
This paper is included in the Proceedings of the
12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).
May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the
12th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’15)

is sponsored by USENIX

Succinct: Enabling Queries on Compressed Data
Rachit Agarwal, Anurag Khandelwal, and Ion Stoica, University of California, Berkeley

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/agarwal

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 337

Succinct: Enabling Queries on Compressed Data

Rachit Agarwal

UC Berkeley

Anurag Khandelwal

UC Berkeley

Ion Stoica

UC Berkeley

Abstract
Succinct is a data store that enables efficient queries di-

rectly on a compressed representation of the input data.

Succinct uses a compression technique that allows ran-

dom access into the input, thus enabling efficient stor-

age and retrieval of data. In addition, Succinct natively

supports a wide range of queries including count and

search of arbitrary strings, range and wildcard queries.

What differentiates Succinct from previous techniques

is that Succinct supports these queries without storing

indexes — all the required information is embedded

within the compressed representation.

Evaluation on real-world datasets show that Succinct

requires an order of magnitude lower memory than sys-

tems with similar functionality. Succinct thus pushes

more data in memory, and provides low query latency

for a larger range of input sizes than existing systems.

1 Introduction

High-performance data stores, e.g. document stores [1,

6], key-value stores [5,9,23,24,26,38,39,43] and multi-

attribute NoSQL stores [3, 19, 21, 25, 35, 48], are the

bedrock of modern cloud services. While existing data

stores provide efficient abstractions for storing and re-

trieving data using primary keys, interactive queries on

values (or, secondary attributes) remains a challenge.

To support queries on secondary attributes, existing

data stores can use two main techniques. At one ex-

treme, systems such as column oriented stores, simply

scan the data [10, 36]. However, data scans incur high

latency for large data sizes, and have limited through-

put since queries typically touch all machines1. At the

other extreme, one can construct indexes on queried

attributes [3, 6, 35]. When stored in-memory, these in-

dexes are not only fast, but can achieve high throughput

since it is possible to execute each query on a single ma-

chine. The main disadvantage of indexes is their high

memory footprint. Evaluation of popular open-source

data stores [6,35] using real-world datasets (§6) shows

1Most data stores shard data by rows, and one needs to scan all

rows. Even if data is sharded by columns, one needs to touch multiple

machines to construct the row(s) in the query result.

that indexes can be as much as 8× larger than the in-

put data size. Traditional compression techniques can

reduce the memory footprint but suffer from degraded

throughput since data needs to be decompressed even

for simple queries. Thus, existing data stores either re-

sort to using complex memory management techniques

for identifying and caching “hot” data [5, 6, 26, 35] or

simply executing queries off-disk or off-SSD [25]. In

either case, latency and throughput advantages of in-

dexes drop compared to in-memory query execution.

We present Succinct, a distributed data store that

operates at a new point in the design space: memory

efficiency close to data scans and latency close to in-

dexes. Succinct queries on secondary attributes, how-

ever, touch all machines; thus, Succinct may achieve

lower throughput than indexes when the latter fits in

memory. However, due to its low memory footprint,

Succinct is able to store more data in memory, avoid-

ing latency and throughput degradation due to off-disk

or off-SSD query execution for a much larger range of

input sizes than systems that use indexes.

Succinct achieves the above using two key ideas.

First, Succinct stores an entropy-compressed representa-

tion of the input data that allows random access, en-

abling efficient storage and retrieval of data. Succinct’s

data representation natively supports count, search,

range and wildcard queries without storing indexes —

all the required information is embedded within this

compressed representation. Second, Succinct executes

queries directly on the compressed representation, avoid-

ing data scans and decompression. What makes Suc-

cinct a unique system is that it not only stores a com-

pressed representation of the input data, but also pro-

vides functionality similar to systems that use indexes

along with input data.

Specifically, Succinct makes three contributions:

• Enables efficient queries directly on a compressed

representation of the input data. Succinct achieves

this using (1) a new data structure, in addition to

adapting data structures from theory literature [32,

44–46], to compress the input data; and (2) a new

query algorithm that executes random access, count,

1

338 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

search, range and wildcard queries directly on the

compressed representation (§3). In addition, Suc-

cinct provides applications the flexibility to tradeoff

memory for faster queries and vice versa (§4).

• Efficiently supports data appends by chaining multi-

ple stores, each making a different tradeoff between

write, query and memory efficiency (§4): (1) a small

log-structured store optimized for fine-grained ap-

pends; (2) an intermediate store optimized for query

efficiency while supporting bulk appends; and (3) an

immutable store that stores most of the data, and op-

timizes memory using Succinct’s data representation.

• Exposes a minimal, yet powerful, API that operates

on flat unstructured files (§2). Using this simple API,

we have implemented many powerful abstractions

for semi-structured data on top of Succinct including

document store (e.g., MongoDB [6]), key-value store

(e.g., Dynamo [23]), and multi-attribute NoSQL store

(e.g., Cassandra [35]), enabling efficient queries on

both primary and secondary attributes.

We evaluate Succinct against MongoDB [6], Cassan-

dra [35], HyperDex [25] and DB-X, an industrial colum-

nar store that supports queries via data scans. Evalua-

tion results show that Succinct requires 10−11× lower

memory than data stores that use indexes, while provid-

ing similar or stronger functionality. In comparison to

traditional compression techniques, Succinct’s data rep-

resentation achieves lower decompression throughput

but supports point queries directly on the compressed

representation. By pushing more data in memory and

by executing queries directly on the compressed repre-

sentation, Succinct achieves dramatically lower latency

and higher throughput (sometimes an order of magni-

tude or more) compared to above systems even for mod-

erate size datasets.

2 Succinct Interface

Succinct exposes a simple interface for storing, retriev-

ing and querying flat (unstructured) files; see Figure 1.

We show in §2.1 that this simple interface already al-

lows us to model many powerful abstractions including

MongoDB [6], Cassandra [35] and BigTable [19], en-

abling efficient queries on semi-structured data.

The application submits and compresses a flat file

using compress; once compressed, it can invoke a set

of powerful primitives directly on the compressed file.

In particular, the application can append new data us-

ing append, can perform random access using extract

that returns an uncompressed buffer starting at an ar-

bitrary offset in original file, and count number of oc-

currences of any arbitrary string using count.

f = compress(file)

append(f, buffer)

buffer = extract(f, offset, len)

cnt = count(f, str)

[offset1, . . .] = search(f, str)

[offset1, . . .] = rangesearch(f, str1, str2)

[[offset1, len1], . . .]

= wildcardsearch(f, prefix, suffix, dist)

Figure 1: Interface exposed by Succinct (see §2).

Arguably, the most powerful operation provided by

Succinct is searchwhich takes as an argument an arbi-

trary string (i.e., not necessarily word-based) and re-

turns offsets of all occurrences in the uncompressed

file. For example, if file contains abbcdeabczabgz,

invoking search(f, “ab”) will return offsets [0, 6,

10]. While search returns an array of offsets, we pro-

vide a convenient iterator interface in our implementa-

tion. What makes Succinct unique is that search not

only runs on the compressed representation but is also

efficient, that is, does not require scanning the file.

