
This paper is included in the Proceedings of the
28th Large Installation System Administration Conference (LISA14).

November 9–14, 2014 • Seattle, WA

ISBN 978-1-931971-17-1

Open access to the
Proceedings of the 28th Large Installation

System Administration Conference (LISA14)
is sponsored by USENIX

Realtime High-Speed Network Traffic Monitoring
Using ntopng

Luca Deri, IIT/CNR and ntop; Maurizio Martinelli, IIT/CNR; Alfredo Cardigliano, ntop

https://www.usenix.org/conference/lisa14/conference-program/presentation/deri-luca

USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  69

Realtime High-Speed Network Traffic Monitoring Using ntopng	

!
Luca Deri, IIT/CNR, ntop Maurizio Martinelli, IIT/CNR	

Alfredo Cardigliano, ntop	

!!!
Abstract	

Monitoring network traffic has become increasingly
challenging in terms of number of hosts, protocol pro-
liferation and probe placement topologies. Virtualised
environments and cloud services shifted the focus from
dedicated hardware monitoring devices to virtual ma-
chine based, software traffic monitoring applications. 
This paper covers the design and implementation of
ntopng, an open-source traffic monitoring application
designed for high-speed networks. ntopng’s key fea-
tures are large networks real-time analytics and the abil-
ity to characterise application protocols and user traffic
behaviour. ntopng was extensively validated in various
monitoring environments ranging from small networks
to .it ccTLD traffic analysis.	

!
1. Introduction	

Network traffic monitoring standards such as sFlow [1]
and NetFlow/IPFIX [2, 3] have been conceived at the
beginning of the last decade. Both protocols have been
designed for being embedded into physical network
devices such as routers and switches where the network
traffic is flowing. In order to keep up with the increas-
ing network speeds, sFlow natively implements packet
sampling in order to reduce the load on the monitoring
probe. While both flow and packet sampling is support-
ed in NetFlow/IPFIX, network administrators try to
avoid these mechanisms in order to have accurate traffic
measurement. Many routers have not upgraded their
monitoring capabilities to support the increasing num-
bers of 1/10G ports. Unless special probes are used,
traffic analysis based on partial data results in inaccu-
rate measurements.	

Physical devices cannot monitor virtualised environ-
ments because inter-VM traffic is not visible to the
physical network interface. Over the years however,
virtualisation software developers have created virtual
network switches with the ability to mirror network
traffic from virtual environments into physical Ethernet
ports where monitoring probes can be attached. Recent-
ly, virtual switches such as VMware vSphere Dis-
tributed Switch or Open vSwitch natively support Net-
Flow/sFlow for inter-VM communications [4], thus

facilitating the monitoring of virtual environments.
These are only partial solutions because either v5 Net-
Flow (or v9 with basic information elements only) or
inaccurate, sample-based sFlow are supported. Network
managers need traffic monitoring tools that are able to
spot bottlenecks and security issues while providing
accurate information for troubleshooting the cause. This
means that while NetFlow/sFlow can prove a quantita-
tive analysis in terms of traffic volume and TCP/UDP
ports being used, they are unable to report the cause of
the problems. For instance, NetFlow/IPFIX can be used
to monitor the bandwidth used by the HTTP protocol
but embedded NetFlow probes are unable to report that
specific URLs are affected by large service time.	

Today a single application may be based on complex
cloud-based services comprised of several processes
distributed across a LAN. Until a few years ago web
applications were constructed using a combination of
web servers, Java-based business logic and a database
servers. The adoption of cache servers (e.g. memcache
and redis) and mapReduce-based databases [5] (e.g.
Apache Cassandra and MongoDB) increased the appli-
cations’ architectural complexity. The distributed nature
of this environment needs application level information
to support effective network monitoring. For example,
it is not sufficient to report which specific TCP connec-
tion has been affected by a long service time without
reporting the nature of the transaction (e.g. the URL for
HTTP, or the SQL query for a database server) that
caused the bottleneck. Because modern services use
dynamic TCP/UDP ports the network administrator
needs to know what ports map to what application. The
result is that traditional device-based traffic monitoring
devices need to move towards software-based monitor-
ing probes that increase network visibility at the user
and application level. As this activity cannot be per-
formed at network level (i.e. by observing traffic at a
monitoring point that sees all traffic), software probes
are installed on the physical/virtual servers where ser-
vices are provided. This enables probes to observe the
system internals and collect information (e.g. what user/
process is responsible for a specific network connec-
tion) that would be otherwise difficult to analyse out-
side the system’s context just by looking at packets.	

