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Abstract

Network state may change rapidly in response to
customer demands, load conditions or configuration
changes. But the network must also ensure correctness
conditions such as isolating tenants from each other and
from critical services. Existing policy checkers cannot
verify compliance in real time because of the need to col-
lect “state” from the entire network and the time it takes
to analyze this state. SDNs provide an opportunity in this
respect as they provide a logically centralized view from
which every proposed change can be checked for com-
pliance with policy. But there remains the need for a fast
compliance checker.

Our paper introduces a real time policy checking
tool called NetPlumber based on Header Space Analysis
(HSA) [8]. Unlike HSA, however, NetPlumber incre-
mentally checks for compliance of state changes, using
a novel set of conceptual tools that maintain a depen-
dency graph between rules. While NetPlumber is a natu-
ral fit for SDNs, its abstract intermediate form is concep-
tually applicable to conventional networks as well. We
have tested NetPlumber on Google’s SDN, the Stanford
backbone and Internet 2. With NetPlumber, checking the
compliance of a typical rule update against a single pol-
icy on these networks takes 50-500μs on average.

1 Introduction
Managing a network today manually is both cumber-
some and error-prone. For example, network adminis-
trators must manually login to a switch to add an access-
control rule blocking access to a server. In a recent sur-
vey [15], network administrators reported that configura-
tion errors are very common in their networks.

The problem is that several entities can modify the for-
warding rules: in addition to manual configuration, dis-
tributed protocols (e.g. OSPF, spanning tree, BGP) write
entries into forwarding tables. There is no single location
where all of the state is observable or controllable, leav-
ing network administrators to use ad-hoc tools like ping
and traceroute to indirectly probe the current state of the
forwarding rules.

∗Peyman Kazemian was an intern at Google while doing this work.

Recently, there has been growing interest in automat-
ing network control using software-defined networks
(SDNs). SDN separates the control plane from the for-
warding plane; a well-defined interface such as Open-
Flow [11] lets the control plane write <match, action>
rules to switches. The controller controls the forward-
ing state because it decides which rules to write to the
switches; and it observes the forwarding state because it
was the sole creator. SDNs therefore present an oppor-
tunity to automate the verification of correct forwarding
behavior. This is the premise of recent work on auto-
matic analysis of forwarding state for SDNs [8, 10, 14].
The basic idea is that if we can analyze the forward-
ing state—either as it is written to switches, or after it
has been written—then we can check against a set of in-
variants/policies and catch bugs before or soon after they
take place.

Our paper describes a verification tool called Net-
Plumber for SDNs and conventional networks. In SDNs,
NetPlumber sits in line with the control plane, and ob-
serves state changes (e.g. OpenFlow messages) between
the control plane and the switches (Figure 1). Net-
Plumber checks every event, such as installation of a
new rule, removal of a rule, port or switch up and down
events, against a set of policies and invariants. Upon de-
tecting a violation, it calls a function to alert the user or
block the change. In conventional networks, NetPlumber
can get state change notifications through SNMP traps
or by frequently polling switches. Our evaluations use
a large SDN (Google WAN) and two medium sized IP
networks (Internet2 and the Stanford Network).

NetPlumber can detect simple invariant violations
such as loops and reachability failures. It can also check
more sophisticated policies that reflect the desires of hu-
man operators such as: “Web traffic from A to B should
never pass through waypoints C or D between 9am and
5pm.” Our NetPlumber prototype introduces a new for-
mal language (similar to FML [6]) to express policy
checks, and is fast enough to perform real-time checks
each time a controller adds a new rule. In experiments
with the Stanford backbone, Google’s WAN, and In-
ternet2’s backbone, NetPlumber typically verifies a rule
change in less than 1ms, and a link-up or link-down event
in a few seconds.
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NetPlumber’s speed easily exceeds the requirements
for an enterprise network where configuration state
changes infrequently—say once or twice per day. But in
modern multi-tenant data centers, fast programmatic in-
terfaces to the forwarding plane allow control programs
to rapidly change the network configuration - perhaps
thousands of times per second. For example, we may
move thousands of virtual machines (VMs) to balance
load, with each change requiring a tenant’s virtual net-
work to be reconfigured.

NetPlumber builds on our earlier work on Header
Space Analysis (HSA) [8]. HSA models networks us-
ing a geometric model that is much easier to reason
about than the vendor-specific interfaces on switches
and routers. NetPlumber improves upon HSA in two
ways. First, by running HSA checks incrementally, Net-
Plumber enables real-time checking of updates; this in
turn can prevent bugs from occurring. Second, Net-
Plumber provides a flexible way to express and check
complex policy queries without writing new ad hoc code
for each policy check, as was required by HSA.

