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Abstract— We present an approach to detect network
configuration errors, which combines the benefits of two
prior approaches. Like prior techniques that analyze con-
figuration files, our approach can find errors proactively,
before the configuration is applied, and answer “what if”
questions. Like prior techniques that analyze data-plane
snapshots, our approach can check a broad range of for-
warding properties and produce actual packets that vio-
late checked properties. We accomplish this combination
by faithfully deriving and then analyzing the data plane
that would emerge from the configuration. Our deriva-
tion of the data plane is fully declarative, employing a set
of logical relations that represent the control plane, the
data plane, and their relationship. Operators can query
these relations to understand identified errors and their
provenance. We use our approach to analyze two large
university networks with qualitatively different routing
designs and find many misconfigurations in each. Oper-
ators have confirmed the majority of these as errors and
have fixed their configurations accordingly.

1 Introduction

Configuring networks is arduous because policy require-
ments (for resource management, access control, etc.)
can be complex and configuration languages are low-
level. Consequently, configuration errors that compro-
mise availability, security, and performance are com-
mon [7, 21, 36]. In a recent incident, for example, a mis-
configuration led to a nation-wide outage that impacted
all customers of Time Warner for over an hour [3].

Prior approaches Researchers have developed two
main approaches to detect network configuration errors.
The first approach directly analyzes network configura-
tion files [2, 5, 7, 24, 25, 28, 34]. Such a static analysis
can flag errors proactively, before a new configuration is
applied to the network, and it can naturally answer “what
if” questions with respect to different environments (i.e.,
failures and route announcement from neighbors).

However, configurations of real networks are complex,
with many interacting aspects (e.g., BGP, OSPF, ACLs,
VLANs, static routing, route redistribution); existing
configuration analysis tools handle this complexity by
developing customized models for specific aspects of the
configuration or specific correctness properties. For in-
stance, rcc [7] produces a normalized representation of
configuration that lets it check a range of properties that
correspond to common errors (e.g., “route validity” of
BGP, whether OSPF adjacencies are configured on both
ends, and that there are no duplicate router identifiers).
Similarly, FIREMAN [34] produces a “rule graph” struc-
ture to represent each ACL and analyzes these graphs.
This selective focus makes configuration analysis practi-
cal, but it also limits the scope of what can be checked.
Further, because many aspects of the configuration are
not analyzed, it can be difficult for operators to assess
how and whether identified errors ultimately impact for-
warding.

Researchers have recently proposed a second approach
that can be used to detect configuration errors: analyzing
the data plane snapshots (i.e., forwarding behavior) of
the network [13, 14, 22, 37]. Unlike with static analysis,
any configuration error that causes undesirable forward-
ing can be precisely detected, because the data plane re-
flects the combined impact of all configuration aspects.
Further, because the data plane has well-understood se-
mantics and can be efficiently encoded in various logics,
a wide range of forwarding properties can be concisely
expressed and scalably checked with off-the-shelf con-
straint solvers.

Unfortunately, analysis of data plane snapshots cannot
prevent errors proactively, before undesirable forwarding
occurs. Further, once a problem is flagged, the operators
still need to localize the responsible snippets of configu-
ration. This task is challenging because the relationship
between configuration snippets and forwarding behavior
is complex. The responsible snippet is not necessarily
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Figure 1: Our approach versus prior approaches.

the most recent configuration change either; the impact
of an erroneous change may only manifest long after it is
introduced. For instance, the impact of erroneously con-
figured backup paths will manifest only after a failure.

Our approach We develop a new, general approach to
statically analyze network configurations that combines
the strengths of the approaches above. Instead of us-
ing a customized representation, our analysis derives the
actual data plane that would emerge given a configura-
tion and environment. Figure 1 illustrates our approach.
With it, as with prior static approaches, operators can
detect errors proactively and conduct “what if” analy-
sis across different environments. Further, as with data-
plane analysis approaches, they can easily express and
check a wide range of correctness properties and directly
understand the impact of errors on forwarding.

Realizing our approach The principal challenge that
we face is the need to derive a faithful data plane for a
given configuration and environment. Our analysis must
balance two competing concerns. It must be detailed
and low-level in order to produce an accurate data plane,
which requires us to tractably reason about all aspects of
configuration and their interactions, as well as a plethora
of configuration parameters and directives. At the same
time, the analysis must provide a high-level view that
allows operators to understand the identified errors and
map them back to responsible configuration snippets.

We address this challenge in our tool, called Batfish, by
implementing our analysis fully declaratively. We trans-
late the network configuration and environment into a
variant of Datalog and also use this language to express
the behaviors of the various protocols being configured.
Executing the resulting Datalog program produces logi-
cal relations that represent the data plane as well as re-
lations for various key concepts in the computation, e.g.,
the best route to a destination as determined by a partic-
ular protocol. We use an automatic constraint solver to
check properties of the resulting data plane and produce
concrete packets that violate these properties. Finally,
those packets are fed back into our declarative model,

inducing more relational facts (e.g., the path taken, the
ACL rules encountered along the way). These relations
and the ones described above provide a simple ontology
for understanding errors and their provenance.

Operators can query Batfish for any correctness property
that can be expressed as a first-order-logic formula over
the data-plane relations. However, Batfish can find errors
even without operator input; by default the tool checks
three novel properties related to the consistency of for-
warding. Our multipath consistency property requires
that, in the presence of multipath routing, packets of a
flow are either dropped along all paths they traverse or
reach the destination along all paths. Our failure con-
sistency and destination consistency properties uncover
errors that respectively limit fault tolerance and make the
network vulnerable to illegitimate route announcements.

We used Batfish to find violations of these three prop-
erties in the configurations of two large university cam-
pus networks. We find many violations of each type, the
majority of which the operators confirmed to be config-
uration errors. Because of helpful provenance informa-
tion provided by Batfish, several of the errors were fixed
within a day of us reporting them.

Summary We develop a new approach and a practical
tool to analyze network configurations. At its heart is a
high-fidelity declarative model of low-level network con-
figurations. We believe that this model is useful beyond
detecting configuration errors. For instance, researchers
have proposed high-level, declarative languages to pro-
gram networks [9, 18, 19, 26], but a major hurdle in
adopting them is migrating a network while faithfully
preserving its forwarding policies. Our model can pro-
vide a migration path. Our tool is publicly available [1]
for others to use and explore various use cases.

2 Background and Motivation

This section provides background on routing in today’s
networks and motivates our approach.