70  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

Network administrators can then view virtual and cloud
environments in real-time. The flow-based monitoring
paradigm is by nature unable to produce real-time in-
formation [17]. Flows statistics such as throughput can
be computed in flow collectors only for the duration of
the flow, which is usually between 30 and 120 seconds
(if not more). This means that using the flow paradigm,
network administrators cannot have a real-time traffic
view due to the latency intrinsic to this monitoring ar-
chitecture (i.e. flows are first stored into the flow cache,
then in the export cache, and finally sent to the collec-
tor) and also because flows can only report average
values (i.e. the flow throughout can be computed by
dividing the flow data volume for its duration) thus hid-
ing, for instance, traffic spikes.	

The creation of ntopng, an open-source web-based
monitoring console, was motivated by the challenges of
monitoring modern network topologies and the limita-
tions of current traffic monitoring protocols. The main
goal of ntopng is the ability to provide a real-time view
of network traffic flowing in large networks (i.e. a few
hundred thousand hosts exchanging traffic on a multi-
Gbit link) while providing dynamic analytics able to
show key performance indicators and bottleneck root
cause analysis. The rest of the paper is structured as
follow. Section 2 describes the ntopng design goals.
Section 3 covers the ntopng architecture and its major
software components. Section 4 evaluates the ntopng
implementation using both real and synthetic traffic.
Section 5 covers the open issues and future work items.
Section 6 lists applications similar to ntopng, and final-
ly section 7 concludes the paper.	

!
2. ntopng Design Goals	

ntopng’s design is based on the experience gained from
creating its predecessor, named ntop (and thus the name
ntop next generation or ntopng) and first introduced in
1998. When the original ntop was designed, networks
were significantly different. ntopng’s design reflects
new realities:	

• Today’s protocols are all IP-based, whereas 15 years
ago many others existed (e.g. NetBIOS, AppleTalk,
and IPX). Whereas only limited non-IP protocol sup-
port is needed, v4/v6 needs additional, and more ac-
curate, metrics including packet loss, retransmissions,
and network latency.	

• In the past decade the number of computers connect-
ed to the Internet has risen significantly. Modern
monitoring probes need to support hundreds of thou-
sand of active hosts. 	

• While computer processing power increased in the

last decade according to the Moore’s law, system ar-
chitecture support for increasing network interface
speeds (10/10 Mbps to 10/40 today) has not always
been proportional. As it will be later explained it is
necessary to keep up with current network speeds
without dropping packets.	

• While non-IP protocols basically disappeared, appli-
cation protocols have significantly increased and they
still change rapidly as new popular applications ap-
pear (e.g. Skype). The association UDP/TCP port
with an application protocol is no longer static, so
unless other techniques, such as DPI (Deep Packet
Inspection) [6] are in place, identifying applications
based on ports is not reliable.	

• As TLS (Transport Layer Security) [7] is becoming
pervasive and no longer limited to secure HTTP, net-
work administrators need partial visibility of encrypt-
ed communications. 	

• The HTTP protocol has greatly changed, as it is no
longer used to carry, as originally designed, hypertext
only. Instead, it is now used for many other purposes
including audio/video streaming, firewall trespassing
and in many peer-to-peer protocols. This means that
today HTTP no longer identifies only web-related
activities, and thus monitoring systems need to char-
acterise HTTP traffic in detail.	

In addition to the above requirements, ntopng has been
designed to satisfy the following goals:	

• Created as open-source software in order to let users
study, improve, and modify it. Code availability is not
a minor feature in networking as it enables users to
compile and run the code on heterogeneous platforms
and network environments. Furthermore, the adoption
of this license allows existing open-source libraries
and frameworks to be used by ntopng instead of cod-
ing everything from scratch as it often happens with
closed-source applications.	

• Operate at 10 Gbit without packet loss on a network
backbone where user traffic is flowing (i.e. average
packet size is 512 bytes or more), and support at least
3 Mpps (Million Packets/sec) per core on a commodi-
ty system, so that a low-end quad-core server may
monitor a 10 Gbit link with minimal size packets (64
bytes).	

• All monitoring data must be immediately available,
with traffic counters updated in real-time without
measurement latency and average counters that are
otherwise typical of probe/collector architectures.	

• Traffic monitoring must be fully implemented in
software with no specific hardware acceleration re-

USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  71

quirements. While many applications are now ex-
ploiting GPUs [8] or accelerated network adapters
[9], monitoring virtual and cloud environments re-
quires pure software-based applications that have no
dependency on specific hardware and that can be mi-
grated, as needed, across VMs.	

• In addition to raw packet capture, ntopng must sup-
port the collection of sFlow/NetFlow/IPFIX flows, so
that legacy monitoring protocols can also be support-
ed.	

• Ability to detect and characterise the most popular
network protocols including (but not limited to)
Skype, BitTorrent, multimedia (VoIP and streaming),
social (FaceBook, Twitter), and business (Citrix, We-
bex). As it will be explained below, this goal has been
achieved by developing a specific framework instead
of including this logic within ntopng. This avoids the
need of modifying ntopng when new protocols are
added to the framework.	