The four contributions of this paper are:

1. NetPlumber (section 3): NetPlumber is our real-
time policy checking tool with sub-millisecond av-
erage run time per rule update.

2. Flexible Policy Query Mechanism (section 4):
NetPlumber introduces a flexible way to express
complex policy queries in an extensible, regular-
expression-based language called FlowExp.

3. Distributed NetPlumber (section 5): We show how
to scale NetPlumber to large networks using a dis-
tributed implementation.

4. Evaluation at Scale (section 6): We evaluate Net-
Plumber on three production networks, includ-
ing Google’s global WAN carrying inter-datacenter
traffic.

2 Header Space Analysis
NetPlumber uses HSA [8] as a foundation. HSA
provides a uniform, vendor-independent and protocol-
agnostic model of the network using a geometric model
of packet processing. A header is a point (and a flow is
a region) in a {0, 1}L space, called the header space,
where each bit corresponds to one dimension of this
space and L is an upper bound on header length (in bits).
Networking boxes are modeled using a Switch Transfer
Function T , which transforms a header h received on in-
put port p to a set of packet headers on one or more output
ports: T : (h, p) → {(h1, p1), (h2, p2), ...}.

Each transfer function consists of an ordered set of
rules R. A typical rule consists of a set of physical input
ports, a match wildcard expression, and a set of actions
to be performed on packets that match the wildcard ex-
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Figure 1: Deploying NetPlumber as a policy checker in SDNs.

pression. Examples of actions include: forward to a port,
drop, rewrite, encapsulate, and decapsulate. Network
topology is modeled using a Topology Transfer Function,
Γ. If port psrc is connected to pdst using a link, then Γ
will have a rule that transfers (h, psrc) to (h, pdst).

HSA computes reachability from source A, via
switches X, Y, ... to destination B as follows. First, cre-
ate a header space region at A representing the set of all
possible packets A could send: the all-wildcard flow with
L wildcard bits and covering the entire L-dimensional
space. Next, apply switch X’s transfer function to the
all-wildcard flow to generate a set of regions at its out-
put ports, which in turn are fed to Y ’s switch transfer
function. The process continues until a subset of the
flows that left A reach B. While the headers may have
been transformed in the journey, the original headers sent
by A can be recovered by applying the inverse transfer
function. Despite considerable optimization, the Python-
based implementation called Hassel described in [8] re-
quires tens of seconds to compute reachability.

3 NetPlumber
NetPlumber is much faster than Hassel at update time
because instead of recomputing all the transformations
each time the network changes, it incrementally updates
only the portions of those transfer function results af-
fected by the change. Underneath, NetPlumber still uses
HSA. Thus, it inherits from HSA the ability to verify a
wide range of policies—including reachability between
ports, loop-freedom, and isolation between groups—
while remaining protocol agnostic.

Figure 1 shows NetPlumber checking policies in an
SDN. An agent sits between the control plane and
switches and sends every state update (installation or re-
moval of rules, link up or down events) to NetPlumber
which in turn updates its internal model of the network; if
a violation occurs, NetPlumber performs a user-defined
action such as removing the violating rule or notifying
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the administrator.
The heart of NetPlumber is the plumbing graph which

captures all possible paths of flows1 through the network.
Nodes in the graph correspond to the rules in the network
and directed edges represent the next hop dependency of
these rules:

• A rule is an OpenFlow-like <match, action>
tuple where the action can be forward,2

rewrite, encapsulate, decapsulate, etc.
• Rule A has a next hop dependency to rule B if 1)

there is a physical link from rule A’s box to rule B’s
box; and 2) the domain of rule B has an intersection
with range of rule A. The domain of a rule is the set
of headers that match on the rule and the range is
the region created by the action transformation
on the rule’s domain.

Initialization: NetPlumber is initialized by examining
the forwarding tables to build the plumbing graph. Then
it computes reachability by computing the set of pack-
ets from source port s, that can reach destination port d
by injecting an“all-wildcard flow” at s and propagating
it along the edges of the plumbing graph. At each rule
node, the flow is filtered by the match part of the rule
and then transformed by the action part of the rule.
The resulting flow is then propagated along the outgo-
ing edges to the next node. The portion of the flow, if
any, that reaches d is the set of all packets from s that
can reach d. To speed up future calculations, whenever a
rule node transforms a flow, it remembers the flow. This
caching lets NetPlumber quickly update reachability re-
sults every time a rule changes.

Operation: In response to insertion or deletion of
rules in switches, NetPlumber adds or removes nodes and
updates the routing of flows in the plumbing graph. It
also re-runs those policy checks that need to be updated.

