
This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).
April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

Operational Experiences with Disk Imaging
in a Multi-Tenant Datacenter

Kevin Atkinson, Gary Wong, and Robert Ricci, University of Utah

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/atkinson

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 217

Operational Experiences with Disk Imaging in a Multi-Tenant Datacenter
USENIX Symposium on Networked Systems Design and Implementation—Operational Systems Track

Kevin Atkinson ∗ Gary Wong Robert Ricci

University of Utah School of Computing
{kevina, gtw, ricci}@cs.utah.edu www.emulab.net

Abstract
Disk images play a critical role in multi-tenant datacen-
ters. In this paper, the first study of its kind, we analyze
operational data from the disk imaging system that forms
part of the infrastructure of the Emulab facility. This
dataset spans four years and more than a quarter-million
disk image loads requested by Emulab’s users. From our
analysis, we draw observations about the nature of the
images themselves (for example: how similar are they to
each other?) and about usage patterns (what is the statis-
tical distribution of image popularity?). Many of these
observations have implications for the design and opera-
tion of disk imaging systems, including how images are
stored, how caching is employed, the effectiveness of
pre-loading, and strategies for network distribution.

1 Introduction

Computers in datacenters are frequently re-allocated from
one purpose to another, need to have their software up-
graded, or need to be returned to a known “clean” state.
This type of re-provisioning is particularly important in
multi-tenant datacenters [4], which are shared by a large
number of applications running on behalf of different
clients. Notably, this is the model adopted by “Infrastruc-
ture as a Service” (IaaS) clouds such as Amazon EC2 [2],
Rackspace [11], and datacenters managed with software
such as OpenStack [15]. These facilities provide physical
or virtual servers (infrastructure) on which users run their
own operating systems and applications [9, 15].

The primary means for initializing user resources is to
load them with an initial disk image, which is a block-level
snapshot of a filesystem containing an installed operating
system and set of applications. Typically, a cloud will
provide a set of images that any user may install on servers
that they provision (facility images). Users may also
create their own images (user images): this is commonly
accomplished by loading a facility image, customizing it,
and taking a snapshot of the resulting disk.

∗Work done at the University of Utah; now at Rice University

Large multi-tenant facilities have hundreds to hundreds
of thousands of servers and thousands to millions of
users [5]. A busy facility may have many thousands of
user images and provision tens of thousands of servers per
day. Disk images are commonly written to drives attached
to the host; EC2, for example, calls this “instance stor-
age” [1], and it is available on nearly all VM types. Disk
imaging is on the critical path for provisioning servers,
which cannot be booted until the requested image has
been loaded. Images can consume significant resources
on the facility, including the space used to store them and
the network bandwidth required to distribute them to the
hosts on which they are to be used. Thus, understanding
disk images and their use is important to the design and
operation of multi-tenant datacenters.

In this paper, we study four years’ worth of data from
the operation of the Emulab testbed [16], a multi-tenant
facility with approximately six hundred hosts and over
five thousand user accounts. The data we examine covers
279,972 requests for disk images (Section 2) and is, to
our knowledge, the only dataset currently available to the
public that contains detailed traces of disk imaging in a
multi-tenant datacenter. It allows us to study properties
of the disk images themselves as well as how they are
used by the facility’s users, and we draw a number of
conclusions that are applicable to the design and operation
of imaging systems. Our key findings include:

• Section 3: There is substantial block-level similarity
between many images, suggesting that deduplicating
storage is appropriate. The lifespan of images varies
greatly, from days to years, and many images go
unused for months at a time, making multi-tier data
storage attractive.

• Section 4: The working set of images is quite small
(mean: 12 per day, 30 per week), making caching of
frequently used images potentially effective. How-
ever, the makeup of this working set changes fre-
quently, and there are no dominant images. The
daily working set size grows linearly with the num-
ber of users, but the total number of facility and user

218 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

images follow different curves.

• Section 5: The popularity of user images follows
a heavy-tailed distribution, while the popularity of
facility images does not. Most users skew heavily
towards using either facility provided images or cus-
tom images, not both. While most users do not create
their own images, those who do number among the
facility’s heaviest users.

• Section 6: We consider the technique of pre-loading
popular facility images, allowing some requests to
be satisfied without waiting for the image to load.
We find that two factors control the potential benefit
from this strategy: (a) the ratio of the working set
size to the number of idle disks available for pre-
loading, and (b) the ratio of the rate at which the
facility can load disks to the arrival rate of requests.

• Section 7: Differential loading (pre-loading a base
image, then transferring only differing blocks as re-
quired) shows potential. In order to be effective, it
will require development of sophisticated prediction
techniques that take into account both the popularity
of images themselves and their block-level similarity
to each other.

We conclude in Section 8 with several concrete sugges-
tions regarding the design and operation of disk imaging
systems, and point to fertile areas for future work.

2 Dataset
Emulab is a network testbed widely used by the dis-
tributed systems and networking communities. An ex-
perimenter describes a network in terms of links and
hosts. Included in this specification is the disk image to
be loaded on each host. Emulab then provisions servers,
physical or virtual, loading the requested disk image. This
provisioning is done on demand as requests come in, and
there is only limited support for ahead-of-time scheduling
or batch jobs. The facility provides a number of standard
images, including “default” images that are used if the
user does not explicitly request an image. Many users
create their own images by booting from a facility im-
age, customizing it (for example, by installing software
packages or modifying the operating system), and taking
a snapshot. This user image can be referenced in future
requests, saving the user the effort of re-installing the
packages they use, or to scale out to much larger experi-
ments. This basic model of image usage and creation is
similar to that used in most IaaS clouds [14].