• Embedded web-based GUI based on HTML5 and
dynamic web pages so that real-time monitoring data
can be displayed using a modern, vector-based graph-
ical user interface. These requirements are the foun-
dation for the creation of rich traffic analytics.	

• Scriptable and multi-threaded monitor engine so that
dynamic web pages can be created and accessed by
multiple clients simultaneously.	

• Efficient monitoring engine not only in terms of
packet processing capacity, but in its ability to operate
on a wide range of computers, including low-power
embedded systems as well as multi-core high-end
servers. Support of low-end systems is necessary in
order to embed ntopng into existing network devices
such as Linux-based routers. This feature is to pro-
vide a low-cost solution for monitoring distributed
and SOHO (Small Office Home Office) networks.	

• Ability to generate alerts based on traffic conditions.
In particular the alert definition should be config-
urable my means of a script, so that users can define
their own conditions for triggering alerts.	

• Integration with the system where traffic is observed,
so that on selected servers, it is possible to correlate
network events with system processes.	

The following section covers in detail the ntopng soft-
ware architecture and describes the various components
on which the application is layered. !
3. ntopng Software Architecture	

ntopng is coded in C++ which enables source code

portability across systems (e.g. X86, MIPS and ARM)
and clean class-based design, while granting high exe-
cution speed.	

1. ntopng Architecture	

ntopng is divided in four software layers:	

• Ingress data layer: monitoring data can be raw pack-
ets captured from one or more network interfaces, or
collected NetFlow/IPFIX/sFlow flows after having
been preprocessed.	

• Monitoring engine: the ntopng core responsible for
processing ingress data and consolidating traffic
counters into memory.	

• Scripting engine: a thin C++ software layer that ex-
ports monitoring data to Lua-based scripts.	

• Egress data layer: interface towards external applica-
tion that can access real-time monitoring data.	

3.1. Ingress Data Layer	

The ingress layer is responsible for receiving monitor-
ing data. Currently three network interfaces are imple-
mented:	

• libpcap Interface: capture raw packets by means of
the popular libpcap library.	

• PF_RING Interface: capture raw packets using the
open-source PF_RING framework for Linux systems
[10] developed by ntop for enhancing both packet
capture and transmission speed. PF_RING is divided
in two parts: a kernel module that efficiently interacts
with the operating system and network drivers, and a
user-space library that interacts with the kernel mod-

Libpcap PF_RING

Lua-based Scripting Engine

Web-Server

Incoming Packets
(Raw Traffic)

NetFlow/IPFIX, sFlow

n
nProbe

Redis

nDPI

Monitoring Engine

Web Browser

Data Export

Log ManagersWeb Apps

JSON Log FilesSyslog

Network Events
(e.g. Firewall)

JSON

72  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

ule, and implements an API used by PF_RING-based
applications. The main difference between libpcap
and PF_RING, is that when using the latter it is pos-
sible to capture/receive minimum size packets at 10
Gbit with little CPU usage using commodity network
adapters. PF_RING features these performance fig-
ures both on physical hosts and on Linux KVM-based
virtual machines, thus paving the way to line-rate
VM-based traffic monitoring.	

• ØMQ Interface. The ØMQ library [12] is an open-
source portable messaging library coded in C++ that
can be used to implement efficient distributed appli-
cations. Each application is independent, runs on its
own memory space, and it can be deployed on the
same host where ntopng is running, or on remote
hosts. In ntopng it has been used to receive traffic-
related data from distributed systems. ntopng creates
a ØMQ socket and waits for events formatted as
JSON (JavaScript Object Notation) [16] strings en-
coded as “<element id>”: “<value>”, where <element
id> is a numeric identifier as defined in the NetFlow/
IPFIX RFCs. The advantages of this approach with
respect of integrating a native flow collector, are
manyfold :	

• The complexities of flow standards are not propa-
gated to ntopng, because open-source applications
such as nProbe [13] act as a proxy by converting
flows into JSON strings delivered to ntopng via
ØMQ.

• Any non-flow network event can be collected using
this mechanism. For instance, Linux firewall logs
generated by netfilter, can be parsed and sent to
ntopng just like in commercial products such as
Cisco ASA.

Contrary to what happens with flow-based tools where
the probe delivers flows to the collector, when used
over ØMQ ntopng acts as a consumer. As depicted in
Fig 1., ntopng (as flow consumer) connects to nProbe
(that acts as flow producer) that acts as flow probe or
proxy (i.e. nProbe collects flows sent by a probe and
forwards them to ntopng). Flows are converted into
JSON messages that are read by ntopng via ØMQ.	