2.1 Background

A network forwards packets through a sequence of
routers and switches. The data plane state of each de-
vice determines how packets with a given header are han-
dled (e.g., dropped, forwarded to a specific neighbor, or
load balanced across multiple neighbors). This state is
generated by the control plane. In today’s networks, the
control plane is specified through device configuration,
which uses vendor-specific languages and includes as-
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pects such as ACLs that specify packet filtering policies,
static routes for IP address prefixes that are directly con-
nected, and directives for one or more routing protocols.
Configurations of all devices, combined with the current
topology and dynamic information exchanged between
neighboring devices, determine the current data plane.

A network managed by some administrative entity is
known as an autonomous system (AS). Within an AS,
information on network topology and connected desti-
nations is exchanged using interior gateway protocols
such as OSPF [23], a protocol that computes least-cost
paths. BGP [29], a protocol that accommodates policy
constraints, is used across ASes. Routers announce des-
tination IP address prefixes to which they are willing to
carry traffic from a neighboring AS. Local policy de-
termines if a received announcement is acceptable (e.g.,
whether the announcer can be trusted to have a path to
the destination prefix) and which one among the multi-
ple announcements for the same prefix should be selected
(e.g., based on commercial relationships).

As an aside, in the SDN paradigm, which has gained sig-
nificant attention of late, the control plane is specified us-
ing a control program instead of configuration. We focus
on the configuration-based paradigm because it currently
dominates and continues to be a cause of subtle errors.
Even if SDNs become dominant, many networks will
likely continue to be configuration-based, in the same
way that legacy software is prevalent despite the advent
of higher-level programming technologies.

2.2 Motivation

Given the complexity of network configurations, errors
are common [21, 31, 36], and operators need good tools
to flag potential errors. Consider network N pictured at
the top of Figure 2, with two neighboring ASes. P is a
large provider AS, and C is a customer AS that owns two
destination prefixes. Router n2 is directly connected to
an internal private network with prefix 10.0.0.0/24. The
operators intend that this network be available to C, but
not to P or other parts of N not servicing C.

The bottom of Figure 2 shows configuration snippets that
implement this specification, loosely based on Cisco’s
IOS language. The first two lines of n1’s configuration
specify that it runs OSPF on interfaces that connect it
to n2 and n3, each with routing cost metric of 1. The
next two specify that it runs BGP with c2 and will ac-
cept only announcements for prefixes that match the pre-
fix list PL C. Router n2 is similarly configured except
that it also redistributes (i.e., advertises) connected net-

//----------Configuration of n1----------
1 ospf interface int1_2 metric 1
2 ospf interface int1_3 metric 1

3 prefix-list PL_C 2.2.2.0/24 3.3.3.0/24

4 bgp neighbor c2 AS C apply PL_C

//----------Configuration of n2----------
1 ospf interface int2_1 metric 1
2 ospf interface int2_3 metric 1
3 ospf-passive interface int2_5 ip 10.0.0.0/24
4 ospf redistribute connected metric 10

5 prefix-list PL_C 2.2.2.0/24

6 bgp neighbor c1 AS C apply PL_C

//----------Configuration of n3----------
1 ospf interface int3_1 metric 1
2 ospf interface int3_2 metric 1
3 ospf interface int3_4 metric 1

4 ospf redistribute static metric 10

5 bgp neighbor p1 AS P Accept ALL

6 static route 10.0.0.0/24 drop, log

Figure 2: Example network configuration snippets.

works through OSPF. Router n3 is configured to accept
all prefix announcements from p1 and to redistribute into
OSPF all statically configured networks. To isolate pre-
fix 10.0.0.0/24 from nodes not on the path to C, the oper-
ator installs a static discard route with logging at n3 (line
6). This route is redistributed (line 4) so n4 need not be
directly aware of this route. This setup prevents P and n4
(and hosts behind them) from accessing 10.0.0.0/24 and
enables the operators to discover any attempts.

The example above is based on actual configurations of
a large university network that we have analyzed using
Batfish, and, despite its simplicity, it has at least two er-
rors. The first error is that 3.3.3.0/24 is missing from the
definition of PL C in n2, and thus n2 will drop announce-
ments and not provide connectivity for this prefix. This
error may go unnoticed when the configuration is applied
since connectivity to 3.3.3.0/24 is available through n1.
But when n1, c2 or link c2-n1 fails, all connectivity to
3.3.3.0/24 will be lost. The end result of this error is lack
of fault tolerance and poor load balancing (since link c2-
n1 carries all traffic for 3.3.3.0/24).

The second error is more subtle. Because n2 and n3 re-
distribute connected and static networks, respectively, n1
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Figure 3: The four stages of Batfish workflow.

will learn paths to 10.0.0.0/24 from both these neighbors,
and the paths will have the same routing cost. Under
these conditions, the default is multipath routing; that is,
n1 will send packets to 10.0.0.0/24 through both neigh-
bors. However, only packets sent through n2 will reach
the destination since n3 will drop such packets. Thus,
traffic sources will experience intermittent connectivity.1

No existing technique can find both of these errors proac-
tively, before the buggy configuration is applied. Data
plane analysis can detect reachability issues but it will
not find the first error until a failure occurs that breaks
reachability to 3.3.3.0/24. Prior static analysis tech-
niques, which target specific misconfiguration patterns
in particular protocols, will not detect the second er-
ror, as that requires a precise model of the semantics
of OSPF, connected routes, static routes, and their in-
teraction through redistribution. Batfish finds both errors
proactively as violations of failure consistency and mul-
tipath consistency properties (discussed below), respec-
tively. It can do this because it (a) statically analyzes
configurations, and (b) derives a faithful model of the
data plane from configurations.

3 An Overview of Batfish

We now overview our approach to static analysis of net-
work configurations, as implemented in Batfish. Figure 3

1Such intermittent connectivity can go unnoticed. To prevent re-
ordering, multipath routing typically maps packets with the same 5-
tuple (source and destination addresses and ports, and the protocol
identifier) to the same path. If a connection gets unlucky and is ini-
tially mapped to the dropping path, subsequent retries (with a different
source port) will likely map it to the valid path, after which all packets
will be delivered.

//Part 1a: Facts on OSPF interface costs
OspfCost(n1, int1_2, 1)
...(remaining OSPF interfaces)
//Part 1b: Facts on OSPF adjacencies
OspfNeighbors(n1, int1_2, n2, int2_1).
OspfNeighbors(n1, int1_3, n3, int3_1).
OspfNeighbors(n2, int2_3, n3, int3_2).
...(symmetric facts)

//Part 2: Rules that capture basic OSPF logic
BestOspfRoute(node, network, nextHop, nhIp, cost) <-

OspfRoute(node, network, nextHop, nhIp, cost),
MinOspfRouteCost[node, network] = cost.

