ACK packets. We re-
fer to this implementation as “DCTCP+” to distinguish
it from the original DCTCP implementation. (Following
the naming convention of ECN+ which extended ECN
with ECT on SYN-ACK only.)

To measure the effect of this issue, we conducted an
experiment where we disabled ECT for SYN packets
and attempted to establish a DCTCP connection (with
no SYN or SYN-ACK ECT) in the presence of a number
of competing DCTCP+ flows which were already estab-
lished and sending data at maximum rate. As shown in
Figure 13, as the number of competing flows increases,
it quickly becomes hard, then impossible, to establish a
connection when SYN packets are non-ECT. Thus, we
utilize DCTCP+ in our deployment, which marks both
SYN and SYN-ACK packets as ECT.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16

Co
nn

ec
tio

n 
Pr

ob
ab

ili
ty

Competing Flows

Figure 13: Connection Probability without SYN ECT

Note that given our support for conventional TCP, we
could use DSCP to cause SYN and SYN-ACK packets
only to be treated as conventional TCP. We do not take
this approach as it would split packets from a single flow
across two separate paths in our network which is highly
undesirable.

8 DCTCP+ Performance
We now discuss several elements of DCTCP+ perfor-
mance illustrating where DCTCP+ does well, and where
there is room for improvement.

8.1 Incast Throughput and Fairness with
Buffer Tuning Active

We first measured performance in an incast scenario sim-
ilar to that in Figure 5. In this case, a single receiver re-
ceived traffic from 19 senders for a total of 10 seconds
(as discussed previously all experiments in this section
are conducted on a 10 Gbps network). Importantly, auto-
matic receive buffer tuning is on for this test; we will later
show that this has a dramatic effect on TCP performance
but very little for DCTCP+. Figures 14 and 15 show
summarized throughput statistics for all 19 flows for each
experiment. DCTCP+ fairly distributes the link band-
width among flows resulting in a very narrow through-
put distribution while fully utilizing the link. TCP is also
able to fully utilize the link, but does so very inefficiently
as flows stall due to a combination of packet loss and in-
correctly sized receive buffers. The link is able to remain
utilized, however, as other flows step in and utilize the
missing bandwidth. Nevertheless, the median through-
put is lower, and there is a large variation among flow
throughput. In short, under DCTCP+, flow performance
is fast and reliable while under TCP, packet loss and the
poor performance of buffer auto tuning causes extremely
variable throughput.

8



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  153

0

100

200

300

400

500

600

700

800

1 2 3 4 5

Fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Test

Mean

Median

Max

Min

Figure 14: DCTCP single-receiver incast

0

100

200

300

400

500

600

700

800

1 2 3 4 5

Fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Test

Mean

Median

Max

Min

Figure 15: TCP single-receiver incast (buffer tuning ac-
tive)

TCP DCTCP+
Mean 4.01 0.0422
Median 4.06 0.0395
Maximum 4.20 0.0850
Minimum 3.32 0.0280
σ 0.167 0.0106

Table 1: Per-packet latency in ms

Moreover, as shown in Table 1, per-packet laten-
cy under TCP is two orders of magnitude greater than
per-packet latency under DCTCP+. DCTCP+’s reliably
low latency enables higher-layer applications to reliably
communicate in a very short time span. Under TCP (par-
ticularly before we lowered RTOmin), our applications
needed added logic to deal with the unpredictable laten-
cy and throughput that incast induced. DCTCP+’s con-
sistently superb performance make it a superior transport
protocol to TCP within our datacenter.

8.2 Scale
The scalability afforded by datacenter computing lies at
the heart of applications ranging from web search en-
gines, to the Monte Carlo simulations and data analyt-
ics running in our datacenter. Realizing the benefits of
scale, however, is challenging for many components of
networked systems. For DCTCP+ to be an effective dat-
acenter transport mechanism, it must scale with the ap-
plications that it supports.

In this section, we examine the scalability of DCTCP+
experimentally and analytically.

Incast traffic patterns are particularly difficult to scale.
We examined DCTCP+ support at scale for incast by
sending large numbers of long-lived flows (20 seconds)
from many senders to a single receiver. Each flow was
generated by a distinct server using iperf. Ideally, we
should see that—as with TCP—the link would be fully
utilized and each flow would receive a fair share of the
link, but—unlike TCP—latency would remain low.

The results of this test are shown in Tables 2 and 3.
Table 2 shows that throughput and long-term fairness are
excellent through 500 servers. Table 3, however, exhibits
some problems. The first problem to notice is that laten-
cy is relatively high even for 100 servers. At 300 servers,
the high latency shows that the receive queue is entire-
ly full, and at 400 servers significant amounts of traffic
are lost and numerous timeouts are occurring. By 500
servers, 8.7% of packets sent are retransmissions, and
timeouts are very significant; as a result, short term flow
fairness will be poor. In a nutshell, it seems that at this
scale, DCTCP+ is performing no better than TCP.