{“IPV4_SRC_ADDR”:”10.10.20.15","IPV4_D-
ST_ADDR":"192.168.0.200","IPV4_NEXT_HOP":
"0.0.0.0","INPUT_SNMP":0,"OUTPUT_SNMP":
0,"IN_PKTS":12,"IN_BYTES":
11693,"FIRST_SWITCHED":
1397725262,"LAST_SWITCHED":
1397725262,"L4_SRC_PORT":
80,"L4_DST_PORT":50142,"TCP_FLAGS":

27,"PROTOCOL":6,"SRC_TOS":0,"SRC_AS":
3561,"DST_AS":0,"TOTAL_FLOWS_EXP":8}

2. NetFlow/IPFIX flow converted in JSON by nProbe

The JSON message uses as field key the string values
defined in the NetFlow RFC [2], so in essence this is a
one-to-one format translation from NetFlow to JSON.
The combination of ØMQ with redis can also be used to
employ ntopng as a visualisation console for non-pack-
et related events. For instance at the .it ccTLD, ntopng
receives JSON messages via ØMQ from domain name
registration system that are accessed via the Whois
[35], DAS (Domain Availability Service) [36] and EPP
(Extensible Provisioning Protocol) [37] protocols. Such
protocol messages are formatted in JSON using the
standard field key names defined in the NetFlow RFC,
and add extra fields for specifying custom information
not defined in the RFC (e.g. the DNS domain name
under registration). In essence the idea is that ntopng
can be used to visualise any type of network related
information, by feeding into it (via ZMQ) data format-
ted in JSON. In case the JSON stream carries unknown
fields, ntopng will just be able to display the field on the
web interface but the data processing will not be affect-
ed (i.e. messages with unknown field names will not be
discarded).	

The use of JSON not only allows application complexi-
ty to be reduced but it also promotes the creation of
arbitrary application hierarchies. In fact each ntopng
instance can act both as a data consumer or producer.	

3. Cluster of ntopng and nProbe applications.	

When a flow is expired, ntopng propagates the JSON-
formatted flow information to the configured instance
up one hierarchy. Each ntopng instance can collect traf-
fic information from multiple producers, and each pro-
ducer can send traffic information to multiple con-
sumers. In essence using this technique it is possible to
create a (semi-) centralised view of a distributed moni-
toring environment simply using ntopng without any
third party tool or process that might make the overall
architecture more complex.

ntopng

nProbe

ntopng
ntopng

nProbe

JSON over ZMQ

USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  73

The overhead introduced by JSON is minor, as ntopng
can collect more than 20k flows/sec per interface. In
case more flows need to be collected, ntopng can be
configured to collect flows over multiple interfaces.
Each ingress interface is self-contained with no cross-
dependencies. When an interface is configured at start-
up, ntopng creates a data polling thread bound to it. All
the data structures, used to store monitoring data are
defined per-interface and are not global to ntopng. This
has the advantage that each network interface can oper-
ate independently, likely on a different CPU core, to
create a scalable system. This design choice is one of
the reasons for ntopng’s superior data processing per-
formance as will be shown in the following section.

3.2. Monitoring Engine	

Data is consolidated in ntopng’s monitoring engine.
This component is implemented as a single C++ class
that is instantiated, one per ingress interface, in order to
avoid performance bottlenecks due to locking when
multiple interfaces are in use. Monitoring data is organ-
ised in flows and hosts, where by flow we mean a set of
packets having the same 6-tuple (VLAN, Protocol, IP/
Port Source/Destination) and not as defined in flow-
based monitoring paradigms where flows have addi-
tional properties (e.g. flow duration and export). In
ntopng a flow starts when the first packet of the flow
arrives, and it ends when no new data belonging to the
flow is observed for some time. Regardless of the
ingress interface type, monitoring data is classified in
flows. Each ntopng flow instance references two host
instances (one for flow source and the other for flow
destination) that are used to keep statistics about the
two peers. This is the flow lifecycle:

• When a packet belonging to a new flow is received,
the monitoring engine decodes the packet and search-
es a flow instance matching the packet. If not found, a
flow instance is created along with the two flow host
instances if not existing.

• The flow and host counters (e.g. bytes and packets)
are updated according to the received packets.

• Periodically ntopng purges flows that have been idle
for a while (e.g. 2 minutes with no new traffic re-
ceived). Hosts with no active flows that have also
been idle for some time are also purged from memo-
ry.

Purging data from memory is necessary to avoid ex-
hausting all available resources and discard information
no longer relevant. However this does not mean that
host information is lost after data purge but that it has
been moved to a secondary cache. Fig. 1 shows that
monitoring engine connects with Redis [14], a key-val-

ue in-memory data store. ntopng uses redis as data
cache where it stores:

• JSON-serialised representation of hosts that have
been recently purged from memory, along with their
traffic counters. This allows hosts to be restored in
memory whenever they receive fresh traffic while
saving ntopng memory.