Emulab is capable of provisioning both physical and
virtual machines; physical machines are the most com-
monly allocated resource. While many IaaS clouds provi-

sion solely virtual machines, we believe that this differ-
ence does not have a significant impact on conclusions
drawn from the dataset: in either case, the user is pre-
sented with the abstraction of an PC on which they may
load and boot an operating system. While the details of
operating systems that run within physical and virtual
machines may vary, the quantity and diversity of users’
desired images is unlikely to be affected.

Emulab uses block-level disk images and distributes
them using the Frisbee [6] disk imaging system. The
format uses filesystem-aware compression, meaning that
it does not store disk blocks that are not used by the
filesytem, and compresses the allocated blocks with
zlib [7] for efficient storage. Frisbee uses IP multicast to
distribute images, and is highly optimized so that the bot-
tleneck in image distribution and installation is the write
speed of the target disk. The amount of time required to
load a disk image depends on the number of used blocks
in the filesystem that it contains, but is typically on the
order of a few minutes. Facility images are visible to and
may be requested by all users. User images are visible
only to their creators unless the creator decides to make
the image public, which few do.

2.1 Dataset Details

The dataset that we study covers four years of disk image
requests on Emulab, from March 2009 to March 2013.
The dataset covers a total of 279,972 requests for 714
unique images. The requests were made by 368 users, at
an average rate of 192 disk images loaded per day. The
records cover the identity of the image, the user making
the request, and the timestamp at which the request was
made. Furthermore, the data indicates whether each im-
age was a facility image or a user image, and whether it
was requested explicitly by the user or was chosen as a
default because the user did not specify an image. To pre-
serve user anonymity, users and user images are assigned
random integers as identifiers in this paper. We present
the names of facility images using their Emulab-assigned
names; user images are presented as user/image pairs.

One of the things we studied was the block-level dif-
ferences between images. Our primary interest in exam-
ining the contents of images is to determine the potential
savings from loading a “base” image (usually a facility
image), then transferring and writing only the disk blocks
required to transform it into a particular “derived” image
(usually a user image). We define the difference of two
images A and B as:

∆(A,B) = |∀i ∈ b : B[i] �= A[i]| (1)

where b is the set the indices of allocated storage blocks
in image B, and A[i] and B[i] are the contents of images
A and B, respectively, at index i. This measure directly

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 219

captures the numbers of blocks in image B that would
need to be written to a disk that already contains image A.
We define δ(A,B) as the fraction of blocks that would
need to be written: that is,

δ(A,B) =
∆(A,B)

|b| (2)

The Emulab dataset does not record the provenance
of images (that is, which user images where based on
which facility images). We assume that each user image
U was based on the facility image F for which ∆(F,U)
is minimized. For a particular image U , we refer to this
base image as UB . Emulab allow users to delete their
image files: only 37.4% (267) of the images found in the
request traces were available for analysis of block-level
similarities. Though large in number, the missing images
were relatively unpopular, accounting for only 15.8% of
all requests. Emulab also allows its users to modify im-
ages, so the image files that we analyzed represented a
snapshot of image contents at a particular point in time.

2.2 Removing Sources of Bias in the Dataset

We filtered the dataset to remove certain biases. First, we
omit all uses of the facility by its operational staff: the
maintenance, testing, etc. that they perform is likely to
follow different patterns than users of the facility. Sec-
ond, as a network testbed, Emulab supports a feature
known as “delay nodes,” [13, 12] which perform a traffic-
shaping role that does not represent a function present in
most multi-tenant datacenters. Third, Emulab includes
some resources that are not the standard PC servers used
in clouds and datacenters: these include wireless nodes,
programmable network hardware, and sensors. This fil-
tering removed 183,824 of the original 463,796 requests
(39.6%), 215 images (23.1%), and 30 users (7.5%), leav-
ing us with the 279,972 requests, 714 images, and 368
users that we studied.

It is worth making special note of Emulab’s “default”
images. If an Emulab experimenter does not specify a
particular disk image in their experiment description, they
get a default that is, for historical reasons, quite old. Due
to their ages, the default images are not very popular.
Most users select the facility image that best meets their
needs; as a result, the presence of a default does not have
a dominating effect on the way that users select images.

2.3 Users and Projects

For the purposes of this study, we consider users at the
level of organizations. Emulab groups individual users
into “projects.” These loosely-defined groups represent
research groups, classes, or cross-institution collabora-
tions. Because of this, they are analogous to businesses

that purchase time on a cloud such as EC2, or individual
business units that share a company-wide datacenter. In
the remainder of this paper, we consider all individuals
who are part of the same project to be a singe “user” of the
facility—when we refer to “users,” we are referring to Em-
ulab projects. The number of individuals who requested
disk image loads over this time period was 1,301.

2.4 Limitations of This Study

The Emulab dataset is, to our knowledge, the only one of
its type currently publicly available. Therefore, we can-
not quantitatively assess the degree to which it matches
other multi-tenant facilities. We believe our analysis re-
mains valuable nonetheless, for two reasons. First, it is
the only analysis to date to apply such a large quantity of
real-world data to the problem of improving disk imaging
systems. Second, we conjecture that the most funda-
mental findings in our work remain applicable in other
environments, even if specifics (such as the λ parameter
to the facility image popularity distribution) differ.

Our dataset covers a large number of disk image loads,
but comes from a mid-sized facility. We attempt to ana-
lyze the effects of facility size in Section 4.3, but appli-
cation of our conclusions to larger facilities necessarily
involves extrapolation. In addition, two features unique
to Emulab affected our ability to run certain analyses.

