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Abstract
Managing a network requires support for multiple con-
current tasks, from routing and traffic monitoring, to ac-
cess control and server load balancing. Software-Defined
Networking (SDN) allows applications to realize these
tasks directly, by installing packet-processing rules on
switches. However, today’s SDN platforms provide lim-
ited support for creating modular applications. This pa-
per introduces new abstractions for building applications
out of multiple, independent modules that jointly man-
age network traffic. First, we define composition opera-
tors and a library of policies for forwarding and querying
traffic. Our parallel composition operator allows multi-
ple policies to operate on the same set of packets, while a
novel sequential composition operator allows one policy
to process packets after another. Second, we enable each
policy to operate on an abstract topology that implic-
itly constrains what the module can see and do. Finally,
we define a new abstract packet model that allows pro-
grammers to extend packets with virtual fields that may
be used to associate packets with high-level meta-data.
We realize these abstractions in Pyretic, an imperative,
domain-specific language embedded in Python.

1 Introduction
Software-Defined Networking (SDN) can greatly sim-
plify network management by offering programmers
network-wide visibility and direct control over the un-
derlying switches from a logically-centralized controller.
However, existing controller platforms [7, 12, 19, 2,
3, 24, 21] offer a “northbound” API that forces pro-
grammers to reason manually, in unstructured and ad
hoc ways, about low-level dependencies between dif-
ferent parts of their code. An application that per-
forms multiple tasks (e.g., routing, monitoring, access
control, and server load balancing) must ensure that
packet-processing rules installed to perform one task do
not override the functionality of another. This results
in monolithic applications where the logic for different

tasks is inexorably intertwined, making the software dif-
ficult to write, test, debug, and reuse.

Modularity is the key to managing complexity in any
software system, and SDNs are no exception. Previous
research has tackled an important special case, where
each application controls its own slice—a disjoint por-
tion of traffic, over which the tenant or application mod-
ule has (the illusion of) complete visibility and con-
trol [21, 8]. In addition to traffic isolation, such a plat-
form may also support subdivision of network resources
(e.g., link bandwidth, rule-table space, and controller
CPU and memory) to prevent one module from affect-
ing the performance of another. However, previous work
does not address how to build a single application out
of multiple, independent, reusable network policies that
affect the processing of the same traffic.

Composition operators. Many applications require
the same traffic to be processed in multiple ways. For
instance, an application may route traffic based on the
destination IP address, while monitoring the traffic by
source address. Or, the application may apply an access-
control policy to drop unwanted traffic, before routing
the remaining traffic by destination address. Ideally, the
programmer would construct a sophisticated application
out of multiple modules that each partially specify the
handling of the traffic. Conceptually, modules that need
to process the same traffic could run in parallel or in se-
ries. In our previous work on Frenetic [6, 14], we in-
troduced parallel composition, which gives each module
(e.g., routing and monitoring) the illusion of operating on
its own copy of each packet. This paper introduces a new
kind of composition—sequential composition—that al-
lows one module to act on the packets already processed
by another module (e.g., routing after access control).

Topology abstraction. Programmers also need ways
to limit each module’s sphere of influence. Rather than
have a programming platform with one (implicit) global
network, we introduce network objects, which allow
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Monitor
srcip=5.6.7.8→ count

Route
dstip=10.0.0.1→ fwd(1)

dstip=10.0.0.2→ fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4→ dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4→ dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1 → count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2 → count,fwd(2)
srcip=5.6.7.8→ count

dstip=10.0.0.1→ fwd(1)

dstip=10.0.0.2→ fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4→ dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4→ dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators

Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.
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generates its policy independently, with the programmer
using the “|” operator to specify that both the route and
monitor functions should be performed simultaneously.
These can be mechanically compiled into a single joint
ruleset (Figure 1, bottom-left) [14].

Sequential Composition (>>): Sequential composi-
tion gives the illusion of one module operating on the
packets produced by another. Given two policy func-
tions f and g operating on a located packet p, sequen-
tial composition applies g to each of the located pack-
ets produced by f (p), to produce a new set of located
packets. For example, suppose a programmer writes
one module to load balance traffic destined to a pub-
lic IP address 1.2.3.4, over multiple server replicas at
private addresses 10.0.0.1 and 10.0.0.2, respectively,
and another to route traffic based on the chosen destina-
tion server. The load-balancing module splits traffic des-
tined to the public IP between the replicas based on the
client IP address. Traffic sent by clients with an IP ad-
dress whose highest-order bit is 0 go to the first server,
while remaining traffic goes to the second server. As
shown in Figure 1 (top-right), the load balancer performs
a rewriting action to modify the destination address to
correspond to the chosen server replica, without actually
changing the packet’s location. This load balancer can
be composed sequentially with the routing policy intro-
duced earlier. Here the programmer uses the “>>” opera-
tor to specify that load balancing should be performed
first, followed by routing. Again, these may be me-
chanically compiled into a single joint ruleset (Figure 1,
bottom-right).

2.2 Topology Abstraction With Network Objects

Modular programming requires a way to constrain what
each module can see (information hiding) and do (pro-
tection). Network objects offer both information hiding
and protection, while offering the familiar abstraction of
a network topology to each module. A network object
consists of an abstract topology, as well as a policy func-
tion applied to the abstract topology. For example, the
abstract topology could be a subgraph of the real topol-
ogy, one big virtual switch spanning the entire physical
network, or anything in between. The abstract topology
may consist of a mix of physical and virtual switches,
and may have multiple levels of nesting on top of the one
real network. To illustrate how topology abstraction may
help in creating modular SDN applications we look at
two examples: a “many-to-one” mapping in which sev-
eral physical switches are made to appear as one virtual
switch and a “one-to-many” mapping in which one phys-
ical switch is presented as several virtual switches.