MinOspfRouteCost[node, network] = minCost <-
minCost = agg<<cost = min(cost)>>:

OspfRoute(node, network, _, _, cost).

OspfRoute(node, network, nextHop, nextHopIp, cost) <-
OspfNeighbors(node, nodeInt, nextHop, nextHopInt),
InterfaceIp(nextHop, nextHopInt, nextHopIp),
ConnectedRoute(nextHop, network, nextHopConnInt),
OspfCost(node, nodeInt, nodeIntCost),
OspfCost(nextHop, nextHopConnInt, nextHopIntCost),
cost = nodeIntCost + nextHopIntCost.

OspfRoute(node, network, nextHop, nextHopIp, cost) <-
OspfNeighbors(node, nodeIntCost, nextHop, nhInt),
InterfaceIp(nextHop, nhInt, nextHopIp),
OspfNeighbors(nextHop, _, hop2, _),
BestOspfRoute(nextHop, network, hop2, _, subCost),
node != secondHop,
cost = subCost + nodeIntCost.

Figure 4: A subset of the control plane model for the
OSPF portion of the configuration in Figure 2.

shows the four stages of its workflow.

3.1 From Configuration to Data Plane

The first two stages of Batfish transform the given net-
work configuration into a concrete data plane. Stage
1 generates a logical model of the control plane. This
model compactly represents the network configuration
and topology and the computation that the network
routers carry out collectively to produce the data plane.

Our control plane model is defined in a variant of Datalog
called LogiQL, which is the language of the LogicBlox
database engine [10, 17]. Beyond basic Datalog, LogiQL
supports integers, arithmetic operations, and aggregation
(e.g., minimum).

A key challenge addressed in our work is faithfully en-
coding the semantics of a range of low-level configu-
ration directives in a high-level, declarative language.
As we detail below, the declarative nature of our con-
trol plane and the resulting data plane models provides a
simple ontology of relations that operators can query to
understand the provenance of errors. While imperative
code could have provided this capability, our declarative
implementation gives us this information for free.

As an example, Figure 4 shows a portion of the control
plane model for the configuration in Figure 2. Part 1 of
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the model has logical facts that encode the configuration
and topology information. In the figure, we show the
OSPF-related information, namely the link costs and ad-
jacencies. Part 2 has a generic set of rules that capture the
semantics of the control plane for an arbitrary network.
In the figure, we show some of the rules for OSPF rout-
ing. The first rule defines the best OSPF route to be the
route with the minimum cost. The second rule defines
the minimum cost by simply aggregating over all OSPF
routes to find the minimal element. The last two rules
effectively implement a shortest-path computation.

The second stage of Batfish takes an environment as an
additional input, which facilitates performing “what if”
analysis. The environment consists of the up/down sta-
tus of each link in the network as well as a set of route
announcements from each of the network’s neighboring
ASes. It is represented as a set of logical facts.

We derive the data plane by executing the LogiQL pro-
gram that represents the control plane model and the en-
vironment. This execution is essentially a fixed point
computation, i.e., all rules are fired iteratively to derive
new facts, until no new facts are generated. The result-
ing data plane model includes the forwarding behavior of
individual routers as logical facts that indicate whether
a packet with certain headers should be dropped (e.g.,
Drop(node, flow)) or forwarded to a neighbor (e.g.,
Forward(node, flow, neighbor)). The data plane
model also includes facts for all of the intermediate pred-
icates used in the rules; this enables users to easily inves-
tigate the provenance of various aspects of the data plane.
For instance, a particular Forward predicate may have
been derived from a BestOspfRoute fact in the control
plane model, meaning that the chosen route came from
OSPF, and that fact in turn was derived from a particular
set of OSPF link costs in the configuration.

Unlike prior static analysis techniques, the first two
stages of Batfish analyze all aspects of network config-
uration that are relevant to the data plane, irrespective of
the correctness properties of interest. The resulting data
plane thus faithfully captures the forwarding behavior in-
duced by the given configuration, topology, and environ-
ment (but see §3.3 for limitations).

3.2 From Data Plane to Configuration Errors

The last two stages of Batfish identify and localize con-
figuration errors. In the third stage, we analyze one or
more data planes to check desired correctness proper-
ties. The tool can check any property expressible as
a first-order-logic formula over the relations that repre-

sent one or more data planes of interest. This is accom-
plished by translating the data-plane relations and the
correctness property to the language of the Z3 constraint
solver [20, 35], which then either verifies the property or
provides one or more counterexamples, which consist of
a concrete packet header and originating router.

In addition to user-specified properties, Batfish checks
for traditional reachability properties such as the absence
of black holes and loops, as well as three new proper-
ties that go beyond reachability to ensure correctness of
paths through the network and their relation to one an-
other (§4). Because the first two stages of Batfish are
property-independent, we can generate the data planes
of interest once and then check any number of properties
over these data planes without having to re-create them.

The final stage helps operators understand property vio-
lations, in order to properly repair the network configu-
ration. It works by logically simulating the behavior of
counterexample packets through the network on top of
our logical data plane model. As before, various logi-
cal facts will be produced during this simulation. Some
of these facts directly provide provenance information to
the user, such as the particular line of an ACL that caused
the packet to be dropped. The user can also investigate
additional provenance relationships by querying the full
logical database, which contains facts about the control
plane, the data plane, and their relationship, to under-
stand why particular facts were generated.

To understand the process of uncovering the root cause of
an error found by Batfish, consider the second error de-
scribed for the example network in §2.2. Batfish detects
this error as a multipath inconsistency. See §4 for the
formal definition, but informally, it means that packets
of a flow can be dropped along some paths but carried
to destination along some others. This inconsistency is
represented it by the following logical fact:
FlowMultipathInconsistent(Flow<src=n1, dstIp=10.0.0.0>)

The operator can then query the FlowTrace relation of
Batfish, which produces a traceroute-like representation
of the paths taken by the counterexample flow:
FlowTrace(Flow<src=n1, dstIp=10.0.0.0>,

[n1:int1_2 -> n2:int2_1]:accepted])
FlowTrace(Flow<src=n1, dstIp=10.0.0.0>,

[n1:int1_3 -> n3:int3_1]:nullRouted)

To understand why the flow was accepted by n2
but dropped by n3, the operator can then query the
FlowMatchRoute relation to see which routes the
flow matched at each router in the above paths:
FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n1,

Route<prefix=10.0.0.0/24, nextHop=n2, 10, ospfE2>)
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FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n1,
Route<prefix=10.0.0.0/24, nextHop=n3, 10, ospfE2>)

FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n2,
Route<prefix=10.0.0.0/24, int=int2_5, connected>)

FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n3,
Route<prefix=10.0.0.0/24, DROP, static>)

Here we see that n1 has two external type-2 (redis-
tributed, fixed-cost) OSPF routes to 10.0.0.0/24 with
equal cost of 10. The first points to n2 where the net-
work is directly-connected, and the second points to n3
which has a static discard route for the destination. To
prevent the discard route at n3 from being active on n1,
the operator may increase the exported cost of this route
on n3 in line 4 of Figure 2.