First, the nature of resource allocation in Emulab makes
it difficult to study the inter-arrival times of image re-
quests. Emulab’s primary unit of resource allocation is
the experiment: a collections of hosts that together make
up a network experiment. In contrast, most IaaS clouds
consider only individual servers or “instances,” and the
cloud has no semantic information about which instances
are contributing to the same application. Thus, image
requests in Emulab arrive in well-defined bursts that do
not have a direct analog in many other datacenters. De-
ploying an application in a datacenter or cloud does often
involve provisioning of multiple machines in a short time-
frame; however, we have no data that would allow us to
analyze whether experiment sizes in Emulab are repre-
sentative of burst sizes in other environments. For this
reason, we avoid analyzing this aspect of the dataset, and
all of our analyses are with respect to individual loads of
disk images rather than Emulab experiments.

Second, we chose not to analyze the relative popular-
ity of the operating systems contained in the images (eg.
Linux vs. BSD, or the relative popularities of Linux dis-
tributions). Emulab’s user base is overwhelmingly com-
prised of academic researchers and students, and their OS
preferences may not be representative of a broader pop-
ulation. In particular, while Emulab supports Windows,
it constitutes a small fraction of all Emulab use—almost
certainly a smaller fraction than would be seen in other

220 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 100 200 300 400 500 600

1
10

10
0

10
00

10
00
0

Rank

R
eq
ue
st
s

Facility
User

Figure 1: Requests for facility and user images, sorted on the x
axis by popularity. Note the log-scale y axis.

settings. We restrict our analysis to the popularity of disk
images rather than the operating systems they contain,
and it is possible that this distribution is affected by the
operating system preferences of Emulab’s user base.

3 Storage of Disk Images
We begin our study by examining the basic properties of
the images in our dataset, with an eye towards understand-
ing how they should be stored. We pay special attention to
the relationship between images that are provided by the
facility and images that are created by users; as we will
see through further analysis, these images have different
characteristics that warrant different treatment.

3.1 Prevalence of User Images

During the 48 months covered by our dataset, there were
a total of 368 users. Of these, nearly two thirds (231) used
only facility images, and slightly over one third (137, or
37.2%) used at least one user image. This implies that op-
timizing the provisioning of facility images can improve
the experience of a majority of users. For example, if a
suitable set of facility images can be identified for pre-
loading on to servers, this could take image loading out
of the critical path for creation of those users’ instances.
We explore this issue further in Section 6.

The number of users who request user images, how-
ever, is non-negligible, suggesting that an imaging system
should also take their needs into account. In fact, we find
that there are more user images in our dataset (619) than
facility images (94), meaning that, on average, each user
who creates at least one disk image creates 4.5 of them.

3.2 Popularity of User Imags

The top of Table 1 shows the relative popularity of facility
and user images. We see that the percentage of requests
for user images is over 44%; since only 37.2% of users

Image name Requests %
All facility images 155,617 55.6%

u All user images 124,355 44.4%
RHL90-STD [D] 21,993 7.9%
FEDORA10-STD 18,042 6.4%
UBUNTU10-STD 14,402 5.1%
RHL90-STD 13,182 4.7%
FC4-UPDATE 12,097 4.3%

u 715/10 11,156 4.0%
FBSD410-STD 8,916 3.2%
FEDORA8-STD 8,153 2.9%

u 237/69 7,512 2.7%
u 296/35 7,179 2.6%
u 787/24 6,243 2.2%

UBUNTU70-STD 6,021 2.2%
UBUNTU12-64-STD 5,834 2.1%

u 787/14 5,231 1.9%
u 226/44 5,198 1.9%

FEDORA10-UPDATE 4,861 1.7%
CENTOS55-64-STD 4,710 1.7%
FC6-STD 4,455 1.6%

u 762/69 4,213 1.5%
FC4-WIRELESS 3,700 1.3%
FC4-STD 3,615 1.3%
FEDORA10-STD [D] 3,604 1.3%
UBUNTU11-64-STD 3,383 1.2%

u 624/89 3,277 1.2%
u 238/50 3,113 1.1%
u 226/51 2,899 1.0%

Table 1: Total requests for all user and facility images. Also
shown are the number of requests for all images that account for
more than 1% of all requests. User images are marked with a ‘u’
in the left column, and images requested implicitly as defaults
are marked with a ‘[D]’; explicit requests for default images are
counted separately.

create their own images, this imples that this set of users
are heavier users of the testbed by at least 18%. Table 1
also shows all images that made up at least 1% of the
requests. Of these twenty four images, ten are user images.
Note that RHL90-STD and FEDORA10-STD each appear
twice, because they are both common explicitly requested
images and also images loaded by default. The complete
image popularity data is plotted in Figure 1. We can see
that the number of user images is much larger than the
number of facility images, but that the population of user
images contains many images that are used few times.
Together, the top 17 facility images are more popular than
the top 17 user images (the 17th facility image had 1,772
requests, and the 17th user 1,330). From the 18th image
onwards, the user images are more popular—the 18th user
image had 1,260 requests and the 18th facility image had

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 221

1,233. Both facility and user images have tails consisting
of images that were requested fewer than ten times, but
this tail is much more prevalent in the case of user images,
where the tail represents nearly half of all user images.

From this data, we can conclude that facility images
dominate, but that there are a small number of user images
that are as popular as some facility images.

3.3 Image Lifespan

The Emulab dataset does not include explicit creation and
deletion dates for images. Thus, we define the lifespan
of an image to be the number of days between when the
image was first seen in the request stream and when it
was last seen. Note that this will tend to underestimate
lifespan: some images were likely first used before our
dataset begins, and some will continue to be used after
the end of the dataset.