Many-to-one. While MAC-learning is an effective
way to learn the locations of hosts in a network, the

Figure 2: Many physical switches to one virtual.

need to compute spanning trees makes Ethernet proto-
cols unattractive in large networks. Instead, a program-
mer could combine MAC-learning at the edge of the net-
work with shortest-path routing (for unicast traffic) and
multicast trees (for broadcast and flooding traffic) in the
network interior [18, 23]. Topology abstraction provides
a simple way to realize this functionality, as shown in
Figure 2. The MAC-learning module sees the network
as one big switch V, with one port for each edge link
in the underlying physical network (dotted lines). The
module can run the conventional MAC-learning program
to learn where hosts are located. When a previously-
unknown host sends a packet, the module associates the
source address with the input port, allowing the module
to direct future traffic destined to this address out that
port. When switch V receives a packet destined to an un-
known address, the module floods the packet; otherwise,
the switch forwards the traffic to the known output port.

The “switching fabric” of switch V is implemented by
the switching-fabric module, which sees the entire physi-
cal network. the switching-fabric module performs rout-
ing from one edge link to another (e.g., from the ingress
port at switch A to the egress port at switch B), This re-
quires some coordination between the two modules, so
the MAC-learner can specify the chosen output port(s),
and the switching-fabric module can direct traffic on a
path to the egress port(s).

As a general way to support coordination, we intro-
duce an abstract packet model, incorporating the con-
cept of virtual packet headers that a module can push,
pop, and inspect, just like the actions OpenFlow sup-
ports on real packet-header fields like VLAN tags and
MPLS labels. When the MAC-learning module directs
traffic from an input port to an output port, the switching-
fabric module sees traffic with a virtual packet header
indicating the corresponding ingress and egress ports in
its view of the network. A run-time system can perform
the necessary mappings between the two abstract topolo-
gies, and generate the appropriate rules to forward traffic
from the ingress port to the appropriate egress port(s). In
practice, a run-time system may represent virtual packet-
header fields using VLAN tags or MPLS labels, and in-
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Figure 3: One physical switch to many virtual.

stall rules that push, pop, and inspect these fields.

One-to-many. Enterprise networks often consist of
several Ethernet islands interconnected by gateway
routers to an IP core, as shown in Figure 3. To imple-
ment this behavior, an SDN programmer would have to
write a single, monolithic program that handles network
events differently depending on the role the switch is
playing in the network. This program would implement
MAC-learning and flooding to unknown destinations for
switches within Ethernet islands, shortest-path routing
on IP prefixes for switches in the IP core, and gateway
logic for devices connecting an island to the core. The
gateway logic would be complicated, as the switch would
need to act simultaneously as MAC-learner, IP router,
and MAC-rewriting repeater and ARP server.

A better alternative would be to implement the Eth-
ernet islands, IP core, and gateway routers using sepa-
rate modules operating on a subset of the topology, as
shown in Figure 3. This design would allow the gateway
router to be decomposed into three virtual devices: one
in the Ethernet island (E), another in the IP core (I), and
a third interconnecting the other two (F). Likewise, its
logic could be decomposed into three orthogonal pieces:
a MAC-rewriting repeater that responds to ARP queries
for its gateway address (on F), an Ethernet switch (on E),
and an IP router (on I). The programmer would write
these modules separately and rely on a run-time system
to combine them into a single program.

For example, suppose a host in the Ethernet LAN
sends a packet to a destination reachable via the IP core.
In the Ethernet LAN, this packet has a destination MAC
address of the gateway. The Ethernet module would gen-
erate a rule in switch E that matches traffic destined to the
gateway’s MAC address and forwards out E’s right port.
The gateway module would generate a rule in switch F

that matches packets from F’s left port destined to the
gateway’s MAC address and, after rewriting MAC head-
ers appropriately, forwards out F’s right port. The IP core
module would generate rules in switch I that match pack-
ets based on the destination IP address to forward traffic
to the next hop along a path to the destination. A run-
time system can combine these three sets of rules to gen-
erate the rules for the physical gateway switch G. Switch

Conventional SDN Pyretic
Packet Fixed OF fields Extensible stacks of values
Policy Prioritized OF rules Functions of located packets
Network One concrete network Network object hierarchies

Table 1: Pyretic abstraction in three dimensions

G would match traffic entering on its left two ports based
on the gateway’s destination MAC address and the des-
tination IP address to forward via one of the two right
ports, as chosen by the IP core module.

3 The Pyretic Programming Language
Any SDN platform needs a model of data packets, for-
warding policies, and the network that applies these
policies—as summarized in Table 1. Compared to con-
ventional platforms [7, 12, 2, 3, 19], our Pyretic language
raises the level of abstraction by introducing an abstract
packet model (Section 3.1), an algebra of high-level poli-
cies (Section 3.2), and network objects (Section 4).

3.1 Abstract Packet Model

The heart of the Pyretic programming model is a new, ex-
tensible packet model. Conceptually, each packet flow-
ing through the network is a dictionary that maps field
names to values. These fields include entries for (1)
the packet location (either physical or virtual), (2) stan-
dard OpenFlow headers (e.g., source IP, destination IP,
source port, etc.), and (3) custom data. The custom
data is housed in virtual fields and is not limited to sim-
ple bit strings—a virtual field can represent an arbitrary
data structure. Consequently, this representation pro-
vides a general way to associate high-level information
with packets and enable coordination between modules.