Succinct provides two other search functions, again

on arbitrary input strings. First, rangesearch returns

the offsets of all strings between str1 and str2

in lexicographical order. Second, wildcardsearch(f,

prefix, suffix, dist) returns an array of tuples.

A tuple contains the offset and the length of a string

with the given prefix and suffix, and whose dis-

tance between the prefix and suffix does not exceed

dist, measured in number of input characters. Sup-

pose again that file f contains abbcdeabczabgz, then

wildcardsearch(f, “ab”, “z”, 2) will return tu-

ples [6, 9] for abcz, and [10, 13] for abgz. Note

that we do not return the tuple corresponding to

abbcdeabcz as the distance between the prefix and suf-

fix of this string is greater than 2.

2.1 Extensions for semi-structured data

Consider a logical collection of records of the form

(key, avpList), where key is a unique iden-

tifier, and avpList is a list of attribute value

pairs, i.e., avpList = ((attrName1, value1),...

(attrNameN, valueN)). To enable queries using Suc-

cinct API, we encode avpListwithin Succinct data rep-

resentation; see Figure 2. Specifically, we transform the

semi-structured data into a flat file with each attribute

value separated by a delimiter unique to that attribute.

In addition, Succinct internally stores a mapping from

each attribute to the corresponding delimiter, and a

mapping from key to offset into the flat file where

corresponding avpList is encoded.

2

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 339

A1 A2 A3

key1

key2

key3

V11 V12 V13

V21 V22 V23

V31 V32 V33

V11⋆V12•V13†>

V21⋆V22•V23†>

V31⋆V32•V33†>

Attr Delimiter

A1

A2

A3

⋆

•

†

+ + key→ offset

pointers
+ end-of-record

delimiter (>)

Figure 2: Succinct supports queries on semi-structured data by transforming the input data into flat files (see §2.1).

Succinct executes get queries using extract API

along with the key→offset pointers, and put queries

using the append API. The delete queries are executed

lazily, similar to [8,10], using one explicit bit per record

which is set upon record deletion; subsequent queries

ignore records with set bit. Applications can also query

individual attributes; for instance, search for string val

along attribute A2 is executed as search(val•) using

the Succinct API, and returns every key whose associ-

ated attribute A2 value matches val.

Flexible schema, record sizes and data types. Suc-

cinct, by mapping semi-structured data into a flat file

and by using delimiters, does not impose any restriction

on avpList. Indeed, Succinct supports single-attribute

records (e.g., Dynamo [23]), multiple-attribute records

(e.g., BigTable [19]), and even a collection of records

with varying number of attributes. Moreover, using

its key→ offset pointers, Succinct supports the real-

istic case of records varying from a few bytes to a

few kilobytes [17]. Succinct currently supports prim-

itive data types (strings, integers, floats), and

can be extended to support a variety of data structures

and data types including composite types (arrays,

lists, sets). See [16] for a detailed discussion.

3 Querying on Compressed Data

We describe the core techniques used in Succinct. We

briefly recall techniques from theory literature that Suc-

cinct uses, followed by Succinct’s entropy-compressed

representation (§3.1) and a new algorithm that oper-

ates directly on the compressed representation (§3.2).

Existing techniques. Classical search techniques are

usually based on tries or suffix trees [13, 47]. While

fast, even their optimized representations can require

10–20× more memory than the input size [33, 34].

Burrows-Wheeler Transform (BWT) [18] and Suffix ar-

rays [12,40] are two memory efficient alternatives, but

still require 5× more memory than the input size [33].

FM-indexes [27–30] and Compressed Suffix Arrays [31,

32,44–46] use compressed representation of BWT and

suffix arrays, respectively, to further reduce the space

requirement. Succinct adapts compressed suffix arrays

due to their simplicity and relatively better performance

$
a$

ana$
anana$

banana$
na$

nana$

AoS

0
1
2
3
4
5
6

b
a
n
a
n
a
$

Input

6
5
3
1
0
4
2

AoS2Input

(a)

$
a$

ana$
anana$

banana$
na$

nana$

AoS

0
1
2
3
4
5
6

b
a
n
a
n
a
$

Input

6
5
3
1
0
4
2

AoS2Input

{1, 3} = search(“an”)

(b)

Figure 3: An example for input file banana$. AoS stores

suffixes in the input in lexicographically sorted order. (a)

AoS2Input maps each suffix in AoS to its location in the in-

put (solid arrows). (b) Illustration of search using AoS and

AoS2Input (dashed arrows). Suffixes being sorted, AoS allows

binary search to find the smallest AoS index whose suffix starts

with searched string (in this case “an”); the largest such index

is found using another binary search. The result on the origi-

nal input is showed on the right to aid illustration.

for large datasets. We describe the basic idea behind

Compressed Suffix Arrays.

Let Array of Suffixes (AoS) be an array containing all

suffixes in the input file in lexicographically sorted or-

der. AoS along with two other arrays, AoS2Input and

Input2AoS2, is sufficient to implement the search and

the random access functionality without storing the in-

put file. This is illustrated in Figure 3 and Figure 4.

Note that for a file with n characters, AoS has size

O(n2) bits, while AoS2Input and Input2AoS have size

n⌈logn⌉ bits since the latter two store integers in range

0 to n−1. The space for AoS, AoS2Input and Input2AoS

is reduced by storing only a subset of values; the re-

maining values are computed on the fly using a set of

pointers, stored in NextCharIdx array, as illustrated in

Figure 5, Figure 6 and Figure 7, respectively.

2AoS2Input and Input2AoS, in this paper, are used as convenient

names for Suffix array and Inverse Suffix Array, respectively.

3

340 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

$
a$

ana$
anana$

banana$
na$

nana$

0
1
2
3
4
5
6

AoS

b
a
n
a
n
a
$

Input

4
3
6
2
5
1
0

Input2Aos

(a)

$
a$

ana$
anana$

banana$
na$

nana$

0
1
2
3
4
5
6

AoS

0
1
2
3
4
5
6

b
a
n
a
n
a
$

Input

4
3
6
2
5
1
0

Input2AoS

“ban” = extract(0, 3)

(b)

Figure 4: (a) The Input2AoS provides the inverse mapping of

AoS2Input, from each index in the input to the index of the

corresponding suffix in AoS (solid arrows). (b) Illustration of

extract using AoS and Input2AoS (dashed arrows). The result

on the original input is showed on the right to aid illustration.

The NextCharIdx array is compressed using a two-

dimensional representation; see Figure 8. Specifically,

the NextCharIdx values in each column of the two-

dimensional representation constitute an increasing se-

quence of integers3. Each column can hence be indepen-

dently compressed using delta encoding [2,7,11].

3.1 Succinct data representation

Succinct uses the above data representation with three

main differences. We give a high-level description of

these differences; see [16] for a detailed discussion.