Senders Total Mean Max Min σ
100 9,901 99.0 99.3 88.6 1.06
200 9,900 49.7 49.9 46.1 0.35
300 9,901 33.2 34 31.2 0.36
400 9,894 24.9 28.5 20.2 1.01
500 9,895 20.0 23.9 13.8 1.42

Table 2: Scale Test: Throughput (Mbps)

Retransmissions
Senders RTT (ms) Total % RTO
100 1.60 0 0 0
200 3.11 0 0 0
300 4.38 3 0 0
400 4.42 702 4.6 274
500 4.44 1110 8.7 655
Table 3: Scale Test: Latency and Retransmissions

Why is latency so high? Shouldn’t the switch be mark-
ing packets causing DCTCP+ to back off before latency
gets so high? Packet traces from a sender involved in this
test show that for all cases, the switch is marking 100%
of packets in steady state, yet DCTCP+ is still sending

9



154  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

packets. In other words, even when the switch is telling
DCTCP+ to fall back aggressively, DCTCP+ refuses to
fall back enough to prevent congestion.

The source of this behavior is in the cwnd update pro-
cedure of DCTCP+. According to [1], DCTCP+ updates
cwnd as:

cwnd ← cwnd × (1−α/2)

Actual TCP implementations, however, are more intri-
cate, and the Linux implementation in [8] updates cwnd
as follows:

cwnd_new = max(tp->snd_cwnd

- ((tp->snd_cwnd

* tp->dctcp_alpha)>>11),

2U);

In other words, irrespective of measured congestion,
DCTCP+ will always be willing to send two segments.
This effectively puts a lower limit on DCTCP+ transmis-
sion rate per sender of:

TransmissionRate ≥ SegmentSize×2
RT T

The resulting load for our scale test is shown in Ta-
ble 4.

Senders Load (Gbps)
100 3.27
200 6.55
300 9.82
400 13.09
500 16.36

Table 4: DCTCP+ Load vs. Scale

By 300 servers, load is nearly at the capacity of the
link, and at higher scales, the load exceeds the link ca-
pacity. The result is the significant packet drops, re-
transmissions, and timeouts shown above. In effect,
once the load due to the DCTCP+ minimum transmis-
sion rate exceeds the link capacity, DCTCP+ congestion
control is no longer in effect, and TCP congestion con-
trol takes over. Hence, at scales higher than 300 in this
test, DCTCP+ congestion control is no longer in effect.

DCTCP+ scale can be extended by reducing the min-
imum transmission rate per server. This can be done by
applying the cwnd cap logic found elsewhere in the Lin-
ux TCP implementation.

cwnd_new = max(tp->snd_cwnd

- ((tp->snd_cwnd

* tp->dctcp_alpha)>>11),

1U);

cwnd_new = min(cwnd_new,

tcp_packets_in_flight(tp) + 1U);

With this addition, under a congested network, only
one packet will be allowed per RTT and the scaling will

double – just over 600 servers can send at full rate to a
single receiver without the minimum DCTCP+ transmis-
sion rate exceeding the link capacity.

While this change may result in additional delayed
acknowledgements, our initial evaluation indicates that
lowering the delayed acknowledgement timeout as dis-
cussed in Section 4 mitigates this concern. We leave a
full evaluation for future work.

8.3 Operational Experience
We have been running DCTCP+ at a scale of approx-
imately 600 servers for nearly one and a half years as
of this writing. While quantifying the isolated bene-
fits of DCTCP+ is ongoing work, qualitatively, we have
found DCTCP+ to be a stable transport protocol and
with the RTOmin reduction, delayed ACK reduction,
and DCTCP+ all in place, we no longer observe any
application-layer issues that are caused by TCP. This is a
significant improvement.

9 Receive Buffer Tuning
Figures 6 and 7 previously showed an unexpected result:
TCP converging more slowly than DCTCP, and gener-
ally performing very poorly. Careful analysis of Fig-
ures 17a&b in [1] shows that the creators of DCTCP
observed similar behavior experimentally (though this
particular behavior was not discussed in [1]): DCTCP
outperforms TCP in their experiment with respect to sta-
bility, convergence, and short-term fairness. We repeat
this convergence experiment in our network under sev-
eral scenarios—first on a 1 Gbps network, then on a 10
Gbps network. The 1 Gbps result for TCP is shown in
Figure 16. This closely matches the results from [1].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Figure 16: 1G, TCP, Buffer Tuning On
Figure 17 shows that moving to a 10 Gbps network

exacerbates the problems with convergence, fairness and
stability. We find that, as with the 1 Gbps result presented
in [1], at 10 Gbps DCTCP+ convergence is superior to
TCP convergence as shown in Figure 18.