In addition to extending the width of a packet by in-
cluding virtual fields, we also extend its height by al-
lowing every field (including non-virtual ones) to hold a
stack of values instead of a single bitstring. These stacks
allow Pyretic to present the illusion of a packet travelling
through multiple levels of abstract networks. For exam-
ple, to “lift” a packet onto a virtual switch, the run-time
system pushes the location of the virtual switch onto the
packet. Having done so, that virtual switch name sits on
top of the concrete switch name. When a packet leaves
a virtual switch, the run-time system pops a field off the
appropriate stack. In the example in Figure 2, this en-
ables the MAC-learning module to select an egress port
on virtual switch V without knowing about the existence
of switches A, B, and C underneath.

Expanding on the example in Figure 2, consider a
packet p entering the network at physical switch A and
physical input port 3. We can represent p as:
{switch: A, inport: 3, vswitch: V, ... }

Pushing virtual switch name V on to the switch field of p
produces a new packet with V on top of A:
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{switch: [V, A], inport: 3, ... }

The push above hides the identity of the physical switch
A and reveals only the identity of the virtual switch V to
observers that only examine top-most stack values. This
mechanism allows Pyretic applications to hide the con-
crete network and replace it with a new abstract one.

Thus far, we have experimented primarily with the
abstraction of location information: switches and ports.
However, there is nothing special about those fields. We
can virtualize IP addresses, MAC addresses or any other
information in a packet, if an application demands it.
Programs must maintain the invariant that the standard
OpenFlow header fields do not contain the empty stack;
packets with an empty stack in such a field will not be
properly realized as a standard OpenFlow packet.

Ideally, OpenFlow switches would support our ex-
tended packet model directly, but they do not. Our run-
time system is responsible for bridging the gap between
the abstract model and the OpenFlow-supported pack-
ets that traverse the network. It does so by generating a
unique identifier that corresponds to a unique set of non-
OpenFlow-compliant portions of the packet (i.e., all vir-
tual fields and everything but the top of the stack in an
OpenFlow-compliant field). This identifier is stored in
spare bits in the packet.2 Our run-time system manages a
table that stores the mapping between unique ids and ex-
tended data. Hence, programmers do not need to manage
this mapping themselves and can instead work in terms
of high-level abstractions.

3.2 High-Level Policy Functions

Pyretic contains a sublanguage for specifying static (i.e.,
unchanging) policies. A static policy is a “snapshot” of
a network’s global forwarding behavior, represented as
an abstract function from a located packet to a multiset
of located packets. The output multiset may be empty;
if so, the policy has effectively dropped the input packet.
The output multiset may contain a single packet at a new
location (e.g., unicast)—typically, though not always, an
output port on the other side of the switch. Finally, the
output multiset may contain several packets (e.g., mul-
ticast or broadcast). Of course, one cannot build many
useful network applications with just a single static, un-
changing policy. To do so, one must use a series of static
policies (i.e., a dynamic policy).

3.2.1 Static Policy Functions

We first describe the details of the static policy lan-
guage, which we call NetCore.3 NetCore contains sev-
eral distinct elements including actions (the basic packet-

2Any source of spare bits (e.g., MPLS labels) could be used. Our
current implementation uses the VLAN field.

3This variant of NetCore is an extension and generalization of a
language with the same name, described in our earlier work [14].

Primitive Actions:
A ::= drop | passthrough | fwd(port) | flood |

push(h=v) | pop(h) | move(h1=h2)
Predicates:
P ::= all_packets | no_packets | match(h=v) |

ingress | egress | P & P | (P | P) | ~P

Query Policies:
Q ::= packets(limit,[h]) | counts(every,[h])
Policies:
C ::= A | Q | P[C] | (C | C) |C >> C | if_(P,C,C)

Figure 4: Summary of static NetCore syntax.

processing primitives), predicates (which are used to se-
lect certain subsets of packets), query policies (which are
used to observe packets traversing the network), and fi-
nally policy combinators, which are used to mix primi-
tive actions, predicates, and queries together to craft so-
phisticated policies from simple components. Figure 4
summarizes the syntax of the key elements of NetCore.

Primitive actions. Primitive actions are the central
building blocks of Pyretic policies; an action receives a
located packet as input and returns a set of located pack-
ets as a result. The simplest is the drop action, which pro-
duces the empty set. The passthrough action produces
the singleton set {p} where p is the input packet. Hence
passthrough acts much like an identity function—it does
not even move the packet from its input port. Perhaps
surprisingly, passthrough is quite useful in conjunction
with other policies and policy combinators. On input
packet p, the fwd(port) action produces the singleton
set containing the packet relocated to outport port on the
same switch as a result. The flood action sends packets
along a minimum spanning tree, excepting the incoming
interface4. When viewed as a function, flood receives
any packet located at an inport on switch s and produces
an output set with one copy of the packet at each outport
on s that belongs to a minimum spanning tree for the
network (maintained by the run-time system). The last
three actions, push, pop, and move, each yield a singleton
set as their output: push(h=v) pushes value v on to field
h; pop(h) pops a value off of field h; and move(h1=h2)

pops the top value on field h2 and pushes it on to h1.

Predicates. Predicates are essential for defining poli-
cies (or parts of policies) that act only on a subset of
packets traversing the network. More specifically, given
an input packet p, the policy P[C], applies the policy
function C to p if p satisfies the predicate P. If p does
not satisfy P then the empty set is returned. (In other
words, the packet is dropped.) Predicates include all_-

packets and no_packets, which match all or no pack-
ets, respectively; ingress and egress which, respec-
tively, match any packets entering or exiting the net-

4The same definition used by Openflow for its flood action.
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work; and match(h=v), matching all packets for which
value v is the top value on the stack at field h. Com-
plex predicates are constructed using basic conjunc-
tion (&), disjunction (|), and negation (~) operators.
The form match(h1=v1,h2=v2) is an abbreviation for
match(h1=v1) & match(h2=v2).