First, Succinct uses a more space-efficient representa-

tion of AoS2Input and Input2AoS by using a sampling

by “value” strategy. In particular, for sampling rate α,

rather than storing values at “indexes” {0,α,2α, . . . } as

in Figure 6 and Figure 7, Succinct stores all AoS2Input

values that are a multiple of α. This allows storing

each sampled value val as val/α, leading to a more

space-efficient representation. Using α= 2 for example

of Figure 6, for instance, the sampled AoS2Input val-

ues are {6,0,4,2}, which can be stored as {3,0,2,1}.

Sampled Input2AoS then becomes {1,3,2,0}with i-th

value being the index into sampled AoS2Input where i

is stored. Succinct stores a small amount of additional

information to locate sampled AoS2Input indexes.

3Proof: Consider two suffixes cX<cY in a column (indexed by char-

acter “c”). By definition, NextCharIdx values corresponding to cX

and cY store AoS indexes corresponding to suffixes X and Y. Since

cX<cY implies X<Y and since AoS stores suffixes in sorted order,

NextCharIdx[cX]<NextCharIdx[cY]; hence the proof.

$
a$

ana$
anana$

banana$
na$

nana$

0
1
2
3
4
5
6

AoS

4
0
5
6
3
1
2

NextCharIdx

$
a
a
a
b
n
n

4
0
5
6
3
1
2

(a)

$
a

b
n

4
0
5
6
3
1
2

(b)

Figure 5: Reducing the space usage of AoS: NextCharIdx

stores pointers from each suffix S to the suffix S′ after re-

moving the first character from S. (a) for each suffix in

AoS, only the first character is stored. NextCharIdx point-

ers allow one to reconstruct suffix at any AoS index. For

instance, starting from AoS[4] and following pointers, we

get the original AoS entry “banana$”. (b) Since suffixes are

sorted, only the first AoS index at which each character oc-

curs (e.g., {($,0),(a,1),(b,4),(n,5)}) need be stored; a

binary search can be used to locate character at any index.

Second, Succinct achieves a more space-efficient rep-

resentation for NextCharIdx using the fact that val-

ues in each row of the two-dimensional representation

constitute a contiguous sequence of integers4. Succinct

uses its own Skewed Wavelet Tree data structure, based

on Wavelet Trees [32, 44], to compress each row in-

dependently. Skewed Wavelet Trees allow looking up

NextCharIdx value at any index without any decom-

pression. The data structure and lookup algorithm are

described in detail in [16]. These ideas allow Succinct

to achieve 1.25–3× more space-efficient representation

compared to existing techniques [7,11,31].

Finally, for semi-structured data, Succinct supports

dictionary encoding along each attribute to further re-

duce the memory footprint. This is essentially orthog-

onal to Succinct’s own compression; in particular, Suc-

cinct dictionary encodes the data along each attribute

before constructing its own data structures.

3.2 Queries on compressed data

Succinct executes queries directly on the compressed

representation from §3.1. We describe the query al-

gorithm assuming access to uncompressed data struc-

tures; as discussed earlier, any value not stored in the

compressed representation can be computed on the fly.

Succinct executes an extract query as illustrated

in Figure 7 on Input2AoS representation from §3.1. A

strawman algorithm for search would be to perform

two binary searches as in Figure 3. However, this algo-

rithm suffers from two inefficiencies. First, it executes

binary searches on the entire AoS2Input array; and sec-

4Intuitively, any row indexed by rowID contains NextCharIdx val-

ues that are pointers into suffixes starting with the string rowID; since

suffixes are sorted, these must be contiguous set of integers.

4

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 341

$
a

b
n

6
5
3
1
0
4
2

0
1
2
3
4
5
6

AoS2Input

4
0
5
6
3
1
2

NextCharIdx

6

3

0

2

0
1
2
3
4
5
6

4
0
5
6
3
1
2?

Figure 6: Reducing the space usage of AoS2Input.

(left) Since AoS2Input stores locations of suffixes in AoS,

NextCharIdx maps AoS2Input values to next larger value.

That is, NextCharIdx[idx] stores the AoS2Input index that

stores AoS2Input[idx]+15; (right) only a few sampled values

need be stored; unsampled values can be computed on the

fly. For instance, starting AoS2Input[5] and following point-

ers twice, we get the next larger sampled value 6. Since each

pointer increases value by 1, the desired value is 6−2= 4.

4
3
6
2
5
1
0

Input2AoS

4

6

5

0

$
a

b
n

0
1
2
3
4
5
6

4
0
5
6
3
1
2

NextCharIdx(b)(a)

?

Figure 7: Reducing the space usage of Input2AoS. (a) only

a few sampled values need be stored; (b) extract func-

tionality of Figure 4 is achieved using sampled values and

NextCharIdx. For instance, to execute extract(3, 3), we

find the next smaller sampled index (Input2AoS[2]) and cor-

responding suffix (AoS[2]=“nana$”). We then remove the

first character since the difference between the desired index

and the closest sampled index was 1; hence the result “ana$”.

ond, each step of the binary search requires computing

the suffix at corresponding AoS index for comparison

purposes. Succinct uses a query algorithm that over-

comes these inefficiencies by aggressively exploiting the

two-dimensional NextCharIdx representation.

Recall that the cell (colID, rowID) in two-

dimensional NextCharIdx representation corresponds

to suffixes that have colID as the first character and

rowID as the following t characters. Succinct uses this

to perform binary search in cells rather than the en-

tire AoS2Input array. For instance, consider the query

search(“anan”); all occurrences of string “nan” are

contained in the cell 〈n,an〉. To find all occurrences

of string anan, our algorithm performs a binary search

only in the cell 〈a,na〉 in the next step. Intuitively, af-

5Proof: Let S be a suffix and S′ be the suffix after removing first

character from S. If S starts at location loc, then S′ starts at loc+1.

NextCharIdx stores pointers from S to S′. Since AoS2Input stores lo-

cations of suffixes in input, NextCharIdx maps value loc in AoS2Input

to AoS2Input index that stores the next larger value (loc+1).

$
a$

ana$
anana$

banana$
na$

nana$

AoS

4
0
5
6
3
1
2

NextCharIdx

$ a b n

$b
a$
an
ba
na

0
1

3 2
4

5, 6

Two-dim. NextCharIdx

Figure 8: Two-dimensional NextCharIdx representation.

Columns are indexed by all unique characters and rows are

indexed by all unique t−length strings in input file, both in

sorted order. A value belongs to a cell (colID, rowID) if cor-

responding suffix has colID as first character and rowID as

following t characters. For instance, NextCharIdx[3]=5 and

NextCharIdx[4]=6 are contained in cell (a, na), since both

start with “a” and have “na” as following two characters.

ter this step, the algorithm has the indexes for which

suffixes start with “a” and are followed by “nan”,

the desired string. For a string of length m, the above

algorithm performs 2(m− t −1) binary searches, two

per NextCharIdx cell [16], which is far more efficient

than executing two binary searches along the entire

AoS2Input array for practical values of m. In addition,

the algorithm does not require computing any of the

AoS suffixes during the binary searches. For a 16GB file,

Succinct’s query algorithm achieves a 2.3× speed-up on

an average and 19× speed-up in the best case compared

to the strawman algorithm.