3.1 The Plumbing Graph
The nodes of the plumbing graph are the forwarding
rules, and directed edges represent the next-hop depen-
dency of these rules. We call these directed edges pipes
because they represent possible paths for flows. A pipe
from rule a to b has a pipe filter which is the intersec-
tion of the range of a and the domain of b. When a flow
passes through a pipe, it is filtered by the pipe filter. Con-
ceptually the pipe filter represents all packet headers at
the output of rule a that can be processed by b.

A rule node corresponds to a rule in a forwarding ta-
ble in some switch. Forwarding rules have priorities;
when a packet arrives to the switch it is processed by
the highest priority matching rule. Similarly, the plumb-

1In what follows, a flow corresponds to any region of header space.
2A drop rule is a special case of forward rule with empty set of

output ports.

ing graph needs to consider rule priorities when deciding
which rule node will process a flow. For computational
efficiency, each rule node keeps track of higher priority
rules in the same table. It calculates the domain of each
higher priority rule, subtracting it from its own domain.
We refer to this as intra-table dependency of rules.

Figure 2 shows an example network and its corre-
sponding plumbing graph. It consists of 4 switches, each
with one forwarding table. For simplicity, all packet
headers are 8 bits. We will use this example though the
rest of this section.

Let’s briefly review how the plumbing graph of Fig-
ure 2 is created: There is a pipe from rule 1 in table
1 (rule 1.1) to rule 2 in table 2 (rule 2.2) because (a)
ports 2 and 4 are connected and (b) the range of rule 1.1
(1010xxxx) and the domain of rule 2.2 (10xxxxxx) has
a non-empty intersection (pipe filter: 1010xxxx). Simi-
larly there is a pipe from rule 2.2 to rule 4.1 because (a)
ports 5 and 8 are connected and (b) the range of rule 2.2
(111xxxxx) and the domain of rule 4.1 (xxxxx010) has
a non-empty intersection (pipe filter: 111xx010). Also
rule 1.1 has an intra-table influence on rule 1.3 because
their domains and input port sets have a non-empty in-
tersection (intersecting domain: 1010xxxx, port: 1). The
rest of this plumbing graph is created in similar fashion.

3.2 Source and Sink Nodes
NetPlumber converts policy and invariants to equivalent
reachability assertions. To compute reachability, it in-
serts flow from the source port into the plumbing graph
and propagates it towards the destination. This is done
using a “flow generator” or source node. Just like rule
nodes, a source node is connected to the plumbing graph
using directed edges (pipes), but instead of processing
and forwarding flows, it generates flow.

Continuing our example, we compute reachability be-
tween port 1 and 10 in Figure 3 by connecting a source
node, generating the all-wildcard flow, to port 1. We have
also connected a special node called a probe node to port
10. Probe nodes will be discussed in the next section.
The flow generated by the source node first reaches rules
1.1, 1.2 and 1.3. Rule 1.1 and 1.2 are not affected by any
higher priority rules and don’t rewrite flows. Therefore
the input flow is simply forwarded to the pipes connect-
ing them to rule 2.2 (i.e. 1010xxxx and 10001xxx flows
reach rule 2.2). However rule 1.3 has an intra-table de-
pendency to rule 1.1 and 1.2. This means that from the
incoming 10xxxxxx flow, only 10xxxxxx − (1010xxxx
∪ 10001xxx) should be processed by rule 1.3. The re-
mainder has already been processed by higher priority
rules. Rule 1.3 is a simple forward rule and will forward
the flow, unchanged, to rule 3.1. However, when this
flow passes through the pipe filter between rule 1.3 and

3
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Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.
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Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P ) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-
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tential next hop rules, and from all potential previous
hop rules to the new rule. It also needs to find all intra-
table dependencies between the new rule and other rules
within the same table. In our toy example in Figure 4,
a new rule is added at the 2nd position of table 1. This
creates three new pipes to rules 2.1, 2.2 and the source
node, and one intra-table dependency for rule 1.4.

Next, NetPlumber updates the routing of flows. To
do so, it asks all the previous hop nodes to pass their
flows on the newly created pipes. The propagation of
these flows then continues normally through the plumb-
ing graph. If the new rule has caused any intra-table de-
pendency for lower priority rules, we need to update the
flows passing through those lower priority rules by sub-
tracting their domain intersection from the flow. Back to
the example in Figure 4, after adding the new rule, the
new flows highlighted in bold propagate through the net-
work. Also, the intra-table dependency of the new rule
on rule 1.4 is subtracted from the flow received by rule
1.4. This shrinks the flow to the extent that it cannot pass
through the pipe connecting it to rule 3.1 (empty flow on
the bottom path).

Deleting Rules: Deleting a rule causes all flows which
pass through that rule to be removed from the plumbing
graph. Further, if any lower priority rule has any intra-
table dependency on the deleted rule, the effect should be
added back to those rules. Figure 5 shows the deletion of
rule 1.1 in our toy example. Note that deleting this rule
causes the flow passing through rule 1.3 to propagate all
the way to the probe node, because the influence of the
deleted rule is now added back.