10



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  155

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Figure 17: TCP, Buffer Tuning On

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Figure 18: DCTCP+, Buffer Tuning On

These results seemingly defy [2] which showed
DCTCP converging more slowly than TCP. The cause
of this problem has a simple explanation: receive buffer
tuning. Historically, network developers were tasked
with setting TCP buffer sizes manually. Getting the
buffer sizes right is important for both network and end-
system performance: undersized buffers hurt network
throughput; overly generous buffer sizes consume RAM,
impact system performance, and limit application scale.
It is possible to manually set buffer sizes to attempt to
strike a balance, but this is very undesirable as it binds
the performance of an application to the behavior of a
particular network. Moreover, it fails to allow dynam-
ic memory management to take into account a server’s
memory state.

To overcome these limitations, several approaches
have been developed to dynamically set TCP buffer
sizes. Unfortunately, in a datacenter setting, these al-
gorithms can perform poorly. In principle, the receive
buffer of an application should be set to the bandwidth
delay product (BDP) of a link. The trouble is that inside

of a datacenter, propagation delay is extremely small—
approximately four orders of magnitude less than the
queueing delay of a congested link! As a result, the
bandwidth delay product of a link varies significantly,
and—worse—is a function of the receive buffer size.
The strong feedback present in receive buffer tuning a
TCP link makes tuning a difficult problem. The tuning
algorithm takes many seconds to adapt from the low-
latency congestion-free regime to the high latency con-
gested regime. As a result, TCP performance in our data-
center is very poor when automatic receive buffer tuning
is enabled. This also explains why DCTCP+ is able to
outperform TCP: DCTCP+ keeps latency far lower than
TCP. As a result, the tuning algorithm experiences far
less feedback and has a much easier time finding the cor-
rect buffer size.

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Figure 19: TCP, Buffer Tuning Off

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (G

bp
s)

Time (seconds)

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Figure 20: DCTCP+, Buffer Tuning Off
Turning off receive buffer tuning, and manually set-

ting the receive buffer size to be greater than the maxi-
mum delay bandwidth product possible, results in much
better behavior for TCP, as shown in Figure 19. With
this change, TCP stability, convergence, and fairness all

11



156  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

exceed that of DCTCP+. DCTCP+ performance, on the
other hand, is not changed significantly by manually set-
ting the buffer size, as shown in Figure 20.

In summary, receive buffer tuning can have a dramat-
ic impact on TCP performance. The anomalous results
shown in Figures 17a&b of [1], and discussed in this
paper, are explained by poor tuning of the TCP receive
buffer. With proper receive buffer sizing, TCP stability,
convergence, and fairness outperform DCTCP+. Achiev-
ing proper receive buffer sizing, however, is much more
difficult under TCP than DCTCP+ due to the massive dy-
namic range of latencies that even two competing flows
can generate.

10 Related Work
TCP incast was first discussed by Nagle et al. [12]. Phan-
ishayee et al. [13] explored solutions such as reduc-
ing RTOmin. Vasudevan et al. [17] proposed reducing
RTOmin further using fine-grained timers. Instead of this,
we simply reduced RTOmin as far as our kernel was ca-
pable of.

Yu et al. [20] analyze application performance in the
datacenter network of an Internet service provider; they
identify several performance problems caused by appli-
cations, the end-server network stacks, and the network
itself. We independently have encountered similar prob-
lems in a completely different context, and we believe
that the problems encountered in [20] are general prob-
lems likely to be found widely in datacenter communi-
cation. To fix the problems with delayed acknowledge-
ments, [20] suggests either reducing the delayed ack
timeouts or disabling delayed acks. Our work goes fur-
ther by analyzing the tradeoff between these two options.

Wu et al. [19] also observe that switches running
RED/ECN drop non-ECT packets, but do not discuss the
impact of this behavior on DCTCP.

Semke et al. [16] developed a method of automatically
tuning TCP buffers that is the basis of the current Linux
autotuning algorithm.

There has been a good deal of work—such as
[7] [18] [21]—on achieving superior congestion control
than that attainable by DCTCP by incorporating knowl-
edge of flow priorities and deadlines into congestion con-
trol. Unfortunately, these techniques are not readily ap-
plicable in our environment.

pFrabric [3] takes a clean-slate approach to datacenter
communication. This is promising work, but outside of
the scope of our work as we were restricted to techniques
that we could run in production today.

11 Conclusion
TCP has been tremendously successful in the Internet,
and is a ubiquitous protocol that is critical to count-
less applications. TCP support in datacenters promises

to allow these applications to run alongside new appli-
cations. Unfortunately, however, experience has shown
that TCP’s design assumptions break down inside mod-
ern datacenters, and performance is often inadequate.