3.3 Discussion

Since Batfish strives to model all aspects of configura-
tion that impact forwarding, when checking for correct-
ness our approach incurs no false positives and no false
negatives; each identified error is a real violation of the
checked property, and all violations are identified. How-
ever, this guarantee has three caveats from a pragmatic
perspective. First, like other configuration analysis tools,
we assume that routers behave as expected based on their
configurations. We cannot catch errors due to bugs in
router hardware or software (e.g., BGP implementation).

Second, Batfish analyzes a network under a given set of
environments, which are a subset of all possible environ-
ments. Therefore, Batfish can miss errors that occur only
in environments that the operator has not supplied. Fur-
ther, operators may supply an infeasible environment to
Batfish. For instance, the routing announcements from
C1 and P1 in Figure 2 may be correlated in some com-
plex way because those ASes are connected through a
path that is not visible to our analysis. In this case, errors
identified by Batfish may be spurious since a particular
analyzed data plane might never occur in reality.

Finally, Batfish may encounter configuration features
that are currently not implemented (e.g., the internal
‘color’ metrics of Juniper) but may influence local route
selection. If that happens, the tool warns users that the
guarantee may not hold. There is a qualitative differ-
ence, however, between the incompleteness of Batfish
and of prior configuration analysis tools. Because Bat-
fish uses the data plane as an intermediate representa-
tion, currently-unimplemented features can be mapped
to this representation simply by adding logical rules to
our control-plane model for how they impact forwarding.
Because prior tools use custom intermediate representa-
tions or custom checkers, it may be difficult or impos-
sible to use them to model and reason about some new

features. Currently, Batfish models a rich enough subset
of the configuration space (§6) to precisely analyze two
large university networks.

4 Consistency Properties

Batfish can take as input any specification of intended
network behavior and automatically check whether the
network indeed behaves as expected. For instance, the
operator might specify that the network should not carry
packets from one particular neighboring AS to another.
However, to simplify the task of finding potential errors,
we also propose three safety properties that were moti-
vated by discussions with network operators and require
little or no input from users. These properties flag dif-
ferent forms of inconsistencies in the network behavior.
Prior work on verification in several domains has shown
that inconsistent behavior often points to bugs [6, 7].

Our properties are expressed using two auxiliary pred-
icates which we define first. Let E be the environ-
ment used to generate the data plane model in Stage 2
of our pipeline. We define predicates acceptedE (H,S,D)
and droppedE (H,S,D), which hold if there is some path
through the network for which header H is eventually
accepted and dropped, respectively, at node D when in-
jected into the network at node S. “Accepted” implies
that the packet either reaches its destination or is for-
warded outside the modeled network. We simulate pack-
ets as being sent along all equal-cost paths, so accepted
and dropped are not mutually exclusive. It is straight-
forward to define these predicates in terms of the logical
relations that comprise the data plane. Below we some-
times omit the last argument to the accepted predicate
when it is irrelevant, as shorthand for the formula ∃D :
acceptedE(H,S,D); a similar shorthand is used for the
dropped predicate.

4.1 Multipath Consistency

Multipath consistency is a property that is relevant to
networks that use multipath routing and it captures the
following expected behavior: all packets with the same
header should be treated identically in terms of being ac-
cepted or dropped, regardless of the path taken through
the network. Formally, we say that the network with en-
vironment E exhibits multipath consistency if the follow-
ing condition is true:

∀H,S : acceptedE(H,S)⇒¬droppedE(H,S)

In other words, every packet is either accepted on all
paths or dropped on all paths. A counterexample to this

6
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formula consists of a concrete packet header and source
node such that it is possible for the header to be both
accepted and dropped depending on the path taken.

4.2 Failure Consistency

Networks are typically designed to be tolerant to some
number of faults. For example, a particular node or link
may have been intended to be used as a backup for an-
other node or link. However, it can be difficult for oper-
ators to reason about whether the network configuration
is indeed as fault tolerant as intended.

We define a general notion for verifying fault tolerance
of a network configuration. Let E ′ be the network envi-
ronment identical to E but with a subset of links or nodes
considered failed. This subset is drawn from the class
of failures to which the network is designed to be fault
tolerant (e.g., all single-link failures). We say that the
network exhibits failure consistency between E and E ′ if
the following condition is true:

∀H,S : acceptedE(H,S)⇒ acceptedE ′(H,S)

A counterexample to this formula is a concrete packet
header and source node such that the packet is accepted
under environment E but dropped under E ′. Of course,
packets destined for any interface that is failed in E ′

should not be considered counterexamples to failure con-
sistency. Thus, the full property definition, which we
omit for simplicity, includes an extra condition that re-
quires H to be destined for an active interface in E ′.

4.3 Destination Consistency

Customer ASes of a given network are often expected to
have disjoint IP address spaces, sometimes assigned by
the network itself. In such cases, the intended network
configuration is to allow a customer AS to only send
route announcements for its own address space, ensuring
that it only receives packets destined to itself. Our des-
tination consistency property captures this expectation.
Let E be the network environment with only customer
ASes (i.e., provider and peer AS nodes are considered
failed) and E ′ be an identical environment but with all
links to a customer AS C considered failed. Then we say
that the network exhibits destination consistency for C if
the following condition is true:

∀H,S : ∀D ∈C :
acceptedE(H,S,D)⇒¬acceptedE ′(H,S)

In other words, any packet that is accepted by some node
D in the AS C should not be accepted once C is removed.

Protocol 1

InstalledRoute

... Protocol k

BestPerProtocolRoute

MinAdminRoute

MinCostRoute

Figure 5: Information flow for computation of the RIB.

A counterexample to this formula consists of a concrete
packet header, source node, and destination node D in
AS C such that the packet is accepted at D under envi-
ronment E and is accepted somewhere in E ′.

5 The Four Stages of Batfish

In this section we present details on each of the four
stages in the Batfish pipeline (Figure 3).

5.1 Modeling the Control Plane

Batfish’s first stage takes configuration files and network
topology as input, and it outputs a control plane model
that captures the distributed computation performed by
the network. The input information is first parsed into
an intermediate data structure, which is then translated
into a set of logical facts, each associated with a par-
ticular relation. For example, SetIpInt(Foo, f0/1,

1.2.3.4, 24) says interface f0/1 of node Foo has IP
address 1.2.3.4 with a 24-bit subnet mask.