Link Up: Adding a new link to the network may cause
additional pipes to be created in the plumbing graph, be-
cause more rules will now have physical connections be-
tween them (first condition for creating a pipe). The
nodes on the input side of these new pipes must prop-
agate their flows on the new pipes, and then through the
plumbing graph as needed. Usually adding a new link
creates a number of new pipes, making a Link Up event
slower to process than a rule update.

Link Down: When a link goes down, all the pipes cre-
ated on that link are deleted from the plumbing graph,
which in turn removes all the flows that pass through
those pipes.

Adding New Tables: When a new table (or switch)
is discovered, the plumbing graph remains unchanged.
Changes occur only when new rules are added to the new
table.

Deleting Tables: A table is deleted from NetPlumber
by deleting all the rules contained in that table.

3.5 Complexity Analysis
The complexity of NetPlumber for the addition of a sin-
gle rule is O(r + spd), where r is the number of entries

in each table and s is the number of source (sink) nodes
attached to the plumbing graph (which is roughly pro-
portional to the number of policies we want to check), p
is the number of pipes to and from the rule and d is the
diameter of the network.

The run time complexity arises as follows: when a new
rule is added, we need to first find intra-table dependen-
cies. These require intersecting the match portion of
the new rule with the match of all the other rules in the
same table. We also need to create new pipes by do-
ing O(r) intersections of the range of the new rule with
the domain of rules in the neighboring tables (O(r) such
rules).

Next, we need to route flows. Let us use the term pre-
vious nodes to denote the set of rules which have a pipe
to the new rule. First, we need to route the flows at previ-
ous nodes to the new rule. There are O(s) flows on each
of these previous nodes because each source (sink) node
that is connected to NetPlumber can add a flow. We need
to pass these flows through O(p) pipes to route them to
the new rule. This is O(sp) work. With a linear fragmen-
tation5 argument similar to [8], there will be O(s) flows
that will survive this transformation through the pipes 6

(and not O(sp)). The surviving flows will be routed in
the same manner through the plumbing graph, requiring
the same O(sp) work at each node in the routing path.
Since the maximum path length is the diameter d, the
overall run time of this phase is O(spd).

We also need to take care of intra-table dependencies
between this rule and lower priority rules, and subtract
the domain intersection from the flows received by lower
priority rules. This subtraction is done lazily and is there-
fore much faster than flow routing; hence we ignore its
contribution to overall run time.

4 Checking Policies and Invariants
A probe node monitors flows received on a set of ports.
In the plumbing graph, it is attached to the output of all
the rules sending out flows on those ports. Each probe
node is configured with a filter flow expression and a test
flow expression. A flow expression or flowexp for short,
is a regular expression specifying a set of conditions on
the path and the header of the flows. The filter flowexp
constrains the set of flows that should be examined by
the probe node, and the test flowexp is the constraint that

5This assumption states that if we have R flows at the output of
a transfer function, and we apply these flow to the next hop transfer
functions with R rules per transfer function, we will get cR flows at
the output where c << R is a constant. This assumption is based
on the observation that flows are routed end-to-end in networks. They
are usually aggregated, and not randomly fragmented in the core of the
network.

6An alternate way to reach the same conclusion is as follows: the
new rule, after insertion will look like any other rule in the network,
and should on average have O(s) flows.
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Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint �= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the

6
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path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ ˆ (p ∈
{C})]} : f.path ∼ [ ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ ˆ (p ∈
{C})]} : f.path ∼ [ ˆ .$ | ˆ ..$ | ˆ ...$ ]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7
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4.4 Policy translator
So far we have described a logical language called flow-
exp which is convenient for analysis and specifying pre-
cisely how flows are routed within the network. Flowexp
is, however, less appropriate as a language for network
managers to express higher level policy. Thus, for higher
level policy specification, we decided to reuse the pol-
icy constructs proposed in the Flow-based Management
Language (FML) [6], a high-level declarative language
for expressing network-wide policies about a variety of
different management tasks. FML essentially allows a
manager to specify predicates about groups of users (e.g.,
faculty, students), and specifies which groups can com-
municate. FML also allows additional predicates on the
types of communication allowed such as the need to pass
through waypoints.

Unfortunately, the current FML implementation is
tightly integrated with an OpenFlow controller, and so
cannot be easily reused in NetPlumber. We worked
around this by encoding a set of constructs inspired by
FML in Prolog. Thus, network administrators can use
Prolog as the frontend language to declare various bind-
ings inspired by FML, such as hosts, usernames, groups
and addresses. Network administrators can also use Pro-
log to specify different policies. For example, the follow-
ing policy describes 1) the guest and server groups,
and 2) a policy: ”Traffic should go through firewall if it
flows from a guest to a server”.

guest(sam).
guest(michael).
server(webserver).
waypoint(HostSrc, HostDst, firewall):-

guest(HostSrc),
server(HostDst).