Range and Wildcard Queries. Succinct implements

rangesearch and wildcardsearch using the search

algorithm. To implement rangesearch(f, str1,

str2), we find the smallest AoS index whose suffix

starts with string str1 and and the largest AoS index

whose suffix starts with string str2. Since suffixes are

sorted, the returned range of indices necessarily contain

all strings that are lexicographically contained between

str1 and str2. To implement wildcardsearch(f,

prefix, suffix, dist), we first find the offsets of

all prefix and suffix occurrences, and return all possible

combinations such that the difference between the

suffix and prefix offsets is positive and no larger than

dist (after accounting for the prefix length).

4 Succinct Multi-store Design

Succinct incorporates its core techniques into a write-

friendly multi-store design that chains multiple indi-

vidual stores each making a different tradeoff between

write, query and memory efficiency. This section de-

scribes the design and implementation of the individual

stores and their synthesis to build Succinct.

5

342 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

.

appendsequence# → InputFile

.

SuccinctStore SuffixStore LogStore

Figure 9: Succinct uses a write-optimized LogStore that

supports fine-grained appends, a query-optimized SuffixStore

that supports bulk appends, and a memory-optimized Suc-

cinctStore. New data is appended to the end of LogStore. The

entire data in LogStore and SuffixStore constitutes a single

partition of SuccinctStore. The properties of each of the stores

are summarized in Table 1.

Table 1: Properties of individual stores. Data size estimated

for 1TB original uncompressed data on a 10 machine 64GB

RAM cluster. Memory estimated based on evaluation (§6).

Succinct Suffix Log

Store Store Store

Stores Comp. Data + Data +

Data (§3.1) AoS2Input Inv. Index

Appends - Bulk Fine

Queries §3.2 Index Scans+

Inv. Index

#Machines n−2 1 1

%Data(est.) > 99.98% < 0.016% < 0.001%

Memory ≈ 0.4× ≈ 5× ≈ 9×

Succinct design overview. Succinct chains three indi-

vidual stores as shown in Figure 9; Table 1 summa-

rizes the properties of the individual stores. New data

is appended into a write-optimized LogStore, that exe-

cutes queries via in-memory data scans; the queries are

further sped up using an inverted index that supports

fast fine-grained updates. An intermediate store, Suf-

fixStore, supports bulk appends and aggregates larger

amounts of data before compression is initiated. Scans

at this scale are simply inefficient. SuffixStore thus sup-

ports fast queries using uncompressed data structures

from §3; techniques in place ensure that these data

structures do not need to be updated upon bulk ap-

pends. SuffixStore raw data is periodically transformed

into an immutable entropy-compressed store Succinct-

Store that supports queries directly on the compressed

representation. The average memory footprint of Suc-

cinct remains low since most of data is contained in the

memory-optimized SuccinctStore.

4.1 LogStore

LogStore is a write-optimized store that executes data

append via main memory writes, and other queries via

data scans. Memory efficiency is not a goal for LogStore

since it contains a small fraction of entire dataset.

One choice for LogStore design is to let cores con-

currently execute read and write requests on a single

shared partition and exploit parallelism by assigning

each query to one of the cores. However, concurrent

writes scale poorly and require complex techniques for

data structure integrity [39,41,42]. Succinct uses an al-

ternative design, partitioning LogStore data into multi-

ple partitions, each containing a small amount of data.

However, straightforward partitioning may lead to in-

correct results if the query searches for a string that

spans two partitionsLogStore thus uses overlapping par-

titions, each annotated with the starting and the ending

offset corresponding to the data “owned” by the par-

tition. The overlap size can be configured to expected

string search length (default is 1MB). New data is al-

ways appended to the most recent partition.

LogStore executes an extract request by reading the

data starting at the offset specified in the request. While

this is fast, executing search via data scans can still

be slow, requiring tens of milliseconds even for 250MB

partition sizes. Succinct avoids scanning the entire par-

tition using an “inverted index” per partition that sup-

ports fast updates. This index maps short length (de-

fault is three character) strings to their locations in the

partition; queries then need to scan characters starting

only at these locations. The index is memory inefficient,

requiring roughly 8× the size of LogStore data, but has

little affect on Succinct’s average memory since Log-

Store itself contains a small fraction of the entire data.

The speed-up is significant allowing Succinct to scan, in

practice, up to 1GB of data within a millisecond. The in-

dex supports fast updates since, upon each write, only

locations of short strings in the new data need to be ap-

pended to corresponding entries in the index.

4.2 SuffixStore

SuffixStore is an intermediate store between LogStore

and entropy-compressed SuccinctStore that serves two

goals. First, to achieve good compression, SuffixStore

accumulates and queries much more data than LogStore

before initiating compression. Second, to ensure that

LogStore size remains small, SuffixStore supports bulk

data appends without updating any existing data.

Unfortunately, LogStore approach of fast data scans

with support of inverted index does not scale to data

sizes in SuffixStore due to high memory footprint and

6

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 343

data scan latency. SuffixStore thus stores uncompressed

AoS2Input array (§3) and executes search queries via

binary search (Figure 3). SuffixStore avoids storing AoS

by storing the original data that allows random access

for comparison during binary search, as well as, for ex-

tract queries; these queries are fast since AoS2Input is

uncompressed. SuffixStore achieves the second goal us-

ing excessive partitioning, with overlapping partitions

similar to LogStore. Bulk appends from LogStore are

executed at partition granularity, with the entire Log-

Store data constituting a single partition of SuffixStore.

AoS2Input is constructed per partition to ensure that

bulk appends do not require updating any existing data.

4.3 SuccinctStore

SuccinctStore is an immutable store that contains most

of the data, and is thus designed for memory efficiency.

SuccinctStore uses the entropy-compressed representa-

tion from §3.1 and executes queries directly on the com-

pressed representation as described in §3.2. Succinct-

Store’s design had to resolve two additional challenges.

First, Succinct’s memory footprint and query la-

tency depends on multiple tunable parameters (e.g.,

AoS2Input and Input2AoS sampling rate and string

lengths for indexing NextCharIdx rows). While default

parameters in SuccinctStore are chosen to operate on a

sweet spot between memory and latency, Succinct will

lose its advantages if input data is too large to fit in

memory even after compression using default parame-

ters. Second, LogStore being extremely small and Suf-

fixStore being latency-optimized makes SuccinctStore

a latency bottleneck. Hence, Succinct performance may

deteriorate for workloads that are skewed towards par-

ticular SuccinctStore partitions.

Succinct resolves both these challenges by enabling

applications to tradeoff memory for query latency.

Specifically, Succinct enables applications to select

AoS2Input and Input2AoS sampling rate; by storing

fewer sampled values, lower memory footprint can be

achieved at the cost of higher latency (and vice versa).

This resolves the first challenge above by reducing

the memory footprint of Succinct to avoid answering

queries off-disk6. This also helps resolving the second

challenge by increasing the memory footprint of over-

loaded partitions, thus disproportionately speeding up

these partitions for skewed workloads.