These base facts are combined with a set of logical rules
that specify how to infer new facts. These rules capture
route computation for various protocols. In more detail,
each node may be configured to run one or more routing
protocols (e.g., OSPF, BGP, etc.). At each node, each
protocol iteratively computes its best route to each des-
tination in the network using information learned from
neighbors. The available routes to destinations are stored
in a routing information base (RIB). While RIB formats
vary, a typical RIB entry minimally contains a destina-
tion network, the IP address of the next hop for that net-
work, and the protocol that produced the entry. When
multipath routing is being used, multiple best routes may
be selected for a destination.

7
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Our routing rules capture the process by which RIB en-
tries are generated at each node. Figure 5 shows how we
model this process. The model consists of four main re-
lations, each representing a set of routes, and the edges
denote the dependencies among these sets.

BestPerProtocolRoute is the set of routes that are
optimal according to the rules of one of the routing pro-
tocols. Protocol-specific rules are defined in terms of a
set of relations that represent facts from the configura-
tion and topology information. For example, the OSPF
rules shown earlier depend on configured link costs. As
Figure 5 shows, our model is modular with respect to
such protocols, and adding a new protocol simply re-
quires rules for producing its optimal routes.

MinAdminRoute is the subset of
BestPerProtocolRoute with only routes that have
minimal administrative distance, a protocol-level config-
uration parameter. That is, MinAdminRoute contains a
route R to destination D from BestPerProtocolRoute

if the protocol that produced R has an administrative
distance no higher than that of any other protocol that
produced a route to D.

MinCostRoute is the subset of MinAdminRoute with
only those routes that have minimal protocol-specific
cost. That is, MinCostRoute contains a route R to des-
tination D from MinAdminRoute if R has a protocol-
specific cost no higher than that of any other route to D
in MinAdminRoute.

InstalledRoute is the set of routes that are selected as
best for the node. This set is identical to MinCostRoute
but is given a new name for clarity.

In general, the set of candidate routes produced by a rout-
ing protocol may depend on the current state of the RIB,
as well as the internal state of that protocol and the lat-
est messages it has received. We have an edge from
InstalledRoute to each protocol to illustrate the de-
pendence on previous state, and also to model any redis-
tribution of installed routes from one protocol to another.
Thus, these edges signify that producing the RIB requires
computing the fixed point of the function that generates
the next intermediate state of the RIB.

Figure 6 shows key LogiQL rules for the relations in Fig-
ure 5. The agg keyword refers to an aggregation; in this
case we are finding the tuples of a relation whose aggre-
gated variable is minimal among all the tuples. In addi-
tion to such generic rules, we implement LogiQL rules
for several routing protocols, and as noted above, a new
protocol can be added completely modularly.

InstalledRoute(node, network, nextHop,
nextHopIp, admin, cost, protocol) <-
MinCostRoute(node, network, nextHop,
nextHopIp, admin, cost, protocol)

MinCostRoute(node, network, nextHop,
nextHopIp, admin, minCost, protocol) <-
minCost = MinCost[node, network],
MinAdminRoute(node, network, nextHop,
nextHopIp, admin, minCost, protocol)

MinCost[node, network] = minCost <-
agg<<minCost = min(cost)>>
MinAdminRoute(node, network, _, _, _, cost, _)

MinAdminRoute(node, network, nextHop,
nextHopIp, minAdmin, cost, protocol) <-
minAdmin = MinAdmin[node, network],
BestPerProtocolRoute(node, network,
nextHop, nextHopIp, minAdmin, cost,
protocol)

MinAdmin[node, network] = minAdmin <-
agg<<minAdmin = min(admin)>>
BestPerProtocolRoute(node, network,
_, _, admin, _, _).

Figure 6: LogiQL code for route-selection.

5.2 Building the Data Plane

The data plane of the network is the forwarding infor-
mation base (FIB) for each node. The FIB determines
an appropriate action to take when a packet reaches a
particular interface. For the purposes of this paper, that
action is either to forward the packet out of one or more
interfaces, to accept the packet, or to drop the packet.
The second stage of Batfish generates one data plane per
user-specified environment.

In Batfish, the FIB for a node consists of the node’s RIB,
the configured ACLs for the node’s interfaces, and rules
for using these items to forward traffic. The data-plane
generator starts by simply executing the LogiQL pro-
gram that is the output of Stage 1, which is the control-
plane model, to produce the RIB for each node. Before
doing so, LogiQL facts to represent the provided envi-
ronment are added to the model. Specifically, the facts
indicate which interfaces in the network are up, allowing
us to model network failures, and which routes are being
advertised by neighboring networks.

A LogiQL program consisting of a set of base facts and
rules is executed as follows. When a rule body (to the
right of <- in Figure 6) is satisfiable by existing facts, a
new fact is derived and added to the relation in the rule
head (to the left of <-). This process repeats until quies-
cence. At this point, the facts in the InstalledRoute

relation represent the RIB for each node. We then repre-
sent the FIB as a new set of logical rules that make for-
warding decisions, given the RIB information as well as
the per-interface ACLs, which were converted to logical

8
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facts in Stage 1.

The rules for the FIB are as follows. When a packet ar-
rives on an interface, the rules first check whether the
interface has an incoming ACL. If so, and if the packet’s
header is not allowed by that ACL, the packet is dropped.
Otherwise, if the destination IP address of the header is
assigned to any interface of the node, then the packet is
accepted. Otherwise, the rules check the RIB for entries
with networks that are longest-prefix matches for the des-
tination IP address of the header. For each such route, the
interface corresponding to that route’s next hop is deter-
mined as follows: if the route is directly connected on an
interface, that interface is selected. Otherwise, the rules
use the next hop of the route that is a longest prefix match
for the address of the original next hop, recursively, until
a directly connected route is found. Finally, the packet
is forwarded out that interface if the interface’s outgoing
ACL permits it, and dropped otherwise.

5.3 Property Checking

After Stage 2, users have access to the full power of
LogiQL to ask queries about both the control and data
planes. Moreover, these queries can directly employ the
relations in our high-level conceptual model. For ex-
ample, users can query the BestOspfRoute relation to
find the best OSPF route(s) to a particular destination on
a particular node. Further, by employing multiple rela-
tions in a query users can easily obtain even richer infor-
mation, such as the set of all BGP advertisements for a
particular prefix that were rejected by an incoming route-
map on at least two nodes. In this way, users can inter-
actively investigate various aspects of the network’s for-
warding behavior as well as their provenance.