We have written a translator that converts such high
level policy specifications written in Prolog to 1) the
placement of source nodes, 2) the placement of probe
nodes, and 3) the filter and test expressions for each
probe node. In the example above, the translator gen-
erates two source nodes at Sam and Michael’s ports and
one probe node at the web server’s port. The waypoint
keyword is implemented by flowexp: .*(t=firewall).

The output of the translator is, in fact, a C++ struct
that lists all source, sink, and probe nodes. The source
probes and sink probes are encoded in flowexp syntax
using ASCII text. Finally, NetPlumber translates flowexp
into C++ code that it executes.

Note that because FML is not designed to declare path
constraints that can be expressed in flowexp, we found it
convenient to make the translator extensible. For exam-
ple, two new policy constructs we have built-in beyond
the FML-inspired constructs are “at most N hops” and

Rule Node Duplicated Rule Node Source Node Probe Node

Figure 6: A typical plumbing graph consists of clusters of
highly dependent rules corresponding to FECs in network.
There may be rules whose dependency edges cross clusters.
By replicating those rules, we can create clusters without de-
pendencies and run each cluster as an isolated NetPlumber in-
stance running on a different machine.

“immediately followed by”—but it is easy to add further
constructs.

5 Distributed NetPlumber
NetPlumber is memory-intensive because it maintains
considerable data about every rule and every flow in the
plumbing graph. For very large networks, with millions
of rules and a large number of policy constraints, Net-
Plumber’s memory requirements can exceed that of a
single machine. Further, as shown in section 3.5, the
run time of NetPlumber grows linearly with the size of
the tables. This can be potentially unacceptable for very
large networks.

Thus, a natural approach is to run parallel instances of
NetPlumber, each verifying a subset of the network and
each small enough to fit into the memory of a single ma-
chine. Finally, a collector can be used to gather the check
results from every NetPlumber instance and produce the
final result.

One might expect to parallelize based on switches:
i.e., each NetPlumber instance creates a plumbing graph
for a subset of switches in the network (vertical distribu-
tion). This can address the memory bottleneck, but need
not improve performance, as the NetPlumber instances
can depend on each other. In the worst case, an instance
may not be able to start its job unless the previous in-
stance is done. This technique can also require consider-
able communication between different instances.

A key observation is that in every practical network
we have seen, the plumbing graph looks like Figure 6:
there are clusters of highly dependent rules with very few
dependencies between rules in different clusters. This
is caused by forwarding equivalence classes (FECs) that
are routed end-to-end in the network with possible ag-
gregation. The rules belonging to a forwarding equiv-
alence class have a high degree of dependency among
each other. For example, 10.1.0.0/16 subnet traffic might
be a FEC in a network. There might be rules that further
divide this FEC into smaller subnets (such as 10.1.1.0/24,
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10.1.2.0/24), but there are very few rules outside this
range that has any interaction with rules in this FEC (an
exception is the default 0.0.0.0/0 rule).

Our distributed implementation of NetPlumber is
based on this observation. Each instance of NetPlumber
is responsible for checking a subset of rules that belong
to one cluster (i.e. a FEC). Rules that belong to more
than one cluster will be replicated on all the instances
they interact with (see Figure 6). Probe nodes are repli-
cated on all instances to ensure global verification. The
final probe result is the aggregate of results generated by
all the probes—i.e., all probe nodes should meet their
constraints in order for the constraint to be verified. The
instances do not depend on each other and can run in par-
allel. The final result will be ready after the last instance
is done with its job.

The run time of distributed NetPlumber, running on
n instances for a single rule update, is O(mavg(r/n +
spd/m)) where m is the number of times that rule get
replicated and mavg is the average replication factor for
all rules. This is because on each replica, the size of ta-
bles are O(mavgr/n) and the number of pipes to a rule
that is replicated m times is O(mavgp/m). Note that if
we increase n too much, most rules will be replicated
across many instances (m, mavg → n,) and the addi-
tional parallelism will not add any benefit.

How should we cluster rules? Graph clustering is hard
in general; however for IP networks we generated natural
clusters heuristically as follows. We start by creating two
clusters based on the IP address of the network we are
working with; if the IP address of hosts in the network
belong to subnet 10.1.0.0/16, create two clusters: one
for rules that match this subnet, and one for the rest (i.e.
10.1.0.0/16 and 0.0.0.0/0 - 10.1.0.0/16 subnets). Next,
divide the first cluster into two clusters based on bit 17 of
the destination IP address. If one of the resulting clusters
is much larger than the other, we divide the larger cluster
based on the next bit in IP destination address. If two
clusters are roughly the same size, we divide both clus-
ters further. This process continues until division does
not reduce cluster size further (because of replication) or
the specified number of clusters is reached.