We discuss data transformation from LogStore to Suf-

fixStore and from SuffixStore to SuccinctStore in §5.
6Empirically, Succinct can achieve a memory footprint comparable

to GZip. When even the GZip-compressed data does not fit in memory,

the only option for any system is to answer queries off disk.

5 Succinct Implementation

We have implemented three Succinct prototypes along

with extensions for semi-structured data (§2.1) — in

Java running atop Tachyon [37], in Scala running atop

Spark [51], and in C++. We discuss implementation de-

tails of the C++ prototype that uses roughly 5,200 lines

of code. The high-level architecture of our Succinct pro-

totype is shown in Figure 10. The system consists of

a central coordinator and a set of storage servers, one

server each for LogStore and SuffixStore, and the re-

maining servers for SuccinctStore. All servers share a

similar architecture modulo the differences in the stor-

age format and query execution, as described in §3.

The coordinator performs two tasks. The first task is

membership management, which includes maintaining a

list of active servers in the system by having each server

send periodic heartbeats. The second task is data man-

agement, which includes maintaining an up-to-date col-

lection of pointers to quickly locate the desired data dur-

ing query execution. Specifically, the coordinator main-

tains two set of pointers: one that maps file offsets to

partitions that contain the data corresponding to the

offsets, and the other one that maps partitions to ma-

chines that store those partitions. As discussed in §2.1,

an additional set of key→ offset pointers are also main-

tained for supporting queries on semi-structured data.

Clients connect to one of the servers via a light-weight

Query Handler (QH) interface; the same interface is also

used by the server to connect to the coordinator and to

other servers in the system. Upon receiving a query from

a client, the QH parses the query and identifies whether

the query needs to be forwarded to a single server (for

extract and append queries) or to all the other servers

(for count and search queries).

In the case of an extract or append query, QH needs

to identify the server to which the query needs to be for-

warded. One way to do this is to forward the query to

the coordinator, which can then lookup its sets of point-

ers and forward the query to the appropriate server.

However, this leads to the coordinator becoming a bot-

tleneck. To avoid this, the pointers are cached at each

server. Since the number of pointers scales only in the

number of partitions and servers, this has minimal im-

pact on Succinct’s memory footprint. The coordinator

ensures that pointer updates are immediately pushed to

each of the servers. Using these pointers, an extract

query is redirected to the QH of the appropriate ma-

chine, which then locates the appropriate partition and

extracts the desired data.

In the case of a search query, the QH that receives

the query from the client forwards the query to all the

7

344 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Coordinator

Partition→Machine
Offset→Partition

Key→Offset (NoSQL only)

search(string str)

Query

Handler

P→M
O→P
K→O

... . . .

Query

Handler

P→M
O→P
K→O

...

SuccinctStore

Query

Handler

P→M
O→P
K→O

...

SuffixStore

Query

Handler

P→M
O→P
K→O

...

LogStore

Figure 10: Succinct system architecture. Server and coordinator functionalities are described in §5. Each server uses a

light-weight Query Handler interface to (1) interact with coordinator; (2) redirect queries to appropriate partitions and/or

servers; and (3) local and global result aggregation. P→M, O→P and K→O are the same pointers as stored at the coordinator.

other QHs in the system. In turn, each QH runs multi-

ple tasks to search all local partitions in parallel, then

aggregates the results, and sends these results back to

the initiator, that is, to the QH that initiated the query

(see Figure 10). Finally, the initiator returns the aggre-

gated result to the client. While redirecting queries us-

ing QHs reduces the coordinator load, QHs connecting

to all other QHs may raise some scalability concerns.

However, as discussed earlier, due to its efficient use

of memory, Succinct requires many fewer servers than

other in-memory data stores, which helps scalability.

Data transformation between stores. LogStore ag-

gregates data across multiple partitions before trans-

forming it into a single SuffixStore partition. LogStore

is neither memory nor latency constrained; we ex-

pect each LogStore partition to be smaller than 250MB

even for clusters of machines with 128GB RAM. Thus,

AoS2Input for LogStore data can be constructed at Log-

Store server itself, using an efficient linear-time, linear-

memory algorithm [50]. Transforming SuffixStore data

into a SuccinctStore partition requires a merge sort of

AoS2Input for each of the SuffixStore partitions, scan-

ning the merged array once to construct Input2AoS and

NextCharIdx, sampling AoS2Input and Input2AoS, and

finally compressing each row of NextCharIdx. Succinct

could use a single over-provisioned server for SuffixS-

tore to perform this transformation at the SuffixStore

server itself but currently does this in the background.

Failure tolerance and recovery. The current Succinct

prototype requires manually handling: (1) coordinator

failure; (2) data failure and recovery; and (3) adding

new servers to an existing cluster. Succinct could use

traditional solutions for maintaining multiple coordi-

nator replicas with a consistent view. Data failure and

recovery can be achieved using standard replication-

based techniques. Finally, since each SuccinctStore con-

tains multiple partitions, adding a new server simply

requires moving some partitions from existing servers

to the new server and updating pointers at servers. We

leave incorporation of these techniques and evaluation

of associated overheads to future work.

6 Evaluation

We now perform an end-to-end evaluation of Succinct’s

memory footprint (§6.1), throughput (§6.2) and la-

tency (§6.3).

Compared systems. We evaluate Succinct using the

NoSQL interface extension (§2.1), since it requires

strictly more space and operations than the unstruc-

tured file interface. We compare Succinct against sev-

eral open-source and industrial systems that support

search queries: MongoDB [6] and Cassandra [35] using

secondary indexes; HyperDex [25] using hyperspace

hashing; and an industrial columnar-store DB-X, using

in-memory data scans7.

We configured each of the system for no-failure sce-

nario. For HyperDex, we use the dimensionality as

recommended in [25]. For MongoDB and Cassandra,

we used the most memory-efficient indexes. These in-

dexes do not support substring searches and wildcard

7For HyperDex, we encountered a previously known bug [4] that

crashes the system during query execution when inter-machine la-

tencies are highly variable. For DB-X, distributed experiments require

access to the industrial version. To that end, we only perform micro-

benchmarks for HyperDex and DB-X for Workloads A and C.

8

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 345

75

150

225

D
a
ta

S
iz

e
th

a
t

F
it

s
in

M
e
m

o
ry

(G
B

)

smallVal LargeVal

MongoDB

Cassandra

HyperDex

Succinct

Figure 11: Input data size that each system fits in-memory

on a distributed cluster with 150GB main memory (thick hori-

zontal line). Succinct pushes 10-11× larger amount of data in

memory compared to popular open-source data stores, while

providing similar or stronger functionality.

searches. HyperDex and DB-X do not support wildcard

searches. Thus, the evaluated systems provide slightly

weaker functionality than Succinct. Finally, for Suc-

cinct, we disabled dictionary encoding to evaluate the

performance of Succinct techniques in isolation.

Datasets, Workloads and Cluster. We use two multi-

attribute record datasets, one smallVal and one

largeVal from Conviva customers as shown in Table 2.