In addition to user-directed exploration, Batfish supports
systematic checking of correctness properties, to find er-
rors and to prove their absence. By default it checks
the properties in §4, but operators can supply additional
properties, expressed as first-order formulas over the re-
lations in our data plane model. Depending on the prop-
erty, Batfish requires one or more data plane models that
differ in their environment (e.g., link failures).

Batfish uses Network Optimized Datalog (NoD) [20], a
recent extension of the Z3 constraint solver, to identify
violations of correctness properties. The properties we
check are decidable and can be expressed precisely in
NoD and Z3, so Batfish is guaranteed to find a counterex-
ample if one exists, modulo resource limitations. In the
rest of the paper, we use NoD to refer to the NoD exten-
sion to Z3 and use Z3 to refer to the vanilla Z3 solver

(which we also use). To check a property P, we ask NoD
if its negation ¬P is satisfiable in the context of the given
data plane models. If not, the property holds. If so, NoD
provides the complete boolean formula expressing how
to satisfy the negation of the property. This formula is
a set of constraints on a packet header and the interface
at which the packet is injected into the network. We then
query Z3 to solve these constraints, thereby producing a
concrete counterexample that violates P.

5.4 Provenance Tracking

The final stage of Batfish helps users to localize the root
cause of identified property violations. First, each coun-
terexample from the previous stage is converted into a
concrete test flow in terms of our LogiQL representation
of the data plane. Then, this test flow is “injected” into
our logical model, causing LogicBlox to populate rele-
vant relations with facts that indicate the path and behav-
ior of the flow through the network. Many of the pro-
duced facts include explicit provenance information, and
as demonstrated in §3.2, users can iteratively query the
populated relations to map errors back to their sources in
the configuration files.

6 Implementation

We implemented Batfish using Java and the Antlr [27]
parser generator. Its source comprises 21,504 lines of
Java code, 13,214 lines of Antlr code across 2,410 gram-
mar rules, and 5,696 lines of LogiQL code across 386 re-
lations. The bulk of the Java and Antlr code corresponds
to Stage 1 of Batfish, which converts configurations to
LogiQL facts.

To manage the complexity supporting diverse configura-
tion languages and diverse directives within a language
(with overlapping functionality), we devised a vendor-
and language-agnostic representation for control plane
information. We first translate the original configuration
files to our representation, and the rest of the analysis
uses this representation exclusively. Therefore, support
for new languages or directives can be added by imple-
menting appropriate translation routines, without having
to change the core analysis functionality.23

We currently support configuration languages of Cisco

2This analysis structure is akin to LLVM [16], which facilitates
analysis of code written in multiple programming languages by first
converting the code to a common representation.

3We hope that in the future router vendors would supply the trans-
lation routines as they best understand the semantics of their languages
and directives.

9
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IOS, Cisco NXOS, Juniper JunOS, Arista, and Quanta.
Our models of the control and data plane are rich enough
to capture the behavior of many real, large networks. We
faithfully model static routes, connected networks, in-
terior gateway protocols (e.g., OSPF, including areas),
BGP, redistribution of routes between routing protocols,
firewall rules, ACLs, multipath routing, VLANs, for-
warding based on longest-prefix matching, and policy
routing. We currently do not model MPLS [30] or packet
modification (e.g., NATs).

A semantic mismatch in encoding configuration direc-
tives in LogiQL is for regular expression matching. Such
matching may be used for BGP communities and AS-
paths but is not supported by LogiQL. We implement
community-matching by precomputing the result of the
match for all communities mentioned in configuration
files and the environment. This strategy does not work
for AS-path matching because AS-paths are lists (where
order matters; communities are sets) and all possible AS-
paths are not known statically.

Based on the observation that regular expressions in con-
figuration files tend to be simple, we implement match-
ing only for regular expressions that match sub-paths of
size two or less. For example, if the regular expression is
.*[5-10][10-15].*, we use LogiQL predicates that
are true when the AS-path, encoded as a LogiQL list,
has an item between 5 and 10 followed by one between
10 and 15. This limited support sufficed for the networks
we analyzed, but it can be extended to longer subpaths.

7 Evaluation

“P.S. WRT the prefix that was dual assigned from yesterday,
one of my NOC [network operations center] guys stopped by
today to ask what voodoo I was using to find such things :)”

– email from the head of the Net1 NOC

To evaluate Batfish, we used it on the configuration of
two large university networks with disparate designs. We
call them Net1 and Net2 in this paper as the operators re-
quested anonymity. We aim to ascertain whether Bat-
fish can scale to handle such real-world networks and
whether it can find configuration errors in them.

7.1 Analyzed Networks

We analyzed recent network configurations from Net1
and Net2. They were working, stable configurations for
which the operators were unaware of any bugs.

Net1 The routing design of Net1 uses BGP internally,

modeling academic departments and a few other orga-
nizational entities (e.g., libraries, dorms) as ASes. The
campus core network consists of 21 routers in 3 tiers:
3 border routers, 5 core routers, and 13 distribution
routers. All routers run OSPF for internal connectiv-
ity. The border routers have eBGP peering sessions with
two provider ASes and iBGP peering sessions with the
core routers. The distribution routers have eBGP peering
sessions with 52 internal ASes which are treated as cus-
tomers of the core network. By design, each department
AS is expected to have redundant peering connections
with the Net1 core network, and each department should
have its own distinct address space. Distribution routers
also have iBGP peering sessions with the core routers.

As mentioned earlier, the environment for analysis of a
network includes the route announcements from neigh-
boring ASes. We used a single set of route announce-
ments for all of the experiments on Net1. These route
announcements were defined by creating stub configu-
ration files for a new set of routers that represent Net1’s
BGP peers; this has the effect of populating the appropri-
ate relations of our control plane model in Stage 1. The
provider AS routers were simply configured to advertise
a default route (i.e., the AS is willing to carry any traf-
fic). The department AS routers were configured to ad-
vertise every network that their Net1 peer would accept
but drop all traffic that was not destined to their own del-
egated address space. This approach ensures that we do
not assume department ASes are “well behaved” when
checking for vulnerabilities in Net1. Including these new
routers, the topology we analyzed has 75 nodes.

Net2 The routing design of Net2 is qualitatively dif-
ferent. It employs VLANs to model the network as a
large layer-2 domain. The network consists of 17 routers,
of which three are core routers on the main campus and
the rest interconnect the main campus with satellite cam-
puses. All routers run OSPF for internal connectivity.