As an example, the policy flood, on its own, will
broadcast every single packet that reaches any inport of
any switch anywhere in the network. On the other hand,
the policy

match(switch=s1,inport=2,srcip=’1.2.3.4’) [flood]

only broadcasts those packets reaching switch s1,
inport 2 with source IP address 1.2.3.4. All other
packets are dropped.

Policies. Primitive actions A are policies, as are re-
stricted policies P[C]. NetCore also contains several ad-
ditional ways of constructing policies.

As discussed in Section 2, sequential composition is
used to build packet-processing pipelines from simpler
components. Semantically, we define sequential compo-
sition C1 >> C2 as the function C3 such that:

C3(packet) = C2(p1) ∪ . . . ∪ C2(pn)

when {p1,. . .,pn} = C1(packet)

In other words, we apply C1 to the input, generating a set
of packets (p1,..., pn) and then apply C2 to each of those
results, taking their union as the final result.

As an example, consider the following policy, which
modifies the destination IP of any incoming packet to
10.0.0.1 and forwards the modified packet out port 3.

pop(dstip) >> push(dstip=’10.0.0.1’) >> fwd(3)

Indeed, the modification idiom is common enough that
we define an abbreviation for it:

modify(h=v) = pop(h) >> push(h=v)

As a more elaborate example, consider a complex pol-
icy P2, designed for forwarding traffic using a set of tags
(staff, student, guest) stored in a virtual field named
USERCLASS. Now, suppose we would like to apply the pol-
icy for staff to a particular subset of the traffic arriving
on network. To do so, we may write a policy P1 to select
and tag the relevant traffic. To use P1 and P2 in combina-
tion, we exploit sequential composition: P1 >> P2. Such
a program is quite modular: if a programmer wanted to
change the forwarding component, she would change P2,
while if she wanted to change the set of packets labeled
staff, she would change P1.

Parallel composition is an alternative and orthogonal
form of composition to sequential composition. The par-
allel composition P3 | P4 behaves as if P3 and P4 were
executed on every packet simultaneously. In other words,
given an input packet p, (P3 | P4)(p) returns the set of
packets P3(p) U P4(p).

Continuing our example, if a programmer wanted to
apply the policy P3 | P4 to packets arriving at switch s1

and a different policy P6 to packets arriving at s2, she
could construct the following composite policy P7.

P5 = P3 | P4

P6 = ...

P7 = match(switch=s1)[P5] | match(switch=s2)[P6]

After recognizing a security threat from source IP ad-
dress, say address 1.2.3.4, the programmer might go
one step further creating policy P8 that restricts P7 to
applying only to traffic from other addresses (implicitly
dropping traffic from 1.2.3.4).
P8 = ~match(srcip=’1.2.3.4’)[P7]

The policy if_ is a convenience conditional policy.
For example, if the current packet satisfies P, then

if_(P, drop, passthrough)

drops that packet while leaving all others untouched (al-
lowing a subsequent policy in a pipeline of sequential
compositions to process it). Conditional policies are a
derived form that can be encoded using parallel compo-
sition, restriction, and negation.

Queries. The last kind of policy we support is a query
policy (Q). Intuitively, a query is an abstract policy that
directs information from the physical network to the con-
troller platform. When viewed as a function, a query re-
ceives located packets as arguments and produces new
located packets as results like any other policy. How-
ever, the resulting located packets do not find themselves
at some physical port on some physical switch in the net-
work. Instead, these packets are diverted to a data struc-
ture resident on the controller called a “bucket”.

NetCore contains two queries: counts and packets,
which, abstractly, direct packets to two different types
of buckets, a packet_bucket and a counting_bucket,
respectively. Applications register listeners (i.e., call-
backs) with buckets; these callbacks are invoked to pro-
cess the information contained in the bucket. Semanti-
cally, the two query policies differ only in terms of the
information each bucket reveals to its listeners.

The packet_bucket, as its name suggests, passes
entire packets to its listeners. For example,
packets(limit,[’srcip’]) invokes its listeners on
up to limit packets for each source IP address. The
two most common values for limit are None and 1,
with None indicating the bucket should process an
unlimited number of packets. More generally, a list
of headers is allowed: the bucket associated with
packets(1,[h1,...,hk]) invokes each listener on at
most 1 packet for each distinct record of values in fields
h1 through hk.

The counting_bucket supplies its listeners with
aggregate packet statistics, not the packets them-
selves. Hence, it may be implemented using Open-
Flow counters in switch hardware. The policy
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from pyretic.lib import *

def main():

return flood

Figure 5: A complete program: hub.py.

counts(every,[’srcip’]) creates a bucket that calls
its listeners every every seconds and provides each lis-
tener with a dictionary mapping source IP addresses
to the cumulative number of packets containing that
source IP address received by the bucket. As above,
counting policies may be generalized to discriminate
between packets on the basis of multiple headers:
counts(every,[h1,...,hk]).

A query policy Q may be used in conjunction with any
other policy we define. For example, if we wish to an-
alyze traffic generated from IP address 1.2.3.4 using Q,
we may simply construct the following.

match(srcip=’1.2.3.4’) [Q]

If we wanted to both forward and monitor a certain sub-
set of packets, we use parallel composition as before:

match(srcip=’1.2.3.4’) [Q | fwd(3)]

3.2.2 From Static Policies to Dynamic Applications

After defining a static policy, the programmer may use
that policy within a Pyretic application. Figure 5 presents
the simplest possible, yet complete, Pyretic application.
It imports the Pyretic library, which includes definitions
of all primitive actions (such as flood, drop, etc.), pol-
icy operators and query functions, as well as the run-time
system. The program itself is trivial: main does nothing
but return the flood policy. A Pyretic program such as
this one is executed by starting up a modified version of
the POX run-time system [19]. POX reads the Pyretic
script and executes main. Although we use POX for low-
level message processing, our use of POX is not essen-
tial. A Pyretic-like language could be built on top of any
low-level controller.