The workloads used in our evaluation are also summa-

rized in Table 2. Our workloads closely follow YCSB

workloads; in particular, we used YCSB to generate

query keys and corresponding query frequencies, which

were then mapped to the queries in our datasets (for

each of read, write, and search queries). All our exper-

iments were performed on Amazon EC2 m1.xlarge ma-

chines with 15GB RAM and 4 cores, except for DB-X

where we used pre-installed r2.2xlarge instances. Each

of the system was warmed up for 5 minutes to maximize

the amount of data cached in available memory.

6.1 Memory Footprint

Figure 11 shows the amount of input data (without in-

dexes) that each system fits across a distributed clus-

ter with 150GB main memory. Succinct supports in-

memory queries on data sizes larger than the system

RAM; note that Succinct results do not use dictionary

encoding and also include pointers required for NoSQL

interface extensions (§2.1, §5). MongoDB and Cassan-

dra fit roughly 10–11× less data than Succinct due to

storing secondary indexes along with the input data.

HyperDex not only stores large metadata but also avoids

touching multiple machines by storing a copy of the en-

tire record with each subspace, thus fitting up to 126×
less data than Succinct.

6.2 Throughput

We now evaluate system throughput using a dis-

tributed 10 machine Amazon EC2 cluster. Figure 12

shows throughput results for smallVal and LargeVal

datasets across the four workloads from Table 2.

Workload A. When MongoDB and Cassandra can fit

datasets in memory (17GB for smallVal and 23GB for

LargeVal across a 150GB RAM cluster), Succinct’s rel-

ative performance depends on record size. For small

record sizes, Succinct achieves higher throughput than

MongoDB and Cassandra. For MongoDB, the routing

server becomes a throughput bottleneck; for Cassandra,

the throughput is lower because more queries are exe-

cuted off-disk. However, when record sizes are large,

Succinct achieves slightly lower throughput than Mon-

goDB due to increase in Succinct’s extract latency.

When MongoDB and Cassandra data does not fit in

memory, Succinct achieves better throughput since it

performs in-memory operations while MongoDB and

Cassandra have to execute some queries off-disk. More-

over, we observe that Succinct achieves consistent per-

formance across data sizes varying from tens of GB to

hundreds of GB.

Workload B. MongoDB and Succinct observe reduced

throughput when a small fraction of queries are append

queries. MongoDB throughput reduces since indexes

need to be updated upon each write; for Succinct, Log-

Store writes become a throughput bottleneck. Cassan-

dra being write-optimized observes minimal reduction

in throughput. We observe again that, as we increase

the data sizes from 17GB to 192GB (for SmallVal)

and from 23GB to 242GB (for LargeVal), Succinct’s

throughput remains essentially unchanged.

Workload C. For search workloads, we expect Mon-

goDB and Cassandra to achieve high throughput due to

storing indexes. However, Cassandra requires scanning

indexes for search queries leading to low throughput.

The case of MongoDB is more interesting. For datasets

with fewer number of attributes (SmallVal dataset),

MongoDB achieves high throughput due to caching be-

ing more effective; for LargeVal dataset, MongoDB

search throughput reduces significantly even when the

entire index fits in memory. When MongoDB indexes do

not fit in memory, Succinct achieves 13–134× higher

throughput since queries are executed in-memory.

As earlier, even with 10× increase in data size (for

both smallVal and LargeVal), Succinct throughput

reduces minimally. As a result, Succinct’s performance

for large datasets is comparable to the performance of

MongoDB and Cassandra for much smaller datasets.

9

346 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Table 2: (left) Datasets used in our evaluation; (right) Workloads used in our evaluation. All workloads use a query popularity

that follows a Zipf distribution with skewness 0.99, similar to YCSB [20].

Size (Bytes) #Attr- #Records

Key Value ibutes (Millions)

smallVal 8 ≈ 140 15 123–1393

LargeVal 8 ≈ 1300 98 19–200

Workload Remarks

A 100% Reads YCSB workload C

B 95% Reads, 5% appends YCSB workload D

C 100% Search -

D 95% Search, 5% appends YCSB workload E

MongoDB Cassandra Succinct

25

50

75

90
×103

T
h

ro
u

g
h

p
u

t

(O
p

s/
se

co
n

d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N

F

D
N

F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

5

10

15

18
×103

23 GB
RAM

62.5 GB
RAM+SSD

D
N

F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

10

20

30

×103

(a) Workload A, SmallVal

T
h

ro
u

g
h

p
u

t

(O
p

s/
se

co
n

d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N

F

D
N

F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

5

10

15

×103

(a) Workload A, LargeVal

23 GB
RAM

62.5 GB
RAM+SSD

D
N

F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

200

400

600

(a) Workload B, SmallVal

T
h

ro
u

g
h

p
u

t

(O
p

s/
se

co
n

d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N

F

D
N

F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

200

400

600

(a) Workload B, LargeVal

23 GB
RAM

62.5 GB
RAM+SSD

D
N

F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

200

400

600

(a) Workload C, SmallVal

T
h

ro
u

g
h

p
u

t

(O
p

s/
se

co
n

d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N

F

D
N

F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

200

400

600

(a) Workload C, LargeVal

23 GB
RAM

62.5 GB
RAM+SSD

D
N

F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

(a) Workload D, SmallVal (a) Workload D, LargeVal

Figure 12: Succinct throughput against MongoDB and Cassandra for varying datasets, data sizes and workloads. MongoDB

and Cassandra fit 17GB of SmallVal dataset and 23GB of LargeVal dataset in memory; Succinct fits 192GB and 242GB,

respectively. DNF denote the experiment did not finish after 100 hours of data loading, mostly due to index construction time.

Note that top four figures have different y-scales.

10

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 347

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

C
D

F

Latency in Microseconds

Succinct
MongoDB

Cassandra
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

C
D

F

Latency in Microseconds

Succinct
MongoDB

Cassandra
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1000 10000 100000 1e+06 1e+07

C
D

F

Latency in Microseconds

Succinct
MongoDB

Cassandra

Figure 13: Succinct’s latency for get (left), put (center) and search (right) against MongoDB and Cassandra for smallVal

dataset when data and index fits in memory (best case for MongoDB and Cassandra). Discussion in §6.3.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000 10000 100000 1e+06

C
D

F

Latency in Microseconds

Succinct
DB-X

HyperDex
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1000 10000 100000 1e+06 1e+07

C
D

F

Latency in Microseconds

Succinct
DB-X

HyperDex

Figure 14: Succinct’s latency for get (left) and search (right) against HyperDex and DB-X for smallVal 10GB dataset on

a single machine. HyperDex uses subspace hashing and DB-X uses in-memory data scans for search. Discussion in §6.3.

Workload D. The search throughput for MongoDB and

Cassandra becomes even worse as we introduce 5% ap-

pends, precisely due to the fact that indexes need to be

updated upon each append. Unlike Workload B, Suc-

cinct search throughput does not reduce with appends,

since writes are no more a bottleneck. As earlier, Suc-

cinct’s throughput scales well with data size.

Note that the above discussion holds even when Mon-

goDB and Cassandra use SSDs to store the data that

does not fit in memory. When such is the case, through-

put reduction is lower compared to the case when data

is stored on disk; nevertheless, the trends remain un-

changed. Specifically, Succinct is able to achieve better

or comparable performance than SSD based systems for

a much larger range of input values.