• In case ntopng has been configured to resolve IP ad-
dress into symbolic names, redis stores the associa-
tion numeric-to-symbolic address.

• ntopng configuration information.

• Pending activities, such as the queue of numeric IPs,
waiting to be resolved by ntopng.

Redis has been selected over other popular databases
(e.g. MySQL and memcached) for various reasons:

• It is possible to specify whether stored data is persis-
tent or temporary. For instance, numeric-to-symbolic
data is set to be volatile so that it is automatically
purged from redis memory after the specified dura-
tion with no action from ntopng. Other information
such as configuration data is saved persistently as it
happens with most databases.

• Redis instances can be federated. As described in [15]
ntopng and nProbe instances can collaborate and cre-
ate a microcloud based on redis. This microcloud
consolidates the monitoring information reported by
instances of ntopng/nProbe in order to share traffic
information, and effectively monitor distributed net-
works.

• ntopng can exploit the publish/subscribe mechanisms
offered by redis in order to be notified when a specif-
ic event happens (e.g. a host is added to the cache)
and thus easily create applications that execute spe-
cific actions based on triggers. This mechanism is
exploited by ntopng to distribute traffic alerts to mul-
tiple consumers using the microcloud architecture
described later on this section.

In ntopng all the objects can be serialised in JSON. This
design choice allows them to be easily stored/retrieved
from redis, exported to third party applications (e.g.
web apps), dumped on log files, and immediately used
in web pages though Javascript. Through JSON object
serialisation it is possible to migrate/replicate host/flow
objects across ntopng instances. As mentioned above,
JSON serialisation is also used to collect flows from
nProbe via ØMQ and import network traffic informa-
tion from other sources of data.

In addition to the 6-tuple, ntopng attempts to detect the
real application protocol carried by the flow. For col-

74  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

lected flows, unless specified into the flow itself, the
application protocol is inferred by inspecting the IP/
ports used by the flows. For instance, if there is a flow
from a local PC to a host belonging to the Dropbox Inc
network on a non-known port, we assume that the flow
uses the dropbox protocol. When network interfaces
operate on raw packets, we need to inspect the packets’
payload. ntopng does application protocol discovery
using nDPI [18], a home-grown GPLv3 C library for
deep packet inspection. To date nDPI recognises over
170 protocols including popular ones such as BitTor-
rent, Skype, FaceBook, Twitter , Citrix and Webex. 1

nDPI is based on an a protocol-independent engine that
implements services common to all protocols, and pro-
tocol-specific dissectors that analyse all the supported
protocols. If nDPI is unable to identify a protocol based
on the packet payload it can try to infer the protocol
based on the IP/port used (e.g. TCP on port 80 is likely
to be HTTP). nDPI can handle both plain and encrypted
traffic: in the case of SSL (Secure Socket Layers) nDPI
decodes the SSL certificate and it attempts to match the
server certificate name with a service. For instance en-
crypted traffic with server certificate *.amazon.com is
traffic for the popular Amazon web site, and *.viber.-
com identifies the traffic produced by the mobile Viber
application. The library is designed to be used both in
user-space inside applications like ntopng and nProbe,
and in the kernel inside the Linux firewall. The advan-
tage of having a clean separation between nDPI and
ntopng is that it is possible to extend/modify these two
components independently without polluting ntopng
with protocol-related code. As described in [19], nDPI
accuracy and speed is comparable to similar commer-
cial products and often better than other open-source
DPI toolkits. 

!
4. Application Protocol Classification vs. Traffic Char-
acterisation

In addition to DPI, ntopng is able to characterise traffic
based on its nature. An application’s protocol describes

how data is transported on the wire, but it tells nothing
about the nature of the traffic. To that end ntopng na-
tively integrates Internet domain categorisation services
freely provided to ntopng users by http://block.si. For
instance, traffic for cnn.com is tagged as “News and
Media”, whereas traffic for FaceBook is tagged as
“Social”. It is thus possible to characterise host be-
haviour with respect to traffic type, and thus tag hosts
that perform potentially dangerous traffic (e.g. access to
sites whose content is controversial or potentially inse-
cure) that is more likely to create security issues. This
information may also be used to create host traffic pat-
terns that can be used to detect potential issues, such as
when a host changes its traffic pattern profile over time;
this might indicate the presence of viruses or unwanted
applications. Domain categorisation services are pro-
vided as a cloud-service and accessed by ntopng via
HTTP. In order to reduce the number of requests and
thus minimise the network traffic necessary for this
service, categorisation responses are cached in redis
similar to the IP/host DNS mapping explained earlier in
this section.