Since Net2 does not use BGP internally, we did not
model the network’s neighbors explicitly, as was done
for Net1. Rather, the environment we used contained no
route announcements from neighbors, and the analyzed
topology included just the original 17 nodes.

7.2 Experiments

We checked for each consistency property in §4.

Multipath Consistency This property was encoded as
a logical formula described in §4. We posed one NoD
query pair per source node in the network, which asks for
the existence of a header exhibiting a multipath inconsis-
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tency when injected at the given node. Whenever such a
header was identified, it was fed into Stage 4 of Batfish,
which produced provenance information that pointed to
the source of the inconsistency in the original configu-
rations. We then patched the configurations and iterated
until all queries were unsatisfiable.

Failure Consistency For this experiment, we gener-
ated the data plane corresponding to no failures as well
as one data plane for each possible failure of a single
(non-generated) interface (199 for Net1, 279 for Net2).
We used NoD to separately obtain constraints on pack-
ets that are accepted in the no-failure scenario and con-
straints on packets that are not accepted in each failure
scenario, again with separate queries per each possible
source node. Finally we asked Z3 to find a concrete
header satisfying the constraints of both the no-failure
scenario and the failure scenarios, for each possible fail-
ure scenario and each source node in the network.

Destination Consistency For Net1 we generated 53
separate data planes: one corresponding to the un-
changed configurations and one corresponding to the re-
moval of each of Net1’s 52 customer ASes. We excluded
the provider ASes from this analysis altogether, since in
general a provider may appear to provide an alternate
path to any prefix that is part of a separate AS. We then
used NoD and Z3 in the same way as described above for
failure consistency, to identify headers that are accepted
in the original data plane and also accepted after the des-
tination’s associated peer is removed from the network.

Destination consistency is not applicable to Net2, since
it has no customer ASes.

7.3 Results

Batfish found a variety of bugs in both networks. Many
of the concrete counterexamples it reported had different
headers but were due to the same underlying configu-
ration issue or an analogous issue on a different router.
This makes counting the number of distinct issues some-
what difficult, so we provide two different metrics. First,
we count one bug for each inconsistency related to an
explicitly declared space of packet headers or source IPs
in the network configuration. Second, we group bugs of
a similar nature into bug classes. For instance, if a pre-
fix list is incorrectly defined in two routers, we may find
two unique bugs but we consider them to be in the same
class. In general, the relationship between bugs and bug
classes is complex: a change to a network configuration
may remove one, two, or more bugs from the same class.

Table 1 summarizes our results for both the number of

Total Undesired Fixed
violations behaviors violations

N
et

1 Multipath 32 (4) 32 (4) 21 (3)
Failure 16 (7) 3 (2) 0 (0)

Destination 55 (6) 55 (6) 1 (1)

N
et

2 Multipath 11 (3) 11 (3) 11 (3)
Failure 77(26) 18(7) 0(0)

Table 1: Number of bugs (bug classes) for each property.

bugs and bug classes (in parenthesis). We reported each
property violation with its provenance information to the
operators. The “Total violations” column gives the num-
ber of bugs and bug classes we reported. The “Undesired
behaviors” column contains the subset of total violations
that the operators confirmed caused undesired behaviors
in the network. The only difference in these columns
occurs for failure consistency. As explained below, this
difference is not due to false positives in the analysis but
reflects an intentional lack of fault tolerance in portions
of the network or lack of fidelity in modeling network
topology. “Fixed violations” is the subset of undesired
violations that were fixed after we reported them. Not
all behaviors that were confirmed as undesired by opera-
tors could be immediately fixed because the change was
complex or the operators feared collateral damage.

Finally, a fix to a configuration may eliminate violations
of multiple consistency properties. For instance, we see
cases in which a fix that the operator applied for multi-
path consistency also removed some violations of failure
consistency. In Table 1, we count such violations only
once (for the property listed highest).

7.3.1 Understanding the discovered bugs

We now provide insight into issues that were uncovered
by Batfish.

Multipath Consistency For Net1, a serious issue we
found was a typo in the name of a prefix list on a Cisco
router used to filter advertisements from one of the de-
partments. The semantics for an undefined prefix list are
to accept all advertisements. We found that this bug al-
lowed the department to partially divert all traffic des-
tined to other Net1 departments, as well as all traffic
destined to arbitrary Internet addresses from any depart-
ment. This bug was confirmed and fixed by the operators.

We show a sample of the provenance information for this
bug below for a single hijacked prefix:
FlowAccepted(Flow<srcNode=nS, dstIp=10.0.0.1>, nV)
FlowDeniedIn(Flow<srcNode=nS, dstIp=10.0.0.1>, nA,

Ethernet0, filter, 4)
FlowMatchRoute(Flow<srcNode=nS, dstIp=10.0.0.1>, nS,
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Route<prefix=10.0.0.0/24, nextHop=nA, ibgp>)
FlowMatchRoute(Flow<srcNode=nS, dstIp=10.0.0.1>, nS,

Route<prefix=10.0.0.0/24, nextHop=nV, ibgp>)

Here, nA is an adversarial department that can send ar-
bitrary advertisements, and nV is a victim department
whose network has been hijacked. This indicates that
some source node nS has iBGP routes to the victim’s
prefix through either the victim or the adversary. This
would not be possible if advertisements from the adver-
sary were filtered properly.

We also discovered three bug classes in which ACLs in-
tended for the same department on different routers did
not match. Two of these bug classes were fixed. The third
bug class was confirmed as a problem, but the operators
did not immediately fix it. The network operator stated
that the ACLs in those cases matched the prefixes the
peer wanted to announce at each connection point. He
further commented, however, that should the peer change
where these prefixes are announced without notice, traf-
fic could get dropped. Therefore, he decided to change
the policy in the future to accept all peer-delegated pre-
fixes at each connection point, leaving it to the peer to
decide what gets announced where.

For Net2, all of the multipath consistency bugs were
due to inconsistent handling of routes redistributed into
OSPF. In some cases, a connected route and a null static
route (one configured to drop traffic for a prefix) for
the same prefix would be redistributed by two differ-
ent routers, and both of these routers would be installed
as next hops for this prefix by a third adjacent router
(§2.2). In the other cases, two routers would redis-
tribute connected routes to a link they shared, but the
path through one router would allow some traffic while
the path through the other might deny it due to the ACLs
applied on that path.

Failure Consistency For Net1, all of the failure consis-
tency violations that Batfish found occurred when the in-
terface that connected a department peer was failed. This
situation indicates that the peer’s only connection to the
core network was through the interface disabled for the
experimental run, which implies an absence of fault tol-
erance. The network operator reported that several such
cases were known and due to economic reasons. The
peer could not afford to maintain multiple links, or lay-
ing another line would be prohibitively expensive. We
did not count these cases as “Undesired behaviors.”