6.3 Latency

We now compare Succinct’s latency against two sets of

systems: (1) systems that use indexes to support queries

(MongoDB and Cassandra) on a distributed 10 node

Amazon EC2 cluster; and (2) systems that perform data

scans along with metadata to support queries (Hyper-

Dex and DB-X) using a single-machine system. To main-

tain consistency across all latency experiments, we only

evaluate cases where all systems (except for HyperDex)

fit the entire data in memory.

Succinct against Indexes. Figure 13 shows that Suc-

cinct achieves comparable or better latency than Mon-

goDB and Cassandra even when all data fits in mem-

ory. Indeed, Succinct’s latency will get worse if record

sizes are larger. For writes, we note that both MongoDB

and Cassandra need to update indexes upon each write,

leading to higher latency. For search, MongoDB achieves

good latency since MongoDB performs a binary search

over an in-memory index, which is similar in complexity

to Succinct’s search algorithm. Cassandra requires high

latencies for search queries due to much less efficient

utilization of available memory.

Succinct against data scans. Succinct’s latency against

systems that do not store indexes is compared in Fig-

ure 14. HyperDex achieves comparable latency for get

queries; search latencies are higher since due to its

high memory footprint, HyperDex is forced to answer

most queries off-disk. DB-X being a columnar store is

not optimized for get queries, thus leading to high la-

tencies. For search queries, DB-X despite optimized in-

memory data scans is around 10× slower at high per-

centiles because data scans are inherently slow.

6.4 Throughput versus Latency

Figure 15 shows the throughput versus latency re-

sults for Succinct, for both get and search queries

11

348 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10000 20000 30000 40000 50000

L
a

te
n

c
y
 (

m
s
)

Throughput (Ops/second)

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

 50 60 70 80 90 100 110 120 130 140 150
L

a
te

n
c
y
 (

m
s
)

Throughput (Ops/second)

Figure 15: Throughput versus latency for Succinct, for get

(left) and for search (right).

for a fully loaded 10 machine cluster with smallVal

192GB dataset. The plot shows that Succinct latency

and throughput results above are for the case of a fully

loaded system.

6.5 Sequential Throughput

Our evaluation results for workload A and B used

records of sizes at most 1300bytes per query. We now

discuss Succinct’s performance in terms of through-

put for long sequential reads. We ran a simple micro-

benchmark to evaluate the performance of Succinct

over a single extract request for varying sizes of reads.

Succinct achieves a constant throughput of 13Mbps us-

ing a single core single thread implementation, irre-

spective of the read size; the throughput increases lin-

early with number of threads and/or cores. This is es-

sentially a tradeoff that Succinct makes for achieving

high throughput for short reads and for search queries

using a small memory footprint. For applications that

require large number of sequential reads, Succinct can

overcome this limitation by keeping the original uncom-

pressed data to support sequential reads, of course at

the cost of halving the amount of data that Succinct

pushes into main memory. The results from Figure 11

show that Succinct will still push 5-5.5×more data than

popular open-source systems with similar functionality.

7 Related Work

Succinct’s goals are related to three key research areas:

Queries using secondary indexes. To support

point queries, many existing data stores store in-

dexes/metadata [3,6,25,35] in addition to the original

data. While indexes achieve low latency and high

throughput when they fit in memory, their performance

deteriorates significantly when queries are executed

off-disk. Succinct requires more than 10× lower mem-

ory than systems that store indexes, thus achieving

higher throughput and lower latency for a much larger

range of input sizes than systems that store indexes.

Queries using data scans. Point queries can also be

supported using data scans. These are memory efficient

but suffer from low latency and throughput for large

data sizes. Most related to Succinct is this space are

columnar stores [10,15,22,36,49]. The most advanced

of these [10] execute queries either by scanning data

or by decompressing the data on the fly (if data com-

pressed [14]). As shown in §6, Succinct achieves bet-

ter latency and throughput by avoiding expensive data

scans and decompression.

Theory techniques. Compressed indexes has been an

active area of research in theoretical computer science

since late 90s [27–30,32,44–46]. Succinct adapts data

structures from above works, but improves both the

memory and the latency by using new techniques (§3).

Succinct further resolves several challenges to realize

these techniques into a practical data store: (1) effi-

ciently handling updates using a multi-store design; (2)

achieving better scalability by carefully exploiting par-

allelism within and across machines; and (3) enabling

queries on semi-structured data by encoding the struc-

ture within a flat file.

8 Conclusion

In this paper, we have presented Succinct, a distributed

data store that supports a wide range of queries while

operating at a new point in the design space between

data scans (memory-efficient, but high latency and

low throughput) and indexes (memory-inefficient, low

latency, high throughput). Succinct achieves memory

footprint close to that of data scans by storing the in-

put data in an entropy-compressed representation that

supports random access, as well as a wide range of

analytical queries. When indexes fit in memory, Suc-

cinct achieves comparable latency, but lower through-

put. However, due to its low memory footprint, Suc-

cinct is able to store more data in memory, avoiding

latency and throughput reduction due to off-disk or off-

SSD query execution for a much larger range of input

sizes than systems that use indexes.

Acknowledgments

This research is supported in part by NSF CISE Expedi-

tions Award CCF-1139158, LBNL Award 7076018, and DARPA

XData Award FA8750-12-2-0331, and gifts from Amazon Web

Services, Google, SAP, The Thomas and Stacey Siebel Founda-

tion, Adatao, Adobe, Apple, Inc., Blue Goji, Bosch, C3Energy,

Cisco, Cray, Cloudera, EMC, Ericsson, Facebook, Guavus,

Huawei, Informatica, Intel, Microsoft, NetApp, Pivotal, Sam-

sung, Splunk, Virdata and VMware.

12

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 349

References

[1] CouchDB. http://couchdb.apache.org.

[2] Delta Encoding. http://en.wikipedia.org/

wiki/Delta_encoding.

[3] Elasticsearch. http://www.elasticsearch.

org.

[4] Hyperdex Bug. https : //groups.google.

com/forum / #!msg/hyperdex-discuss/

PUIpjMPEiAI/I3ZImpU7OtkJ.

[5] MemCached. http://www.memcached.org.

[6] MongoDB. http://www.mongodb.org.

[7] Pizza&Chili Corpus: Compressed Indexes and

their Testbeds. http: //pizzachili.dcc.

uchile.cl/indexes/Compressed_Suffix_

Array/.

[8] Presto. http://prestodb.io.

[9] Redis. http://www.redis.io.

[10] SAP HANA. http://www.saphana.com/.

[11] SDSL. https : //github.com/simongog/

sdsl-lite.

[12] Suffix Array. http://en.wikipedia.org/wiki/

Suffix_array.

[13] Suffix Tree. http://en.wikipedia.org/wiki/

Suffix_tree.

[14] Vertica Does Not Compute on Compressed Data.

http://tinyurl.com/l36w8xs.