Monitoring. Figure 6 presents a second simple ap-
plication, designed to monitor and print packets from
source IP 1.2.3.4 to the terminal. In this figure, the
dpi function first creates a new packet-monitoring pol-
icy named q. Next, it registers the printer listener with
the query q using q’s when method. This listener will be
called each time a packet arrives at the packet_bucket

to which q forwards. Finally, the dpi function constructs
and returns a policy that embeds the query within it. The
main function uses dpi and further composes it with a
routing policy (the simple flood).

MAC-learning. Figure 7 presents an MAC-learning
module that illustrates how to construct a dynamic pol-
icy. It is designed assuming that network hosts do not

def printer(pkt):

print pkt

def dpi():

q = packets(None,[])

q.when(printer)

return match(srcip=’1.2.3.4’)[q]

def main():

return dpi() | flood

Figure 6: Deep packet inspection.

def learn(self):

def update(pkt):

self.P =

if_(match(dstmac=pkt[’srcmac’],

switch=pkt[’switch’]),

fwd(pkt[’inport’]),

self.P)

q = packets(1,[’srcmac’,’switch’])

q.when(update)

self.P = flood | q

def main():

return dynamic(learn)()

Figure 7: MAC-learning switch.

move. It initially operates by flooding all packets it re-
ceives. For each switch, when a packet with a new source
MAC address (say, MAC address M) appears at one of its
input ports (say, inport I), it concludes that M must live off
I. Consequently, it refines its forwarding behavior so that
packets with destination MAC address M are no longer
flooded, but instead forwarded only out of port I.

Examining a few of the details of Figure 7, we see
that the last line of the learn function is the line that ini-
tializes the policy—it starts out flooding all packets and
using q to listen for packets with new source MAC ad-
dresses. The listener for query is the function update,
which receives packets with new source MACs as an ar-
gument. That listener updates the dynamic policy with
a conditional policy that tests future packets to see if
their destination MAC is equal to the current packet’s
source MAC. If so, it forwards the packet out the inport
on which the current packet resides. If not, it invokes the
existing policy self.P. In this way, over time, the pol-
icy is extended again and again until the locations of all
hosts have been learned.

The last line of Figure 7 uses the function dynamic to
wrap up learn and produce a new dynamic policy class,
whose constructor it then calls to produce a operational
dynamic policy instance.

Load balancer. As a final example in this section, we
show how to construct a simple dynamic server load bal-
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ancer. Doing so illustrates a common Pyretic program-
ming paradigm: One may develop dynamic applications
by constructing parameterized static policies, listening
for network events, and then repeatedly recomputing the
static policy using different parameters as the network
environment changes. The example also illustrates the
process of building up a somewhat more complex policy
by defining a collection of ordinary Python functions that
compute simple, independent components of the policy,
which are subsequently composed together.

Figure 8 presents the code, which spreads requests for
a single public-facing IP address over multiple back-end
servers. The first three functions in the figure collabo-
rate to construct a static load balancer. In the first func-
tion (subs), variable c is the client IP address prefix, p is
the service’s public-facing IP address, and r is the spe-
cific replica chosen. This function rewrites any packet
whose source IP address matches c and destination IP
address is p so the destination IP address is r, and vice
versa. All other packets are left unmodified. The next
function, rewrite, iterates subs over a dictionary d map-
ping IP prefixes to server replicas. To simplify this code,
we have overloaded sequential composition (>>) so that
it can be applied to a list of policies (placing each ele-
ment of the list in sequence). Hence, intuitively, rewrite
sends each packet through a pipeline of tests and when
the test succeeds, the packet is transformed. The third
function, static_lb invokes rewrite with a function
balance (definition omitted from the figure) that parti-
tions possible clients and assigns them to replicas, using
a lists of server replicas R and a dictionary H containing a
history of traffic statistics.

Now, to build a dynamic load balancer that changes
the mapping from clients to server replicas over time,
consider lb. This dynamic balancer issues a query q

that computes a dictionary mapping source IP addresses
to packet counts every minute (60 seconds). Each time
the query returns a new stats value, the policy invokes
rebalance, which updates the history H and recomputes
a new load balancing policy using static_lb.

4 Network Objects
The policy language described in the preceding section
provides programmers with flexible constructs that make
it easy to build sophisticated network applications out
of simple, independent components. However, it suffers
from a significant limitation: programmers must spec-
ify policies in terms of the underlying physical topology.
This hinders code reuse since policies written for one
topology typically cannot be used with other topologies.

To address this limitation, Pyretic also provides net-
work objects (or simply networks), which allow pro-
grammers to abstract away details of the physical topol-
ogy and write policies in terms of abstracted views of

def subs(c,r,p):

c_to_p = match(srcip=c,dstip=p)

r_to_c = match(srcip=r,dstip=c)

return c_to_p[modify(dstip=r)] |

r_to_c[modify(srcip=p)] |

(~r_to_c & ~c_to_p)[passthrough]

def rewrite(d,p):

return (>>)([subs(c,r,p) for c,r in d])

def static_lb(p,R,H):

return rewrite(balance(R,H),p)

def lb(self,p,R,H):

def rebalance(stats):

H = H.update(stats)

self.P = static_lb(p,R,H)

q = counts(60,[’srcip’])

q.when(rebalance)

self.P = static_lb(p,R,H) | match(dstip=p)[q])

Figure 8: Dynamic load balancer (excerpts).

that network—providing an important form of modular-
ity. We do this by allowing a new derived network to
be built on top of an already existing underlying network
(and, as implied by this terminology, Pyretic program-
mers may layer one derived network atop another).