Note that while we introduced the plumbing graph
originally to facilitate incremental computation, the
plumbing graph also allows us to decompose the com-
putation much more effectively than the naive decompo-
sition by physical nodes.

6 Evaluation
In this section we evaluate the performance and func-
tionality of our C++ based implementation8 of Net-
Plumber on 3 real world networks: the Google inter-

8source code available at [5].

Figure 7: Google inter-datacenter WAN network.
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Figure 8: Stanford backbone network.

datacenter WAN, Stanford’s backbone network and the
Internet 2 nationwide network. All the experiments are
run on Ubuntu machines, with 6 cores, hyper-threaded
Intel Xeon processors, a 12MB L2-cache and 12GB of
DRAM.

To feed the snapshot data from these networks into
NetPlumber, we wrote 3 parsers capable of parsing
Cisco IOS, Juniper Junos and OpenFlow dumps in pro-
tobuf [12] format. We used a json-rpc based client to
feed this data into NetPlumber. NetPlumber has the json-
rpc server capability and can receive and process updates
from a remote source.

6.1 Our data set
Google WAN: This is a software-defined network, con-
sisting of OpenFlow switches distributed across the
globe. It connects Google data centers world-wide. Fig-
ure 7 shows the topology of this network. Overall there
are more than 143,000 OpenFlow rules installed in these
switches. Google WAN is one of the largest SDNs de-
ployed today; therefore we stress-test NetPlumber on this
network to evaluate its scalability.

Stanford University Backbone Network. With a
population of over 15,000 students, 2,000 faculty, and
five /16 IPv4 subnets, Stanford represents a mid-size en-
terprise network. There are 14 operational zone (OZ)
Cisco routers connected via 10 Ethernet switches to 2

9
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Figure 9: CDF of the run time of NetPlumber per update, when
checking the all-pair reachability constraint in Google WAN
with 1-5 instances and in Stanford backbone with a single in-
stance.

#instances: 1 2 3 4 5 8
median (ms) 0.77 0.35 0.23 0.2 0.185 0.180
mean (ms) 5.74 1.81 1.52 1.44 1.39 1.32

Table 2: Average and median run time of distributed Net-
Plumber, checking all-pair connectivity policy on Google
WAN.

backbone Cisco routers that in turn connect Stanford to
the outside world (Figure 8). Overall, the network has
more than 757,000 forwarding entries, 100+ VLANs and
1,500 ACL rules. Data plane configurations are collected
through CLI. Stanford has made the entire configuration
rule set public and it can be found in [5].

Internet2 is a nationwide backbone network with 9
Juniper T1600 routers and 100 Gb/s interfaces, support-
ing over 66,000 institutions in United States. There
are about 100,000 IPv4 forwarding rules. All Internet2
configurations and FIBs of the core routers are publicly
available [7], with the exception of ACL rules, which are
removed for security reasons. We only use the IPv4 net-
work of Internet 2 in this paper.

6.2 All-pair connectivity of Google WAN
As an internal, inter-datacenter WAN for Google, the
main goal of Google WAN is to ensure connectivity be-
tween different data centers at all times. Therefore in
our first experiment, we checked for the all-pair connec-
tivity policy between all 52 leaf nodes (i.e. data center
switches). We began by loading a snapshot of all the
OpenFlow rules of Google WAN — taken at the end of
July 2012 — into NetPlumber. NetPlumber created the
initial plumbing graph in 33.39 seconds (an average per-
rule runtime of 230μs). We then attach one probe and
one source node at each leaf of the network and set up the

probes to look for one flow from each of the sources. If
no probes fire, it means that all data centers are reachable
from each other. The initial all-pair connectivity test took
around 60 seconds. Note that the above run times, are
for the one-time initialization of NetPlumber. Once Net-
Plumber is initialized, it can incrementally update check
results much faster when changes occur. Note that the
all-pair reachability check in Google WAN corresponds
to 522 or more than 2600 pair-wise reachability checks.

Next, we used a second snapshot taken 6 weeks later.
We found the diff of the two snapshots and applied them
to simulate incremental updates. The diff includes both
insertion and deletion of rules. Since we did not have
timing information for the individual updates, we knew
the set of updates in the difference but not the sequence
of updates. So we simulated two different orders. In the
first ordering, we applied all the rule insertions before
the rule deletions. In the second ordering, we applied all
deletions before all insertions.