In addition to domain classification, ntopng can also
identify hosts that are previously marked as malicious.
When specified at startup, ntopng can query public ser-
vices in order to track harvesters, content spammers,
and other suspicious activities. As soon as ntopng de-
tects traffic for a new host not yet observed, it issues a
DNS query to the Project Honeypot [34] that can report
information about such host. Similar to what happens
with domain categorisation, ntopng uses redis to cache
responses (the default cache duration is 12 hours) in
order to reduce the number of DNS queries. In case a
host has been detected as malicious, ntopng triggers an
alert and reports in the web interface the response re-
turned that includes threat score and type.

3.3. Scripting Engine	

The scripting engine sits on top of the monitoring en-
gine, and it implements a Lua-based API for scripts that
need to access monitoring data. ntopng embeds the Lua
JIT (Just In Time) interpreter, and implements two Lua
classes able to access ntopng internals.	

• interface: access to interface-related data, and to flow
and host traffic statistics. 	

• ntop: it allows scripts to interact with ntopng configu-
ration and the redis cache.	

The scripting engine decouples data access from traffic
processing through a simple Lua API. Scripts are exe-

 Please note that technically FaceBook is HTTP(S) traffic from/to FaceBook Inc. servers. This also applies to Twitter traffic. However nDPI assigns them a specific 1

application protocol Id in order to distinguish them from plain HTTP(S) traffic.

USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  75

cuted when they are requested though the embedded
web server, or based on periodic events. ntopng imple-
ments a small cron daemon that runs scripts periodical-
ly with one second granularity. Such scripts are used to
perform periodic activities (e.g. dump the top hosts that
sent/received traffic in the last minute) as well data
housekeeping. For instance every night at midnight,
ntopng runs a script that dumps on a SQLite database
all the hosts monitored during the last 24 hours; this
way ntopng implements a persistent historical view of
the recent traffic activities.	

The clear separation of traffic processing from applica-
tion logic has been a deliberate choice in ntopng. The
processing engine (coded in C++) has been designed to
do simple traffic-related tasks that have to be performed
quickly (e.g. receive a packet, parse it, update traffic
statistics and move to the next packet). The application
logic instead can change according to user needs and
preferences and thus it has been coded with scripts that
access the ntopng core by means of the Lua API. Given
that the Lua JIT is very efficient in terms of processing
speed, this solution allows users to modify the ntopng
business logic by simply changing scripts instead of
modifying the C++ engine.	

dirs = ntop.getDirs()

package.path = dirs.installdir .. "/
scripts/lua/modules/?.lua;" .. package.-
path

require "lua_utils"

sendHTTPHeader('text/html')

print('<html><head><title>ntop</title></
head><body>Hello ' .. os.date(“%d.%m.
%Y”))

print('Default ifname = ' .. inter-
face.getDefaultIfName()

5. Simple ntopng Lua Script	

When a script accesses an ntopng object, the result is
returned to the Lua script as a Lua table object. In no
case Lua references C++ object instances directly, thus
avoiding costly/error-prone object locks across lan-
guages. All ntopng data structures are lockless, and Lua
scripts lock C++ data structures only if they scan the
hosts or flows hash. Multiple scripts can be executed
simultaneously, as the embedded Lua engine is multi-
threaded and reentrant.	

It is worth to remark that the scripting engine is used
only to report information produced by the monitoring
engine and for other periodic activities such alert trig-
gering, and not to process monitoring information. The

design choice of having a C++-based monitoring engine
with Lua scripts for reporting data, is a good compro-
mise in terms of performance and flexibility. This be-
cause it allows to preserve the engine efficiency while
enabling users to customise the GUI without having to
modify the monitoring engine.	

3.4. Egress Data Layer	

ntopng exports monitoring data through the embedded
HTTP server that can trigger the execution of Lua
scripts. The web GUI is based on the Twitter Bootstrap
JavaScript framework [20] that enables the creation of
dynamic web pages with limited coding. All charts are
based on the D3.JS [25] that features a rich set of
HTML5 components that can be used to represent mon-
itoring data in an effective way.	

!
6. ntopng HTML5 Web Interface	

The embedded web server serves static pages contain-
ing JavaScript code that triggers the execution of Lua
scripts. Such scripts access ntopng monitoring data and
return their results to the web browser in JSON format.
Web pages are dynamically updated every second by
the JavaScript code present in the web pages, that re-
quests the execution of Lua scripts.	

As stated earlier in this section, ntopng can manipulate
JSON objects natively, thus enabling non-HTML appli-
cations to use ntopng as a server for network traffic data
as well. Through Lua scripts, it is possible to create
REST-compliant (Representational State Transfer) [21]
Web services on top of ntopng.	