Each network object has three key elements: a topol-
ogy, a policy, and, for derived networks, a mapping. The
topology object is simply a graph with switches as nodes
and links as edges. The policy specifies the intended be-
havior of the network object with respect to that topol-
ogy. The mapping comprises functions establishing an
association between elements of the derived topology
and those of its underlying topology.

The base network object represents the physical net-
work. The Pyretic run-time system implements a dis-
covery protocol that learns the physical topology using
a combination of OpenFlow events and simple packet
probes. The run-time system ultimately resolves all de-
rived network policies into a single policy that can be
applied to the base network.

A derived network object’s mapping comprises the
following functions:
• A function to map changes to the underlying topology

up to changes on the derived topology, and
• A function to map policies written against the derived

topology down to a semantically equivalent policy ex-
pressed only in terms of the underlying topology.

Pyretic provides several constructs for implementing
these functions automatically. In most situations, the
programmer simply specifies the mapping between ele-
ments of the topologies, along with a function for calcu-
lating forwarding paths through the underlying topology,
and Pyretic calculates correct implementations automati-
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Figure 9: Derived “big switch” topology.

cally. The next few paragraphs describe these features in
detail. For concreteness, we consider a running example
where the derived network contains a single “big switch”
as shown in Figure 9.

Transforming Topologies. The first step involved in
implementing the “big switch” is to specify the relation-
ship between elements of the underlying topology and
elements of the derived topology. In this case, because
the derived topology only contains a single switch, the
association between underlying and derived topology el-
ements can be computed automatically. To represent this
association, we will use a dictionary that maps switch-
port pairs (vswitch,vport) in the derived network to
switch-port pairs (switch,port) in the underlying net-
work. The following Python function computes a dictio-
nary that relates ports on the switch in the derived net-
work to ports at the perimeter of the underlying network:

def bfs_vmap(topo):

vswitch = 1

vport = 1

for (switch, port) in topo.egress_locations:

vmap[(vswitch, vport)] = (switch, port)

vport += 1

return vmap

Using this dictionary, it is straightforward to build the
graph representing the derived topology—it consists of
a single switch with the ports specified in the domain
of the dictionary. Likewise, it is straightforward to map
changes to the underlying topology up to changes for the
derived topology. Pyretic provides code to implement
these functions automatically from the vmap dictionary.

Transforming Policies. The next step involved in im-
plementing the “big switch” is to transform policies writ-
ten for the derived network into policies for the underly-
ing network. This turns out to be significantly more chal-
lenging because it involves implementing a policy writ-
ten against one topology, using the switches and links
provided in a completely different topology. However,
Pyretic’s abstract packet model and support for sequen-
tial composition allow the transformation to be expressed
in a clean and elegant way.

The transformation uses three auxiliary policies:5

• Ingress Policy: “lifts” packets in the underlying net-
work up into the derived network by pushing appro-

5As before, Pyretic can automatically generate these from a vmap.

def virtualize(ingress_policy,

egress_policy,

fabric_policy,

derived_policy):

return if_(~match(vswitch=None),

(ingress_policy >>

move(switch=vswitch,

inport=vinport) >>

derived_policy >>

move(vswitch=switch,

vinport=inport,

voutport=outport)),

passthrough) >>

fabric_policy >>

egress_policy

Figure 10: Virtualization transformation.

priate switch and port identifiers onto the stack of val-
ues maintained in Pyretic’s abstract packet model.

• Egress policy: “lowers” packets from the derived net-
work to the underlying network by popping the switch
and port identifier from the stack of values maintained
in Pyretic’s abstract packet model.

• Fabric policy: implements forwarding between adja-
cent ports in the derived network using the switches
and links in the underlying topology. In general, cal-
culating this policy involves computing a graph algo-
rithm on the underlying topology.

With these auxiliary policies, the policy transforma-
tion can be expressed by composing several policies in
sequence: ingress policy, derived policy, fabric policy,
and egress policy. Figure 10 defines a general function
virtualize that implements this transformation.

Example. To illustrate ingress, egress, and fabric poli-
cies, consider a specific physical topology consisting of
two switches S1 and S2, each with an outward-facing port
and connected to each other by a link as shown in Fig-
ure 9. The policy running on the derived switch encodes
the behavior of a repeater hub, as shown in Figure 5. The
ingress policy is as follows:

ingress_policy =

( match(switch=S1, inport=1)

[push(vswitch=V, vinport=1)]

| match(switch=S2, inport=1)

[push(vswitch=V, vinport=2)])

It simply pushes the derived switch V and inport onto the
corresponding “virtual” header stacks. The egress policy
is symmetric:

egress_policy = match(vswitch=V)

[if_(match(switch=S1, voutport=1)

| match(switch=S2, voutport=2),

pop(vswitch, vinport, voutport),

passthrough)]

It pops the derived switch, inport, and outport from the
appropriate virtual header stacks if the switch is labeled

9
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with derived switch V, and otherwise passes the packet
through unmodified. The fabric policy forwards pack-
ets labeled with derived switch V along the (unique) path
between S1 and S2:

fabric_policy = match(vswitch=V)[

( match(switch=S1, voutport=1)[fwd(1)]

| match(switch=S1, voutport=2)[fwd(2)]

| match(switch=S2, voutport=1)[fwd(2)]

| match(switch=S2, voutport=2)[fwd(1)])]

To illustrate these definitions, consider processing of a
packet with the following headers.