As expected, the all-pair connectivity policy was
maintained during the first ordering of update events, be-
cause new reachable paths are created before old reach-
able paths are removed. However the second ordering re-
sulted in violations of the all-pair connectivity constraint
during the rule deletion phase. Of course, this does not
mean that the actual Google WAN had reachability prob-
lems because the order we simulated is unlikely to have
been the actual order of updates. At the end of both or-
derings, the all-pair connectivity constraint was met.

NetPlumber was able to check the compliance of each
insertion or deletion rule in an average time of 5.74ms
with a median time of 0.77ms. The average run time
is much higher than the median because there are a few
rules whose insertion and deletion takes a long time
(about 1 second). These are the default forwarding rules
that have a large number of pipes and dependencies
from/to other rules. Inserting and deleting default rules
require significant changes to the plumbing graph and
routing of flows. The solid line in Figure 9 shows the
run time CDF for these updates.

To test the performance of distributed NetPlumber we
repeated the same experiment in distributed mode. We
simulated9 the running of NetPlumber on 2−8 machines
and measured the update times (dashed lines in Figure 9).
Table 2 summarizes the mean and median run times.
This suggests that most of the benefits of distribution is
achieved when the number of instances is 5. This is be-
cause in the plumbing graph of the Google WAN, there
are about 5 groups of FECs whose rules do not influence

9To simulate, we run the the instances in serial on the same ma-
chine and collected the results from each run. For each rule inser-
tion/deletion, we reported the run time as the maximum run time across
all instances, because the overall job will be done only when the last
instance is done.
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each other. Trying to put these rules in more than 5 clus-
ters will result in duplication of rules; the added benefit
will be minimal.

6.3 Checking policy in Stanford network
Unlike the Google WAN, there are a number of reach-
ability restrictions enforced in the Stanford network by
different ACLs. Examples of such policies include isola-
tion of machines belonging to a particular research group
from the rest of the network, or limitation on the type of
traffic that can be sent to a server IP address. For ex-
ample, all TCP traffic to the computer science depart-
ment is blocked except for those destined to particular
IP addresses or TCP port numbers. In addition, there is
a global reachability goal that every edge router be able
to communicate to the outside world via the uplink of
a specified router called bbra rtr. Finally, due to the
topology of the network, the network administrators de-
sired that all paths between any two edge ports be no
longer than 3 hops long to minimize network latency.

In this experiment we test all these policies. To do so,
we connect 16 source nodes, one to each router in the
plumbing graph. To test the maximum-3-hop constraint,
we connected 14 probe nodes, one to each OZ router. We
also placed a probe node at a router called yoza rtr to
check reachability policies at the computer science de-
partment. NetPlumber took 0.5 second to create the ini-
tial plumbing graph and 36 seconds to generate the initial
check results. We found no violation of the reachabil-
ity policies of the computer science department. How-
ever NetPlumber did detect a dozen un-optimized routes,
whose paths take 4 hops instead of 3. We also found 10
loops, similar to the ones reported in [8]10.

We then tested the per-update run time of NetPlumber
by randomly selecting 7% of rules in the Stanford net-
work, deleting them and then adding them back. Figure 9
shows the distribution of the per-update run time. Here,
the median runtime is 50μs and the mean is 2.34ms. The
huge difference between the mean and the median is due
to a few outlier default rules which take a long time to
get inserted and deleted into NetPlumber.

6.4 Performance benchmarking
The previous two experiments demonstrated the scalabil-
ity and functionality of NetPlumber when checking ac-
tual policies and invariants of two production networks.
However, the performance of NetPlumber depends on s,
the number of sources in the network which is a direct
consequences of the quantity and type of policies spec-
ified by each network. Thus it seems useful to have a
metric that is per source node and even per policy, so
we can extrapolate how run time will change as we add

10We used the same snapshots.

Network: Google Stanford Internet 2
Run Time mean median mean median mean median

Add Rule (ms) 0.28 0.23 0.2 0.065 0.53 0.52
Add Link (ms) 1510 1370 3020 2120 4760 2320

Table 3: Average and median run time of NetPlumber, for a
single rule and link update, when only one source node is con-
nected to NetPlumber.

more independent policies, each of which require adding
a new source node.11 We provide such a unit run time
benchmark for NetPlumber running on all three data sets:
Google WAN, Stanford and Internet 2.

To obtain this benchmark, we connect a single source
node at one of the edge ports in the plumbing graph of
each of our 3 networks. Then we load NetPlumber with
90% of the rules selected uniformly at random. Finally,
we add the last 10% and measure the update time. We
then repeated the same experiment by choosing links in
the network that are in the path of injected flows, delet-
ing them and then adding them back and measuring the
time to incorporate the added link. The results are sum-
marized in Table 3. As the table suggests, link up events
take much longer (seconds) to incorporate. This is in fact
expected and acceptable, because when a link is added,
a potentially large number of pipes will be created which
changes routing of flows significantly. Fortunately, since
the link up/down event should be rare, this run time ap-
pears acceptable.