A histogram of user image lifespans can be seen in
Figure 2. While the majority of images have very short
lifespans, there is a long tail: several were used through-
out the entire four years covered by the dataset. The
observed mean lifespan is 100.4 days.

We found the number of images with short lifespans to
be quite surprising, so we examined them in greater detail,
and it became clear that a large majority of these short-
lifespan images were requested only on a single day: 196
of the 619 user images (31%) fall into this usage pattern.
This suggests that a number of users create images for
the purposes of running a single experiment, a conclusion
borne out by looking at the experiment metadata.

Finally, we looked at how long user images “go idle”.
We found that it is common for user images to have gaps
of months in between requests for them. During this time,
there is no need to have the images constantly available;
they could be moved to cheaper, but slower, storage. The
distribution of the maximum idle periods for the 214 user
images with a lifespan of at least 30 days is shown in
Figure 3. In total, 162 of the images (76% of long-lived
images, and 26% of images overall) had gaps in usage of
one month or more. Two images even had gaps of over
two years between successive uses.

3.4 Block-Level Differences Between Images

We next examined how much user images differ from
the facility images they are based on. We use the defini-
tions of ∆(A,B), δ(A,B), and “base” images given in
Section 2.1. Figure 4 shows a histogram of similarities
between user images and their associated base facility
images. From this figure, it is clear that many user im-
ages do show significant similarities to their bases—most
are more than 50% similar, with a significant peak in
the 60%–80% range. This is in line with findings from

Image lifetime (days)

Fr
eq

ue
nc

y

0 100 300 500 700 900 1100 1300 1500

0
1

5
10

50
20

0
50

0

Figure 2: Histogram of the lifespans of user images. Note that
the y axis is log-scale.

Maximum interval between requests (days)

Fr
eq

ue
nc

y

0 90 180 270 360 450 540 630 720 810

0
10

20
30

40
50

Figure 3: Histogram of usage gaps for user images.

% similarity

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
10

20
30

40

Figure 4: Histogram of similarity (1− δ(UB , U)) between user
images and their associated base images. Higher percentages
indicate more similarity.

smaller studies in the past [8]. There is also a significant
tail of more than twenty images images with very low
similarity (below 10%) to their base images.

Overall, these numbers point to two potential strategies
for improving disk imaging systems. First, they suggest
that significant storage savings can be had by storing im-
ages in a deduplicating storage system [10], which would

222 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Variation of facility image popularity over time. The
fifteen most popular facility images are shown.

store only one copy of the blocks that the base and derived
images have in common. Second, they suggest that the
technique of differential disk loading, which transforms
a base image into a derived image by writing only the
blocks that differ, has a potential for reducing the time
and bandwith for distributing the user images. We explore
the latter in detail in Section 7.

4 Working Set Size and Caching Potential
Having looked at the images themselves, we turn our
attention to trends of usage over time, paying particular
attention to the working set; understanding the size and
composition of the working set is critical to designing
strategies for caching and pre-loading.

4.1 No Dominant Images

If a small set of facility images dominates the request
stream, it would be possible to design the disk imaging
system around that fact. In particular, it would make sense
to pre-load most or all idle disks with popular images,
allowing user requests to be satisfied without waiting for
a disk to load. This is the policy adopted by Emulab: the
images labeled ‘[D]’ in Table 1 are loaded as part of the
process of freeing machines for the next user.

As we can see in Figure 5, there is no such dominant
image. The popularity of all facility images fluctuates
wildly from month to month, with new images becoming
popular quickly, old images falling out of favor, and some
images swinging between popular and unpopular. Even
the default images, which remain active throughout the
entire time period, sees large changes in popularity. Note
that we do not distinguish between explicit and implicit
requests for default images as we did in Table 1; for the
purposes of disk loading, these two cases are equivalent.

As a result, we conclude that the strategy of pre-loading
a single default image is unhelpful. It is, in fact, coun-
terproductive: servers must be taken out of circulation

Images used during day

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
50

10
0

15
0 Median = 12.00

Mean = 11.98
Std. dev. = 4.33

Figure 6: Histogram showing the distribution of the working set
size over one-day periods (midnight to midnight).

Images used during week

Fr
eq

ue
nc

y

15 20 25 30 35 40 45

0
5

10
15

Median = 30.00
Mean = 30.17

Std. dev. = 6.43

Figure 7: Histogram showing the distribution of the working set
size over one week periods (Sunday to Saturday).

while they are loaded with the default image, and most
are re-loaded a second time when requested by a user. If
pre-loading strategies are to be useful, they will require
more sophisticated methods for predicting future requests.

4.2 Size and Variation of the Working Set

Figure 6 depicts the working set size (number of unique
images requested) over one-day periods. The mean work-
ing set size is quite small, at a mean of 11.98 images per
day—this represents only 1.7% of the total number of
images. While there is some variation in the working set
size, it is not large: it follows a normal distribution with
a standard deviation of 4.33. This result is encouraging
from the perspective of caching: it suggests that only a
small fraction of images need to be available for quick
loading at any point in time, and that others could be
stored in cheaper, slower storage systems. Figure 7 shows
the distribution over week-long periods. The average
working set size is approximately two and a half times
larger than the daily average, and again follows a normal
distribution with a reasonably small standard deviation.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 223

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Percentage of user base

N
um

be
r o

f i
m

ag
es

 u
se

d
User
Facility

Figure 8: Total number of images used over four years when
considering random subsamples of the Emulab userbase.