{ switch:S1, inport:1, ... }

Recall that Pyretic’s packet model treats the location of
the packet as a header field. The first step of processing
checks whether the packet has already entered the de-
rived network, by testing for the presence of the vswitch

header field. In this case, the packet does not contain
this field so we treat it as being located at the ingress
port of the derived switch and take the first branch of the
conditional in Figure 10. Next, we evaluate ingress_-

policy which, by the first disjunct, pushes the headers
vswitch=V and vinport=1 onto the packet, yielding a
packet with the following headers:

{ switch:S1, inport:1,

vswitch:V, vinport:1, ... }

Next we move the vswitch and vinport headers to
switch and inport, and evaluate the policy written
against the derived network (here simply flood). Flood-
ing the packet on the derived network, generates a packet
on outport 2 in this case:

{ switch:[V, S1], inport:[1, 1],

outport:2, ...}

We then move the switch, inport, and outport headers
to the corresponding virtual header stacks, which has the
effect of restoring the original switch and inport headers,

{ switch:S1, inport:1,

vswitch:V, vinport:1, voutport:2 }

and evaluate the fabric policy, which forwards the packet
out port 2 of switch S1. Finally, the egress policy passes
the packet through unmodified and the underlying topol-
ogy transfers the packet to port 2 on switch S2:

{ switch:S2, inport:2,

vswitch:V, vinport:1, voutport:2 }

This completes the first step of processing on the physi-
cal network. In the second step of processing, the packet
already has virtual switch, inport, and outport labels.
Hence, we do not calculate virtual headers as before and
instead skip straight to the fabric policy, which forwards
the packet out port 1 of S2. Now the packet does satisfy
the condition stated in the egress policy, so it pops the
virtual headers and forwards the packet out to its actual
destination.

5 Example Pyretic Applications
To experiment with the Pyretic design, we have imple-
mented a collection of applications. Table 2 lists a se-
lection of these examples, highlighting the key features
of Pyretic utilized, where the examples are discussed
in the paper, and corresponding file names in the refer-
ence implementation [1]. Most terms in the features col-
umn should be familiar from prior sections. The term
“novel primitives” simply refers to basic, but novel, fea-
tures of Pyretic such as passthrough policies. Due to
space constraints, we have omitted discussion of certain
advanced Pyretic features that are needed to implement
some applications including traffic generation, topology-
aware predicates, dynamic nesting, and recursion. Sec-
tion 5.1 elaborates on some of the additional applications
found in our reference implementation and the key fea-
tures they use. Section 5.2 concludes by presenting a
“kitchen sink” example that utilizes all of Pyretic’s fea-
tures to write a truly modular application in just a few
lines of code.

5.1 Pyretic Example Suite

ARP. The ARP application demonstrates how a Pyretic
program can inject new packets into the network, and
thereby respond to ARP traffic on behalf of hosts.

Firewalls. The firewall applications construct stateless
(static) and stateful (dynamic) firewalls. These applica-
tions are similar in nature to the load balancer described
in Section 3.2.2, but go a step further by demonstrat-
ing an advanced technique we call dynamic nesting in
which one dynamic policy includes another dynamic pol-
icy within it. These firewalls also exploit topology-aware
predicates such as ingress (which identifies packets at
the network ingress) and egress (which identifies pack-
ets at the network egress).

Gateway. The gateway example implements the pic-
ture in Figure 3. The physical topology consists of three
parts: an Ethernet island (switches 2, 3, and 4), a gate-
way router (switch 1), and an IP core (switches 5, 6,
and 7). The gateway router is responsible for running
several different pieces of logic. It is difficult to reuse
standard components when all modules must share the
same physical switch, so we abstract switch 1 to three
switches (1000, 1001, 1002)—running MAC-learning,
gateway logic, and IP routing, respectively. Unlike previ-
ous examples, the ports and links connecting these three
switches are completely virtual—that is they map to no
physical port, even indirectly. We encapsulate these com-
ponents into a network object named GatewayVirt that
performs the mechanical work of copying the base ob-
ject and modifying it accordingly.

To a first approximation, here is how each of the virtu-
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Examples Pyretic Features Used Section File
Hub static policy 3.2.2 hub.py

MAC-Learning dynamic policy; queries; parallel comp. 3.2.2 mac_learner.py

Monitoring static policy; queries; parallel comp. 3.2.2 monitor.py

Load Balancers static policy; queries; parallel & sequential comp.; novel primitives 3.2.2 load_balancer.py

Firewalls dynamic policy; queries; parallel & sequential comp.; - firewall.py

novel primitives; topology-aware predicates; dynamic nesting
ARP static policy; queries; parallel comp.; traffic generation - arp.py

Big Switch static policy; topology abstraction; virtual headers; parallel comp.; novel primitives 4 bfs.py

Spanning Tree static policy; topology abstraction; virtual headers; parallel comp.; novel primitives - spanning_tree.py

Gateway static policy; topology abstraction; virtual headers; recursion; - gateway.py

parallel & sequential comp.; novel primitives
Kitchen Sink dynamic policy; topology abstraction; virtual headers; parallel comp.; 5.2 kitchen_sink.py

novel primitives; topology-aware predicates; dynamic nesting

Table 2: Selected Pyretic examples.

alization components are implemented:6

• Ingress policy: Incoming packets to the physical gate-
way switch from the Ethernet side are tagged with
vswitch=1000 (and the appropriate vinport), and in-
coming packets to the physical gateway switch from
the IP side are tagged with vswitch=1002 (and the ap-
propriate vinport).

• Fabric policy: For switches 1000-1002, the fabric pol-
icy modifies the packet’s virtual headers, effectively
“moving” the packet one-step through the chain of
switches. When moving the packet to a virtual port,
the fabric policy recursively applies the entire policy
(including ingress, fabric, and egress policies). The
recursion halts when the packet is moved to a non-
completely virtual port, at which time the packet is
forwarded out of the corresponding physical port.

• Egress policy: As virtual links span at most one phys-
ical link, we strip the virtual headers after each for-
warding action on the base network.