Another way to export monitoring data from ntopng, is
by means of log files. With the advent of high-capacity
log processing applications such as Splunk and Elastic-
Search/Logstash, ntopng can complement traditional
service application logs with traffic logs. This allows
network administrators to correlate network traffic in-
formation to service status. Export in log files is per-
formed through Lua scripts that can access the monitor-
ing engine and dump data into log files or send it via the

76  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

syslog protocol [22], a standard for remote message
logging.	

3.5. System Integration	

Monitoring network traffic is not enough to have a
complete picture of the system. Often it is necessary to
correlate traffic with system information. For this rea-
son ntopng has been integrated (on Linux only for the
time being) with a nProbe plugin named sprobe. Such
plugin is based on sysdig [38], a Linux kernel module
and library that allows system events to be captured
from user-space, similar to what happens with libpcap.
The plugin listens to system events such as creation/
deletion of a network connection by intercepting system
calls such as accept() and connect(). When such events
happen, nProbe exports process information provides
via ØMQ this event information formatted in JSON to
ntopng or via NetFlow/IPFIX to standard flow collec-
tors. This way ntopng, for those systems where nProbe
is active, can associate a communication flow with a
process name.	

7. ntopng Report on Process Information received from
sProbe	

8. ntopng Processes Interaction Report	

In addition to network information, sProbe reports in-
formation about the process itself by looking at the /
proc filesystem.	

In particular it reports information about the memory
being used (current and max memory), the number of
VM page faults, and process CPU usage.	

If multiple sProbe instances feed ntopng, it is possible
to correlate the information across system. For instance
it is possible to see that Google Chrome on host
192.168.2.13 is connected to ntopng running on system
10.10.12.18. As flow information is periodically export-
ed by sProbe and not just at the beginning/end of the
flow, ntopng can also report process activities over time
thus combing network with system monitoring.	

!
4. Evaluation	

ntopng has been extensively tested by its users in vari-
ous heterogeneous environments. This section reports
the results of some validation tests performed on a lab
using both synthetic and real traffic captured on a net-
work.	

9. Tests Using Real Traffic (Average Packet Size 700
bytes)	

The tests have been performed using ntopng v.1.1.1
(r7100) on a system based on a low-end Intel Xeon E3-
1230 running at 3.30 GHz. ntopng monitors a 10 Gbit
Intel network interface using PF_RING DNA v.5.6.1.
The traffic generator and replay is pfsend, an open-
source tool part of the PF_RING toolset. In case of real
traffic, pfsend has reproduced in loop at line rate the
pcap file captured on a real network. In the case of syn-
thetic traffic, pfsend has generated the specified number
of packets by forging packets with the specified hosts
number. Please note that increasing the number of ac-
tive hosts also increases the number of active flows
handled by ntopng. 	

The previous table reports the test with traffic captured
on a real network and reproduced by pfsend at line rate.
The result shows that ntopng is able to monitor a fully
loaded 10 Gbit link without loss and with limited mem-
ory usage. Considered that the test system is a low-end
server, this is a great result, which demonstrates that it

Hosts 
Number PPS Gbit CPU

Load
Packet	

Drops

Memory	

Usage

350 1’735’000 10 80% 0% 27 MB

600 1’760’000 10 80% 0% 29 MB

USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  77

is possible to monitor a fully loaded link with real traf-
fic using commodity hardware and efficient software.
Using synthetic traffic we have studied how the number
of monitored hosts affects the ntopng performance. In-
creasing the cardinality of hosts and flows, ntopng has
to perform heavier operations during data structure
lookup and periodic data housekeeping.	

!

!
10. Synthetic Traffic: Packet Size/Hosts Number vs.
Processed Packets (PPS)	

The above figure shows how the number of hosts and
packet size influence the number of processes packets.
Packet capture is not a bottleneck due to the use of
PF_RING DNA. However, ntopng’s processing engine
performance is reduced in proportion with the number
of active hosts and flows. Although networks usually
have no more than a few thousand active hosts, we test-
ed ntopng’s performance across many conditions rang-
ing from a small LAN (100 hosts), a medium ISP (10k
hosts) and large ISP (100k hosts) to a backbone (1M
hosts). The setup we used was worst case, because, in
practice it is not a good choice to send traffic from a
million hosts to the same ntopng monitoring interface.	

 The PF_RING library named libzero has the ability
to dispatch packets in zero-copy to applications, threads
and KVM-based VMs.

!
11. pfdnacluster_master: PF_RING Zero Copy Traffic
Balancing	

The open-source application pfdnacluster_master 2

can read packets from multiple devices and implement
zero-copy traffic fan-out (i.e. the same ingress packet is
replicated to various packet consumers) and/or traffic
balancing. Balancing respects the flow-tuple, meaning
that all packets of flow X will always be sent to the
egress virtual interface Y; this mechanisms works also
with encapsulated traffic such as GTP traffic used to
encapsulate user traffic in mobile networks [23]. This
application can create many egress virtual interfaces not
limited by the number and type of physical interfaces
from which packets are received.