4.3 Scaling of the Working Set

To get a feel for how the size of the working set might
vary on facilities larger or smaller than Emulab, we sub-
sampled our data to simulate differently sized userbases.
Figure 8 shows the total number of images used over the
4-year period when considering only 10% of the user-
base, 20%, etc. The set of facility images quickly reaches
saturation (all images are used at least once) and stops
growing with additional users. The set of user images, on
the other hand, grows linearly with respect to the number
of users. This is explained by simple intuition: the set of
useful facility images is more a function of the facility
than of the userbase, while more users mean more user-
created images. Thus, we can expect that a facility with
many more users than Emulab will have a greater number
of user images in proportion roughly to its greater user-
base, but that its set of facility images will not be larger
by the same proportion. Indeed, Amazon EC2, which has
a userbase that is at least three orders of magnitude larger
than Emulab, advertises less than thirty images provided
directly by AWS [3] and less than a hundred public im-
ages provided by their business partners. In comparison,
Emulab has 94 public facility-provided images.

However, this does not quite tell the whole story. Fig-
ure 9 shows the same subsampings, but this time looks
at the mean daily working set size. Here, we see that
the number of images loaded in a typical day increases
linearly with the userbase for both facility and user im-
ages. Thus, we can expect that facilities much larger than
Emulab do exhibit larger working sets. The working set
of facility images is capped by the total number of such
images, so very large facilities are likely to include most
or all of their facility images in the daily working set.

The general trend we can expect, is that for small fa-
cilities, the daily image working set size is in direct pro-
portion to the size of the userbase. For large facilities, the
working set will contain a relatively small set of facility

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Percentage of user base

M
ea

n
da

ily
 w

or
ki

ng
 s

et
 s

ize

User
Facility

Figure 9: Mean daily working set size when considering random
subsamples of the Emulab userbase.

images, and a very large set of user images; however, we
find that the fraction of requests that are for user images
stays fairly constant regardless of the size of the userbase,
meaning that these requests must necessarily be diverse.

5 Users’ Behavior

We now turn our attention to the behavior of individual
users; a facility that understands how its users interact
with images is in a better position to provide the interfaces
and image management tools that they require.

5.1 Distribution of Image Popularity

In distributions with “light” tails, such as the normal distri-
bution, a relatively small subset of the population accounts
for most of the popularity. For “heavy tailed” distribu-
tions (defined as those whose tail is not bounded by the
exponential [17]), this effect is less pronounced, and it
takes more of the population to cover the same level of
popularity. We compared the popularity distributions of
facility and user images separately to exponential distribu-
tions chosen to match the sample means. We found that
facility images are a reasonably good match for the cor-
responding exponential distribution (with Kolmogorov-
Smirnov statistic

√
nDn = 1.13), but user images are not

(
√
nDn = 5.54). As can be seen in Figure 10, the tail for

user images lies substantially above the exponential.
This is a key finding: user-created images have a sig-

nificant heavy tail, while facility-provided images do not.
The primary consequence of this discrepancy is that strate-
gies that depend on being able satisfy a large number of
requests with a relatively small number of images (such
as pre-loading, examined in detail in Section 6), will be
more effective with facility images than with user images.

224 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 100 200 300 400 500 600

1
10

10
0

10
00

10
00
0

Rank

R
eq
ue
st
s

Facility
Exp(λ=0.143)
User
Exp(λ=0.026)

Figure 10: Distribution of image popularity compared to the
exponential (shown as dashed lines); note the log-scale y axis.

Images used

Fr
eq

ue
nc

y

0 10 20 30 40 50 60

0
20

40
60

Figure 11: Histogram showing the number of users who use
different quantities of images.

5.2 Users and Images

As we can see in Figure 11, most users use a relatively
small set of images. There are, however, two surprising
features of this data.

Only 20% of users used a single image—a large ma-
jority used two or more. We believe that this is due to
three factors. First, since our sample period covers four
years, many users likely migrated to newer versions of
images as operating systems were updated. Second, any
user who creates a custom image will use at least two
images: they will request the base facility image at least
once, then move to the custom image they create. Third,
users may have started off using the default images pro-
vided by Emulab, found them unsuitable for their needs,
and switched to non-default images.

Another surprising feature is that there are a small
number of users who use a very large number of images.
Twenty users use at least 20 images, and one outlier uses
more than 60.

Figure 12: Profile of users making at least 500 disk image
requests. Requests for facility images are shown as bars above
the axis, and user images are below the axis.

5.3 Behavior of Heavy Users

Because user images are created by customizing facility
images, we can expect that all users will employ facility
images at least once, and likely a few times. The question
remains, however, whether users tend to use primarily
facility images, primarily their own images, or some bal-
anced mixture of the two. We are particularly interested in
the answer to this question for heavy users of the facility.

Figure 12 shows a profile of the heaviest users (those
who made at least 500 image requests) from the Emulab
dataset. Two important facts are evident. First, while a
few users do mix facility and user images (i.e. have bars
both above and below the axis in the figure), most tend
to skew heavily towards one or the other. Second, among
the twenty heaviest users, twelve employ primarily user
images. Past this point, facility images dominate. This
clearly establishes that custom user images are a “power
user” feature: their dominant use is by a relatively small
number of users, who use them heavily.