5.2 Putting it All Together

We conclude with an example application addressing
the motivating “many-to-one” scenario discussed in Sec-
tion 2.2 and shown in Figure 3. We implement the func-
tionality of the Ethernet island by handling ARP traffic
using the corresponding module from Table 2 and all
other traffic with the familiar MAC-learning module.

eth = if_(ARP,dynamic(arp)(),dynamic(learn)())

We take the load balancer from Section 3.2.2 and com-
bine it with a dynamic firewall from the examples ta-
ble. This firewall is written in terms of white-listed traf-
fic from client IPs to public addresses, creating another
interesting twist— easily solved using Pyretic’s opera-
tors. Specifically, the correct processing order of load
balancer and firewall turns out to be direction-dependent.
The firewall must be applied before load balancing for

6See the reference implementation [1] for further details.

incoming traffic from clients—as the firewall must con-
sider the original IP addresses, which are no longer be
available after the load balancer rewrites the destination
address that of a replica. In the other direction, the load
balancer must first restore the original IP address before
the firewall is applied to packets returning to the client.

fwlb = if_(from_client, afw >> alb, alb >> afw)

Finally, we complete our IP core by taking this com-
bined load balancer/firewall and sequentially composing
it with a module that implements shortest-path routing to
the appropriate egress port—by running MAC-learning
on a shortest path big switch!

ip = fwlb >> virtualize(dynamic(learn)(),

BFS(ip_core) )

The final component is our gateway logic itself. The
gateway handles ARP traffic, rewrites source and des-
tination MAC addresses (since these change on subnet
transitions), and forwards out the appropriate port.

gw = if_(ARP,dynamic(arp)(),

rewrite_macs(all_macs) >>

( eth_to_ip[fwd(2)] |

ip_to_eth[fwd(1)] ))

We can then combine each of these policies, restricted to
the appropriate set of switches, in parallel and run on the
virtualized gateway topology discussed previously.

virtualize(in_(ethernet)[ eth ] |

in_(gateway)[ gw ] |

in_(ip_core)[ ip ],

GatewayVirt(Recurse(self))

The virtualize transformation from Section 4 generates
the ultimate policy that is executed on the base network.

6 Related Work
In recent years, SDN has emerged as an active area of re-
search. There are now a number of innovative controller
platforms based on the OpenFlow API [13] that make
it possible to manage the behavior of a network using
general-purpose programs [7, 12, 19, 2, 3, 24, 21]. Early
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controller platforms such as NOX [7] offered a low-level
programming interface based on the OpenFlow API it-
self; recent controllers provide additional features such
as composition, isolation, and virtualization. We briefly
review related work in each of these areas.

Composition. Pyretic’s parallel and sequential compo-
sition operators resemble earlier work on the Click mod-
ular router [11]. However, rather than targeting mul-
tiple packet-processing modules within a single soft-
ware router, Pyretic focuses on composing the control
logic that affects the handling of traffic on an entire
network of OpenFlow switches. Other controller plat-
forms with some support for composition include Mae-
stro [3], which allows programmers to write applica-
tions in terms of user-defined views of network state, and
FRESCO [22], which provides a high-level language for
defining security policies. Pyretic is distinguished from
these systems in modeling policies as mathematical func-
tions on packets, and in providing direct support for pol-
icy composition. In particular, unlike previous systems,
Pyretic’s composition operators do not require program-
mers to resolve conflicts by hand.

Isolation. To support multiple applications executing
simultaneously in a single network, several controllers
now support network “slices”. Each slice may execute a
different program while the controller provides isolation.
One popular such controller is FlowVisor [21], a hyper-
visor that enforces strict traffic isolation between the con-
trollers running on top of it, and also manages provision-
ing of shared resources such as bandwidth and the con-
troller itself. Another recent proposal uses an extension
to the NetCore compiler to provide traffic isolation by
construction [8]. Finally, controllers that support the cre-
ation of virtual networks typically provide a form of iso-
lation [16]. Pyretic’s composition operators—in partic-
ular, sequential composition—make it straightforward to
implement network slices. In addition, unlike controllers
that only provide strict slicing, Pyretic can also be used
to decompose a single application into different modules
that affect the same traffic.

Network Objects. Pyretic’s network objects general-
ize the global network views provided in other SDN con-
trollers, such as NOX [7], ONIX [12], and POX [19]. In
these systems, the network view (or network informa-
tion base) represents the global topology as an annotated
graph that can be configured and queried. Some sys-
tems go a step further and allow programmers to define a
mapping between a representation of the physical topol-
ogy and a simplified representation of the network. For
example, the “big switch” abstraction [16, 4, 5, 20] can
greatly simplify the logic of applications such as access
control and virtual machine migration. Pyretic’s network
objects can be used to implement a wide range of abstract

topologies. Moreover, as described in Section 4, sequen-
tial composition and virtual headers provide a simple and
elegant mechanism for building derived network objects
that implement a variety of abstract topologies. This
mechanism is inspired by a technique for implementing
virtual networks originally proposed by Casado et al. [4].

Programming Languages. This paper is part of a
growing line of research on applying programming-
language techniques to SDN [9, 24, 15, 6, 14]. Our
early work on Frenetic [6, 14] introduced a functional
language supporting parallel composition and SQL-like
queries. This work goes further, by introducing an ab-
stract packet model, sequential composition operator,
and topology abstraction using network objects, as well
as a new imperative implementation in Python. Taken
together, these features facilitate “programming in the
large” by enabling programmers to develop SDN appli-
cations in a modular way.

7 Conclusion
We believe the right level of abstraction for program-
mers is not a low-level interface to the data-plane hard-
ware, but instead a higher-level language for writing and
composing modules. Pyretic is a new language that al-
lows SDN programmers to build large, sophisticated con-
troller applications out of small, self-contained modules.
It provides the programmatic tools that enable network
programmers, operators, and administrators to master the
complexities of their domain.
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