For Net2 Batfish found 26 bug classes for failure consis-
tency, as shown in Table 1. But 19 were not deemed as
undesired behaviors by the network operator. 5 were due
to a bad assumption in how we currently model VLANs.

We assume one-to-one mapping between logical VLAN
interfaces and physical interfaces, but in reality the rela-
tionship was one-to-many for some VLANs, which led
Batfish to underestimate fault tolerance. 14 bug classes
represented intentional absence of fault tolerance. In 6 of
them, providing backup paths was deemed prohibitively
expensive. Interestingly, in 8 cases, backup paths existed
but certain types of traffic were not allowed to use it.

Batfish found 7 bug classes that represented unexpected
lack of fault tolerance. In 5 cases, it was due to VLAN
implementation using a single physical interface. In the
rest, only a single link served certain paths, which sur-
prised the operators. These inconsistencies could not be
fixed immediately because the solution needed new hard-
ware and links in addition to configuration changes.

Destination Consistency For Net1, we found one bug
(class) which the operators fixed: advertisements for a
particular prefix were erroneously permitted from both
the dorms and an academic department. This situation
allowed the dorms to hijack the department’s traffic.

The other discovered cases of destination consistency
were confirmed by the operator as undesirable but were
also known. These were cases in which advertisements
for a prefix were permitted from several peers, but these
peers actually fell under one administrative unit; they
were separated into multiple ASes because of legacy
considerations, and/or an unwillingness on the part of the
peer operators to disturb a working system. The operator
noted that ideally they would all fall under a single AS
and wants to start consolidating them. Thus, the discov-
ered violations represent fragility in the face of changes
on the other end, but should not disrupt traffic as is.

7.4 Performance benchmarks

The time to analyze a network using Batfish depends on
the size and complexity of the network and the correct-
ness properties checked, as well as the performance of
third-party tools such as NoD and LogicBlox. But we
provide some insight by reporting on what we observed
for our networks. We focus on the second and third
stages of Batfish, as the other two stages take relatively
little time (under a minute).

First consider multipath consistency. On an Intel E5-
2698B VM, data plane generation (Stage 2) takes 238
(37) minutes for Net1 (Net2). Checking multipath con-
sistency (Stage 3) requires making 75 (17) NoD and Z3
query pairs, each component of which takes under 90
seconds on a single core. Each query is completely inde-
pendent of the others, so Batfish performs them in paral-

12



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 481

lel. A significant portion of the time to compute the data
plane for Net1 is due to the large number of routes ad-
vertised by the generated department configurations; we
believe this computation can be optimized significantly.

Failure consistency is the most onerous of our properties
to check, since it requires one data plane per failure case
of interest. There are 199 (279) such failure cases for
Net1 (Net2); each can be checked independently. With
an optimal number of processing nodes, i.e. 1 per data-
plane, the computation time will not be appreciably more
than that for multipath consistency.

Operators that have access to only modest hardware re-
sources can use Batfish as follows. Before applying a
configuration change, they can check for only multipath
consistency and other properties that do not require ad-
ditional data planes. This provides important correctness
guarantees for the common case of no failures. Then, af-
ter applying the configuration change, the operators can
continue to check for other properties in the background.

8 Related Work

Our work builds on several threads of prior work. One
such thread is the static analysis of network configura-
tions, which, as detailed in §1, has focused on specific as-
pects of the configuration or specific properties, enabling
customized solutions [2, 7, 11, 24, 25, 34]. For instance,
rcc [7] and IP Assure [24] perform a range of checks
that pertain to particular protocols or configuration as-
pects (e.g., the two ends of an OSPF link are in the same
area, link MTUs match, the two ends of an encrypted tun-
nel use the same type of encryption-decryption). While
violations identified by such static analysis tools likely
represent poor practices, the tools cannot, unlike Batfish,
indicate whether or how violations impact the network’s
forwarding. On the other hand, for a violation that occurs
only in specific environments (e.g., when certain kinds of
external routes are injected in the network), Batfish can
detect it only when given a concrete instance of one of
these environments, but a specialized tool for checking
particular properties may be able to uncover such a vio-
lation even without these concrete inputs by leveraging
specific characteristics of those properties.

Closer to our work are approaches that directly model
network behavior from its configuration. For example,
Feamster et al. [8] develop a tool to compute the outcome
of BGP route selection for an AS. Xie et al. [33] outline
how to infer reachability sets, which are sets of packets
that can be properly carried between a given source and
destination node in the network. Benson et al. [4] extend

this notion of reachability to assess the complexity of a
network. Batfish is similar in spirit but broader in scope,
handling all aspects of configuration that affect forward-
ing and producing a complete data plane.

The C-BGP [28] and Cariden [5] tools also generate
a data plane from network configuration, but they use
an imperative, simulation-based approach, and focus on
specific configuration aspects (BGP and traffic engineer-
ing, respectively). We employ a declarative approach,
which provides a way to tractably reason about all as-
pects of the configuration. More importantly, Batfish pro-
vides provenance information and the ability to query in-
termediate control plane relations.

Anteater [22] and Hassel [14] analyze data plane snap-
shots, obtained by pulling router FIBs and parsing por-
tions of configuration that map directly to forwarding
state (e.g., ACLs). More recent data plane analysis tools
focus on SDNs and faster computations [13, 15, 20, 37].
By starting from the network configuration, Batfish can
find forwarding problems proactively and enable “what
if” analysis across different environments. However,
data-plane snapshot analysis is not rendered expendable
by our approach. Such analysis can find forwarding
problems due to router software bugs, while we assume
that the router faithfully implements the configurations.
Thus, both types of analyses are valuable in the network
verification toolkit.

Batfish employs NoD [20] to perform data-plane analysis
in Stage 3 of its pipeline. We picked NoD because it had
better performance and usability than prior tools. NoD
has been used by its creators for “differential reachabil-
ity” queries, one of which is analogous to our notion of
multipath consistency. Their queries and our properties
were developed independently.

9 Conclusions

We develop a new approach to analyze network config-
uration files that can flag a broad range of forwarding
problems proactively, without requiring the configura-
tion to be applied to the network. For two large university
networks, our instantiation of the approach in the Bat-
fish tool found many misconfigurations that were quickly
fixed by the operators. Our approach is fully declara-
tive and derives, from low-level network configurations,
logical models of the network’s control and data planes.
We believe that these models are useful beyond finding
configuration errors, for instance, to migrate a network
toward high-level programming frameworks while faith-
fully preserving its existing policies.
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