6 Prediction and Pre-Loading

We now turn our attention to techniques that may allow
the facility to service user requests more quickly. The first
technique that we consider is pre-loading: if it is possible
to predict which images will be requested in the near
future, the facility can pre-load them onto idle disks. If
the predictions are correct, users requests may be satisfied
immediately; if not, the user will have to wait for their
image to be loaded. Note that this strategy does not save
bandwidth on the datacenter’s image distribution network;
it simply shifts the image distribution to before the user’s
request arrives. In fact, pre-loading may increase the
bandwidth used for distributing images: in the case of
mispredictions, a node pre-loaded with one disk image
may need to be re-loaded with another.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 225

 0

 20

 40

 60

 80

 100

20
09

-0
3

20
09

-0
4

20
09

-0
5

20
09

-0
6

20
09

-0
7

20
09

-0
8

20
09

-0
9

20
09

-1
0

20
09

-1
1

20
09

-1
2

20
10

-0
1

20
10

-0
2

20
10

-0
3

20
10

-0
4

20
10

-0
5

20
10

-0
6

20
10

-0
7

20
10

-0
8

20
10

-0
9

20
10

-1
0

20
10

-1
1

20
10

-1
2

20
11

-0
1

20
11

-0
2

20
11

-0
3

20
11

-0
4

20
11

-0
5

20
11

-0
6

20
11

-0
7

20
11

-0
8

20
11

-0
9

20
11

-1
0

20
11

-1
1

20
11

-1
2

20
12

-0
1

20
12

-0
2

20
12

-0
3

20
12

-0
4

20
12

-0
5

20
12

-0
6

20
12

-0
7

20
12

-0
8

20
12

-0
9

20
12

-1
0

20
12

-1
1

20
12

-1
2

20
13

-0
1

20
13

-0
2

TO
TA

L

Default Other Facility User Images

Figure 13: Percentage of requests for three classes of images.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio of free pool size to number of images

Pr
ob

ab
ilit

y
of

 s
at

is
fy

in
g

re
qu

es
t

Figure 14: Fraction of requests satisfied from pre-loaded images
for varying ratios of free pool size to the working set size.

6.1 Free Pool vs. Working Set Size

We begin with the observation from Section 3.2 that the
popularity of user images has a much longer, heavier tail
than the set of requests for facility images. Therefore,
strategies targeting prediction of facility images are likely
to bear more fruit. We also recall from Section 4.1 that
there does not exist a consistently dominant image, though
Section 4.2 showed us that the working set size over a day
is fairly small. This small working set size is encouraging
from a prediction standpoint.

An illustration of the potential for prediction can be
found in Figure 13, which shows three classes of image
requests. Requests for default images can be satisfied by
simply pre-loading default images without complicated
prediction strategies. This strategy is clearly ineffective
in Emulab, as few requests are for the defaults. On top of
these are requests for non-default facility images, which
represent attractive targets for pre-loading. Finally, we see
that approximately 40% of requests are for user images,
which are a poor target for prediction because of their
long tail. Thus, we target the 60% of requests that are for
the relatively predictable facility images.

We first consider how the size of the free pool affects
the potential for prediction, where the free pool is defined

as the set of idle nodes or disks that are not in use and
are thus available for pre-loading. We consider a simple
model in which we assume that the inter-arrival time of
requests is greater than the time required to load an image.
(We will relax this assumption below.) In this model, the
determinant of prediction accuracy is the ratio between
the size of the free pool and the working set size. In this
scenario, the best prediction mechanism is to pre-load
those N disks with the N most popular images.

Figure 14 shows the percentage of requests for facility
images satisfied under this model, using the empirical
request and working set data from Emulab. Intuitively, if
there are no disks available for pre-loading, it is not possi-
ble to satisfy any requests from pre-loaded machines, and
if one can pre-load the entire working set of images (the
ratio is 1.0 or greater), it is possible to satisfy all requests.
Because the distribution of facility image popularity is
roughly exponential, the ability to load the top 25% of
images satisfies 95% of all facility requests.

It is interesting to consider how this result applies to
different sizes of facilities. In many cases, the size of
the free pool will be a fraction of the physical resources,
meaning that it is much larger, in absolute terms, for
larger facilities. At the same time, we have seen that the
working set size of facility images grows linearly with the
userbase, but is capped at a relatively small size by the
total number of facility images. The practical effect is that
small facilities (tens of nodes) are likely to fall on the left
side of the curve in Figure 14, meaning that pre-loading
is not likely to be particularly effective. Large facilities
(thousands of nodes), on the other hand, are likely to
be on the far right, with free pool sizes that far exceed
the number of facility images—for them, pre-loading is
likely to be able to satisfy all requests for facility images.
In between these extremes, a facility needs to carefully
consider the free pool to working set ratio to determine
whether pre-loading makes sense.

6.2 Reload Rate vs. Arrival Rate

Our previous experiment made the simplifying assump-
tion that request inter-arrival time was smaller than the
time required to re-load an image; this enables the facil-
ity to ensure that the N most popular facility images are
loaded at all times, and that only one copy of each image
needs to be kept pre-loaded. We now consider the relation-
ship between the arrival rate of new requests and the rate
at which the facility can pre-load images in response. If
bursts of requests arrive at a faster rate the the facility can
re-image, it is useful to have more than one pre-loaded
copy of each image. It is also possible for bursts of re-
quests to outpace the facility’s ability to keep the image
loaded, meaning that there can be mispredictions even for
very popular images.

226 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reload rate (normalised to mean arrival rate)

Pr
ob

ab
ilit

y
of

 s
at

is
fy

in
g

re
qu

es
t

Figure 15: Fraction of requests satisfied against the rate at which
images can be pre-loaded.