7 Discussion
Conventional Networks: Conceptually, NetPlumber
can be used with conventional networks as long as we
implement a notification mechanism for getting updated
state information. One way to do this is through SNMP
traps; every time a forwarding entry or link state changes,
NetPlumber gets a notification. The drawback of such a
mechanism is resource consumption at the switch.

Handling Transient Violations: Sometimes, during
a sequence of state updates, transient policy violations
may be acceptable (e.g. a black hole is acceptable while
installing a path in a network). NetPlumber probes can
be turned off during the transition and turned on when
the update sequence is complete.

Handling Dynamic Policies: In multi-tenant data
centers, the set of policies might change dynamically
upon VM migration. NetPlumber can handle dynamic
policy changes easily. In the plumbing graph, if we at-
tach a source node to every edge port (as we did in the
case of Google WAN), we can update policies by chang-
ing the locations and test conditions of probe nodes. This
update is fast as long as the structure of the plumbing
graph and routing of flows doesn’t change.

11By contrast, dependent policies can be checked using a single
source node.
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Limitations of NetPlumber: NetPlumber, like HSA
relies on reading the state of network devices and there-
fore cannot model middleboxes with dynamic state. To
handle such dynamic boxes, the notion of “flow” should
be extended to include other kind of state beyond header
and port. Another limitation of NetPlumber is its greater
processing time for verifying link updates. As a result,
it is not suitable for networks with a high rate of link
up/down events such as energy-proportional networks.

8 Related Work
Recent work on network verification, especially on trou-
bleshooting SDNs, focuses on the following directions.

Programming foundations: Frenetic [3] provides
high-level abstractions to achieve per-packet and per-
flow consistency during network updates [13]. Net-
Plumber, on the other hand, verifies forwarding policies.

Offline checking: rcc [2] verifies BGP configura-
tions. NICE [1] applies model checking techniques
to find bugs in OpenFlow control programs. HSA
[8] checks data plane correctness against invariants.
Anteater [10] uses boolean expressions and SAT solvers
for network modeling and checking. However, offline
checking cannot prevent bugs from damaging the net-
work until the periodic check runs.

Online monitoring: Several tools help troubleshoot
network programs at run-time. OFRewind [14] captures
and reproduces the sequence of problematic OpenFlow
command sequence. ATPG [16] systematically gener-
ates test packets against router configurations, and mon-
itors network health by perioidically sending these tests
packets. NDB [4] is a network debugger. These tools
complement but not replace the need for real-time policy
verification.

VeriFlow [9] is the work most closely related to Net-
Plumber. VeriFlow also verifies the compliance of net-
work updates with specified policies in real time. It
uses a trie structure to search rules based on equivalence
classes (ECs), and upon an update, determines the af-
fected ECs and updates the forwarding graph for that
class. This in turn triggers a rechecking of affected
policies. NetPlumber and VeriFlow offer similar run-
time performance. While both systems support verifica-
tion of forwarding actions, NetPlumber additionally can
verify arbitrary header modifications, including rewrit-
ing and encapsulation. NetPlumber is also protocol-
independent.

9 Conclusions
This paper introduces NetPlumber as a real-time policy
checker for networks. Unlike earlier work that checks
periodic snapshots of the network, NetPlumber is fast
enough to validate every update in real time. Users can

express a wide range of policies to be checked using an
extensible regular-expression like language, called Flow-
exp. Since Flowexp might be too low-level for adminis-
trators to use, we implemented a higher level policy lan-
guage (inspired by FML) implemented in Prolog.

The fundamental idea of the dependency graph for-
malized as a plumbing graph benefits us in three ways.
First, it allows incremental computation by allowing only
the (smaller) dependency subgraph to be traversed when
a new rule is added. Second, it naturally leads us to gen-
eralize to probe nodes that can be configured to check
for new policies—without the ad hoc programming ef-
fort required by Hassel. Third, clustering the graph to
minimize inter-cluster edges provides a powerful way to
parallelize computation.

NetPlumber is useful as a foundation that goes be-
yond static policy checking. For example, it can be used
in ATPG [16] to allow the suite of ATPG tests packets
to be updated swiftly when the configuration changes.
Also NDB [4] may benefit from NetPlumber. Like GDB,
NDB allows setting break points in the system when a
specified condition is met. To achieve this goal, NDB
adds a “postcard generating action” that captures and
sends samples of matching packets to a central database.
NetPlumber can be used to notify NDB when a rule that
requires postcard action is about to be added to the net-
work. While these are only two examples, we believe
that the ability to incrementally and quickly do header
space analysis will be a fundamental building block for
network verification tools going forward.
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