[15] D. J. Abadi, S. R. Madden, and M. Ferreira. In-

tegrating Compression and Execution in Column-

Oriented Database Systems. In ACM International

Conference on Management of Data (SIGMOD),

2006.

[16] R. Agarwal, A. Khandelwal, and I. Stoica. Suc-

cinct: Enabling Queries on Compressed Data. In

Technical Report, UC Berkeley, 2014.

[17] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload Analysis of a Large-scale

Key-value Store. In ACM SIGMETRICS Performance

Evaluation Review, volume 40, pages 53–64, 2012.

[18] M. Burrows and D. J. Wheeler. A block-sorting

lossless data compression algorithm. 1994.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and

R. E. Gruber. Bigtable: A Distributed Storage Sys-

tem for Structured Data. In USENIX Symposium

on Operating Systems Design and Implementation

(OSDI), 2006.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-

nan, and R. Sears. Benchmarking Cloud Serving

Systems with YCSB. In ACM Symposium on Cloud

Computing (SoCC), 2010.

[21] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,

C. Frost, J. Furman, S. Ghemawat, A. Gubarev,

C. Heiser, P. Hochschild, et al. Spanner: Google’s

Globally-distributed Database. In USENIX Sympo-

sium on Operating Systems Design and Implemen-

tation (OSDI), 2012.

[22] Daniel J. Abadi and Samuel R. Madden and Nabil

Hachem. Column-Stores vs. Row-Stores: How Dif-

ferent Are They Really? In ACM International Con-

ference on Management of Data (SIGMOD), 2008.

[23] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-

pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, and W. Vogels. Dynamo: Amazon’s

Highly Available Key-value Store. In ACM Sym-

posium on Operating Systems Principles (SOSP),

2007.

[24] A. Dragojević, D. Narayanan, O. Hodson, and

M. Castro. FaRM: Fast Remote Memory. In USENIX

Symposium on Networked Systems Design and Im-

plementation (NSDI), 2014.

[25] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A

Distributed, Searchable Key-value Store. In ACM

Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communication

(SIGCOMM), 2012.

[26] B. Fan, D. G. Andersen, and M. Kaminsky.

MemC3: Compact and Concurrent MemCache

with Dumber Caching and Smarter Hashing. In

USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2013.

[27] P. Ferragina and G. Manzini. Opportunistic Data

Structures with Applications. In IEEE Symposium

on Foundations of Computer Science (FOCS), 2000.

[28] P. Ferragina and G. Manzini. An Experimental

Study of a Compressed Index. Information Sci-

ences, 135(1):13–28, 2001.

13

350 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

[29] P. Ferragina and G. Manzini. An Experimental

Study of an Opportunistic Index. In ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2001.

[30] P. Ferragina and G. Manzini. Indexing Compressed

Text. Journal of the ACM (JACM), 52(4):552–581,

2005.

[31] R. Grossi, A. Gupta, and J. S. Vitter. High-order

Entropy-compressed Text Indexes. In ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2003.

[32] R. Grossi and J. S. Vitter. Compressed Suffix Ar-

rays and Suffix Trees with Applications to Text

Indexing and String Matching. SIAM Journal on

Computing, 35(2):378–407, 2005.

[33] W.-K. Hon, T. W. Lam, W.-K. Sung, W.-L. Tse, C.-K.

Wong, and S.-M. Yiu. Practical aspects of Com-

pressed Suffix Arrays and FM-Index in Search-

ing DNA Sequences. In Workshop on Algorithm

Engineering and Experiments and the First Work-

shop on Analytic Algorithmics and Combinatorics

(ALENEX/ANALC), 2004.

[34] S. Kurtz. Reducing the Space Requirement of

Suffix Trees. Software: Practice and Experience,

29(13):1149–1171, 1999.

[35] A. Lakshman and P. Malik. Cassandra: A Decen-

tralized Structured Storage System. ACM SIGOPS

Operating Systems Review, 44(2):35–40, 2010.

[36] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,

B. Vandiver, L. Doshi, and C. Bear. The Vertica An-

alytic Database: C-store 7 Years Later. Proceedings

of the VLDB Endowment, 5(12):1790–1801, 2012.

[37] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and

I. Stoica. Tachyon: Reliable, Memory Speed Stor-

age for Cluster Computing Frameworks. In ACM

Symposium on Cloud Computing (SoCC), 2014.

[38] H. Lim, B. Fan, D. G. Andersen, and M. Kamin-

sky. SILT: A Memory-Efficient, High-Performance

Key-Value Store. In ACM Symposium on Operating

Systems Principles (SOSP), 2011.

[39] H. Lim, D. Han, D. G. Andersen, and M. Kamin-

sky. MICA: A Holistic Approach to Fast In-

memory Key-value Storage. In USENIX Symposium

on Networked Systems Design and Implementation

(NSDI), 2014.

[40] U. Manber and G. Myers. Suffix Arrays: A New

Method for On-line String Searches. In ACM-SIAM

Symposium on Discrete Algorithms (SODA), 1993.

[41] Y. Mao, E. Kohler, and R. T. Morris. Cache Crafti-

ness for Fast Multicore Key-value Storage. In ACM

European Conference on Computer Systems (Eu-

roSys), 2012.

[42] M. M. Michael. High Performance Dynamic Lock-

free Hash Tables and List-based Sets. In ACM Sym-

posium on Parallel Algorithms and Architectures

(SPAA), 2002.

[43] J. Ousterhout, P. Agrawal, D. Erickson,

C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-

tra, A. Narayanan, G. Parulkar, M. Rosenblum,

et al. The Case for RAMClouds: Scalable High-

performance Storage Entirely in DRAM. ACM

SIGOPS Operating Systems Review, 43(4):92–105,

2010.

[44] K. Sadakane. Compressed Text Databases with

Efficient Query Algorithms Based on the Com-

pressed Suffix Array. In International Conference

on Algorithms and Computation (ISAAC). 2000.

[45] K. Sadakane. Succinct Representations of Lcp In-

formation and Improvements in the Compressed

Suffix Arrays. In ACM-SIAM Symposium on Dis-

crete Algorithms (SODA), 2002.

[46] K. Sadakane. New Text Indexing Functionalities

of the Compressed Suffix Arrays. Journal of Algo-

rithms, 48(2):294–313, 2003.

[47] K. Sadakane. Compressed Suffix Trees with

Full Functionality. Theory of Computing Systems,

41(4):589–607, 2007.

[48] S. Sivasubramanian. Amazon dynamoDB: A

Seamlessly Scalable Non-relational Database Ser-

vice. In ACM International Conference on Manage-

ment of Data (SIGMOD), 2012.

[49] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,

M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. R.

Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin,

N. Tran, and S. B. Zdonik. C-Store: A Column-

Oriented DBMS. In International Conference on

Very Large Data Bases (VLDB), 2005.

[50] E. Ukkonen. On-Line Construction of Suffix Trees.

Algorithmica, 14:249–260, 1995.

[51] M. Zaharia, M. Chowdhury, M. J. Franklin,

S. Shenker, and I. Stoica. Spark: Cluster Comput-

ing with Working Sets. In USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud), 2010.

14