We model this scenario using standard tools from queu-
ing theory: each image is modeled as a queue, with a num-
ber of queue slots equal to the number of disks onto which
the image is pre-loaded. The distribution of pre-loaded
images is taken directly from the observed distribution of
requests; using our results from Section 5.1, we model
this distribution as being exponential with λ = 0.143.
We make the standard queuing theory assumption that
requests arrive according to a Poisson process [18]. We
picked a facility size of 1,000 disks, with an average uti-
lization rate of 90%, meaning that on average, 100 disks
are available for pre-loading.

Figure 15 shows the results of a Monte Carlo simulation
using this model. We varied the ratio of reload rate to
the mean request arrival rate, and find that this ratio is
critical. If the facility can reload images at a faster rate
than requests arrive (the area to the right of the 1.0 ratio),
it can easily keep the proper set of facility images pre-
loaded and can satisfy most requests for these images;
this matches the case modeled in Figure 14. If the reload
rate is lower (to the left of the 1.0 ratio), the value of pre-
loading falls quickly, as bursts of requests overwhelm the
facility’s ability to keep a pre-loaded pool that contains
the appropriate set of images.

We conclude that pre-loading facility images can be
an effective strategy for reducing user wait time, but that
the critical determining factors for its success are: (1) the
ratio betwen the size of the free pool and the working set
size; and (2) the ratio between the facilities’ reload rate
and the mean arrival rate.

7 Differential Disk Loading
The second optimization we consider targets requests for
user images: it may be possible to pre-load facility im-
ages, and when requests for user images arrive, load only
the blocks that differ. This differential loading strategy
is attractive for two reasons. As we saw in Section 5.1,
the distribution of user image popularity has a heavy tail,
making it difficult to pre-load enough of them to satisfy
many requests. But, as we saw in Section 3.4, user images
have high levels of similarity to the smaller set of facility
images. Thus, we have the potential to reduce user wait
times by picking a pre-loaded facility image and doing
a fast load of just the blocks that differ. In this section,
we develop metrics that quantify the potential benefits
of differential disk loading and give us a general under-
standing of the potential effectiveness of this technique.
In order to realize these benefits, additional methods for
predicting future requests would need to be developed,
which take into account not only image popularity, but
also block-level similarity between the pre-loaded images
and the images that may be layered on top of them.

We consider only the problem of finding the differ-
ences between two disk images, and not the more general
problem of taking the difference between a disk image
and arbitrary disk state (i.e. the state in which the disk
is left by the previous user). Earlier work [6] has shown
that disk distribution and installation can run at the full
write speed of the target disk, meaning that schemes that
require reading disk contents before writing are likely to
slow the process down, and are likely to be fruitful only
in cases where users do not write much to the disk.

7.1 Limits to Savings

As we have seen, the set of facility images is smaller and
more predictable than the set of user images. Thus, as
with the last section, we continue to pre-load only facility
images; when a user image U is requested, if its base
image UB has been pre-loaded, we need to transfer only
∆(UB , U) blocks instead of the full |u| blocks belonging
to the image. Clearly, this strategy relies on having the
correct set of base images pre-loaded. To simplify, we
start by assuming that we have an oracle that tells us what
facility images to pre-load or sufficient capacity to pre-
load all facility images; we relax this assumption below.

We begin by defining the number of disk blocks loaded
for user images when differential loading is not in use (i.e.
the entire user image must be loaded). For an individual
image U , this quantity is:

|u| · UC (3)

Recall that u is the set of block addresses with defined
values in image U , and therefore |u| represents the size

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 227

of the image. We define UC to be the number of times
the image is loaded. Intuitively, then, this quantity is
simply the number of blocks in the image multiplied by
the number of times the image is used.

To obtain the total number of blocks loaded across the
universe of all user images, U, we sum the total blocks
loaded for each image U ∈ U:

∑
U∈U

|u| · UC (4)

To adapt these equations for differential loading, we
substitute ∆(UB , U) for |u|, giving us the number of
blocks that must be loaded assuming the base image has
been pre-loaded. This gives us the total number of blocks:

∑
U∈U

∆(UB , U) · UC (5)

Differential Savings Potential (DSP): The maximum
relative savings from differential loading (assuming the
correct UB images are always loaded) is derived by com-
bining Equation 4 and Equation 5:

DSP =
∑
U∈U

|u| −∆(UB , U)

|u| UC (6)

In the Emulab dataset, the values for Equation 4 and
Equation 5 are 174 TB and 78 TB, giving a DSP of 0.55.
This indicates that, in the presence of an oracle, the Emu-
lab facility could save over half of the blocks it transfers
for user images at request time, potentially halving the
average time users must wait for custom images to load.

Adjusted Differential Savings (ADS): We next relax
the assumption of an oracle. To do so, we use the notation
P [I] to indicate the probability that image I is pre-loaded
on the facility. We adjust Equation 6 to indicate that with
some probability, the user request can be fulfilled with
differential loading because the requisite base image is
loaded. If not, the entire image must be loaded (resulting
in no savings):

ADS =
∑
U∈U

P [UB]
|u| −∆(UB , U)

|u| UC (7)

Note that if P [UB] = 1 for all images (perfect pre-
diction), this gives us Equation 6. For smaller P [UB]
values (worse predictions), the adjusted savings are lower
than the savings potential, which fits with the intuitive
notion that sub-optimal pre-loading will reduce the value
of differential loading.