In this paper, we have shown that leveraging recent
work overcomes the major deficiencies of TCP inside of
the datacenter. We have shown that DCTCP coexistence
with TCP is critical in our environment, and demonstrat-
ed how this can be accomplished. Moreover, we have
shown how a small extension to DCTCP—employing
ECT in SYN and SYN-ACK packets—removes a poten-
tially fatal problem with DCTCP.

Nevertheless, this work has also highlighted areas for
future work. Despite the dramatic impact on perfor-
mance that it can have in current implementations, re-
ceive buffer auto tuning can perform very poorly. In
addition, we have shown how DCTCP scale can be im-
proved; ideally DCTCP would scale even further before
filling queues and reverting to TCP.

In closing, deploying recently developed improve-
ments to TCP (along with our extensions) has dramati-
cally improved TCP performance in our datacenter, with-
out requiring any modifications to our applications or
distributed storage systems.

Acknowledgements
We would like to thank our reviewers for their feed-
back. In addition, we greatly appreciate the assistance
of Daniel Varga, Wai-Hong Lui, Vikas Chawla, Eric
Hagberg, John MacIntyre, Peter King, Johnathan Ed-
wards, Sam Shteingart, Michael Jansen, Jason Green-
berg, Matthew Whitehead, Daniel Borkmann, Florian
Westphal, and Frank Hirtz,

References
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. Data center tcp (dctcp). In Proceedings of
SIGCOMM 2010, 2010.

[2] M. Alizadeh, A. Javanmard, and B. Prabhakar.
Analysis of dctcp: Stability, convergence, and fair-
ness. In Proceedings of SIGMETRICS 2011, 2011.

[3] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McK-
eown, B. Prabhakar, and S. Shenker. pfabric: Mini-
mal near-optimal datacenter transport. In Proceed-
ings of SIGCOMM 2013, 2013.

[4] L. A. Barroso and U. Hlzle. The Datacenter as
a Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan and Claypool
Publishers, 2009.

[5] P. Gill, N. Jain, and N. Nagappan. Understand-
ing network failures in data centers: measurement,

12



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  157

analysis, and implications. In Proceedings of SIG-
COMM 2011, 2011.

[6] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS Operating
Systems Review, 2008.

[7] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing
flows quickly with preemptive scheduling. In Pro-
ceedings of SIGCOMM 2012, 2012.

[8] A. Kabbani, M. Yasuda, and M. Alizadeh. Dctcp-
linux. In https://github.com/myasuda/DCTCP-
Linux, 2012.

[9] A. Kuzmanovic. The power of explicit congestion
notification. In Proceedings of SIGCOMM 2005,
2005.

[10] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ra-
makrishnan. Adding explicit congestion notifica-
tion (ecn) capability to tcp’s syn/ack packets. In
RFC 5562, 2009.

[11] D. Leith, R. Shorten, and G. McCullagh. Experi-
mental evaluation of cubic-tcp. In Proceedings of
PFLDnet 2008, 2008.

[12] D. Nagle, D. Serenyi, and A. Matthews. The
panasas activescale storage cluster - delivering scal-
able high bandwidth storage. In Proceedings of Su-
percomputing 2004, 2004.

[13] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and S. Se-
shan. Measurement and analysis of tcp throughput
collapse in cluster-based storage systems. In Pro-
ceeding of FAST 2008, 2008.

[14] K. Ramakrishnan, S. Floyd, and D. Black. The ad-
dition of explicit congestion notification (ecn) to ip.
In RFC 3168, 2001.

[15] J. Rothschild. High performance at massive scale:
Lessons learned at facebook. In mms://video-
jsoe.ucsd.edu/calit2/JeffRothschildFacebook.wmv.

[16] J. Semke, J. Mahdavi, and M. Mathis. Automatic
tcp buffer tuning. In Proceedings of SIGCOMM
1998, 1998.

[17] V. Vasudevan, A. hanishayee, H. Shah, E. Kre-
vat, D. Andersen, G. Ganger, G. Gibson, and
B. Mueller. Safe and effective fine-grained tcp re-
transmissions for datacenter communication. In
Proceedings of SIGCOMM 2010, 2010.

[18] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better never than late: Meeting dead-
lines in datacenter networks. In ACM SIGCOMM
Computer Communication Review, 2011.

[19] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and
Y. Zhang. Tuning ecn for data center networks. In
Proceedings of CoNEXT 2012, 2012.

[20] M. Yu, A. Greenberg, D. Maltz, J. Rexford,
L. Yuan, S. Kandula, and C. Kim. Profiling network
performance for multi-tier data center applications.
In Proceedings of NSDI 2011, 2011.

[21] D. Zats, T. Das, P. Mohan, D. Borthakur, and
R. Katz. Detail: reducing the flow completion time
tail in datacenter networks. In Proceedings of SIG-
COMM 2012, 2012.

13