7.2 Savings With Predictions

Figure 16 shows the effectiveness of differential loading
as a function of the fraction of facility images that are

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of facility images pre−loaded

U
se

r i
m

ag
e

tra
ffi

c
re

qu
ire

d

Figure 16: Network traffic required to load user images, when
various facility images may be pre-loaded.

pre-loaded. The y axis of this graph represents the frac-
tion of blocks that must be loaded at request time, with
lower numbers being better, and the limit being 1−DSP
(0.45). Along the x axis, we show the fraction of facility
images loaded—we rank facilitiy images by an adjusted
popularity that is the sum of their own popularity and the
popularity of all users images that use that facility image
as a base, and then pre-load the x most popular. What we
can see is that relatively few facility images act as bases
for user images, so it is necessary to pre-load only a small
subset of them (approximately 20%) in order to get most
of the benefit of differential loading. This implies that
this technique can be effective even on facilities that have
low free pool to working set ratios.

Also of interest in Figure 16 is that, for our dataset, the
most popular facility images (the default images) are not
commonly used as bases for user images—this accounts
for the small plateau on the left of the graph. We hypothe-
size that this is due to the age of Emulab’s defaults.

8 Recommendations and Future Work
In our exploration of the Emulab disk image request
dataset, we have uncovered a number of properties that
can be used to guide the operation and design of disk
image storage and installation systems. Based on our
analysis, we make the following recommendations:

• Storing images in a deduplicating image store is
likely to result in substantial savings. Reads from
deduplicating stores can be slow, but the working
set size is small enough that it is possible to cache
images in faster storage.

• Focusing pre-loading strategies on facility images
is likely to produce the best results. The tail of
user images is much longer and heavier than the
one for facility images, and only a few user images
approach the popularity of the heaviest-used facility

228 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

images. For very large facilities, it is likely that
most facility images appear in the daily working set,
making prediction straightforward.

• Pre-loading of a single default image is not a useful
strategy, as the diversity of user requests means that
no one image, even the default, is dominant on any
time scale.

• For small facilities (those where the number of idle
disks is significantly smaller than the working set
size), pre-loading is likely not a valuable strategy.
For large facilities, the number of idle disks is likely
to be much larger than the working set size, making
simple pre-loading strategies highly effective. To
accurately model the effectiveness of pre-loading
for mid-sized facilities, additional study of request
inter-arrival distributions is necessary.

• Large facilities would do well to focus on techniques
that allow them to sustain high reload rates. The only
way for pre-loading to be effective is to keep this rate
significantly above the request arrival rate, which is
likely to be high for large facilities. Techniques of in-
terest include distribution using multicast and image
distribution servers spread throughout the datacenter.

• Differential loading has the potential to be effec-
tive, especially on facilities with limited free pools.
It shows the potential to halve the number of disk
blocks transferred to satisfy user requests, but that
potential depends on correct predictions when pre-
loading the appropriate base images. This changes
the criteria for pre-loading, since base images should
be selected not only on their own popularity, but also
on the popularity of images that may be laid down
on top and their block-level similarly with the base
image. This complex optimization problem presents
an interesting area for future study.

An anonymized version of the dataset used for thus
study, plus all code used to analyze it and produce the
figures for this paper, can be found at:
http://aptlab.net/p/tbres/nsdi14

Acknowledgments

We would like to thank the administrators of Emulab for
their assistance in collecting the data used for this study.
We would also like to thank Dave Andersen, our shepherd
Bruce Maggs, and the anonymous reviewers for their
valuable comments. This work was supported by NSF
under award CNS-0709427.

References
[1] Amazon Web Services. Amazon EC2 instance store:

User guide. http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/InstanceStorage.html.

[2] Amazon Web Services. Amazon Elastic Compute Cloud
website. http://aws.amazon.com/ec2/.

[3] Amazon Web Services. Amazon Machine Images (AMIs).
https://aws.amazon.com/amis.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Sto-
ica, and M. Zaharia. Above the clouds: A Berkeley view
of cloud computing. Technical Report UCB/EECS-2009-
28, EECS Department, University of California, Berkeley,
Feb 2009.

[5] L. A. Barroso and U. Holzle. The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale
Machines, volume 6 of Synthesis Lectures on Computer
Architecture. Morgan and Claypool, 2009.

[6] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb.
Fast, scalable disk imaging with Frisbee. In Proc. of the
USENIX Annual Technical Conference (ATC), pages 283–
296, San Antonio, TX, June 2003.

[7] Jean-loup Gailly and Mark Adler. zlib website. http:

//www.zlib.org.
[8] K. Jin and E. L. Miller. The effectiveness of deduplication

on virtual machine disk images. In Proc. of SYSTOR, the
Israeli Experimental Systems Conference, May 2009.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So-
man, L. Youseff, and D. Zagorodnov. The Eucalyp-
tus open-source cloud-computing system. In Proc. of
the Workshop on Cloud Computing and its Applications
(CCA), 2008.

[10] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In Proc. of the USENIX Conference on
File and Storage Technologies (FAST), pages 89–101, Jan.
2002.

[11] Rackspace US, Inc. Rackspace hosting website. http:

//www.rackspace.com/.
[12] L. Rizzo. Dummynet: a simple approach to the evaluation

of network protocols. Computer Communication Review,
27(1):31–41, Jan. 1997.

[13] P. Sanaga, J. Duerig, R. Ricci, and J. Lepreau. Modeling
and emulation of Internet paths. In Proc. of the USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI), Boston, MA, Apr. 2009.

[14] The OpenStack Team. OpenStack user documentation.
http://docs.openstack.org/user-guide/.

[15] The OpenStack Team. OpenStack website. http://www.
openstack.org.

[16] The University of Utah. Emulab website. http://www.
emulab.net/.

[17] Wikipedia: Heavy-tailed Distribution. http:

//en.wikipedia.org/wiki/Heavy-tailed_

distribution.
[18] Wikipedia: Poisson Process. http://en.wikipedia.

org/wiki/Poisson_process.