!
12. Synthetic Traffic: Hosts Number vs. Processed
Packets (PPS) 	

Thanks to PF_RING it is possible to balance ingress
traffic to many virtual egress interfaces, all monitored
by the same ntopng process that binds each packet pro-
cessing thread to a different CPU core. This practice
enables concurrent traffic processing, as it also reduces
the number of hosts/flows handled per interface, thus
increasing the overall performance. In our tests we have
decided to measure the maximum processing capability
per interface so that we can estimate the maximum
ntopng processing capability according to the number
of cores available on the system. Using the results re-
ported in the previous figures, using real traffic bal-
anced across multiple virtual interfaces, ntopng could
easily monitor multi-10 Gbit links, bringing real-time
traffic monitoring to a new performance level.	

The previous chart above depicts the data in Fig. 10 by
positioning the processing speed with respect to the
number of hosts. As reported in Fig. 9 using real traffic
on a full 10 Gbit link we have approximately 1.7 Mpps.
At that ingress rate, ntopng can successfully handle
more than 100K active hosts per interface, thus making
it suitable for a large ISP. The following figure shows
the same information as Fig. 12 in terms of Gbit instead
of Pps (Packet/sec).	

Packet Size 64 bytes 128 bytes 512 bytes 1500 bytes

Hosts	

Number

Processed
PPS

Processed
PPS

Processed
PPS

Processed
PPS

100 8’100’000 8’130’000 2’332’090 2’332’090

1’000 7’200’000 6’580’000 2’332’090 820’210

10’000 5’091’000 4’000’000 2’332’090 819’000

100’000 2’080’000 2’000’000 1’680’000 819’000

1’000’000 17’800 17’000 17’000 17’000

Traffic
Balancing

Zero-Copy
Traffic
FanOut

Pr
oc

es
se

d
(p

ps
)

0
1.000.000
2.000.000
3.000.000
4.000.000
5.000.000
6.000.000
7.000.000
8.000.000
9.000.000

Hosts
100 1K 10K 100K 1M

Processed PPS

 Source code available at https://svn.ntop.org/svn/ntop/trunk/PF_RING/userland/examples_libzero/pfdnacluster_master.c2

78  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

!

!
13. Synthetic Traffic: Hosts Number vs. Processed
Packets (Gbit)	

Similar to processing performance, ntopng’s memory
usage is greatly affected by the number of active hosts
and flows. As the traffic is reproduced in loop, hosts and
flows are never purged from memory as they receive
continuously fresh new data.	

!
14. Hosts Number vs. Memory Usage	

Memory usage ranges from 20 MB for 100 active hosts,
to about 7 GB for 1 million hosts. Considered that low-
end ARM-based systems [26] such as the RaspberryPI
and the BeagleBoard feature 512 MB of memory, their
use enables the monitoring of ~40k simultaneous hosts
and flows. This is an effective price-performance ratio
given the cost ($25) and processing speed of such de-
vices. ntopng code compiles out of the box on these
devices and also on the low-cost (99$) Ubiquity Edge-
Max router where it is able to process 1 Mpps. Both
nProbe and ntopng run on the above mentioned plat-
forms and there are commercial companies that deploy
such small boxes in order to complement traditional
ping/traceroute/iperf remote monitoring with real-time
traffic visualisation as produced by ntopng.	

!
5. Open Issues and Future Work	

While we have successfully run ntopng on systems with
limited computation power, we are aware that in order
to monitor a highly distributed network such as cloud
system, it is necessary to consolidate all data in a cen-

tral location. As both VMs and small PCs have limited
storage resources, we are working on the implementa-
tion of a cloud-based storage system that allows dis-
tributed ntopng instances to consolidate monitoring data
onto the same data repository.	

Another future work item is the ability to further char-
acterise network traffic by assigning it a security score.
Various companies provide something called IP reputa-
tion [24] a number which the danger potential of a giv-
en IP. We are planning to integrate cloud-based reputa-
tion services into ntopng similarly to what we have
done for domain categorisation. This would enable spot
monitoring of hosts that generate potentially dangerous
network traffic.	

Finally we are planning to introduce data encryption
and authentication in ZMQ communications. This prob-
lem was not properly addressed in ZMQ until recent
library versions, and thus it needs also to be integrated
into ntopng in order to guarantee secure data sharing
across ntopng applications.	

 	

6. Related Work	

When the original ntop had been introduced in 1998 it
was the first traffic open-source monitoring application
embedding a web server for serving monitoring data.
Several commercial applications that are similar to
ntopng are available from companies such as Boundary
[26], AppNeta FlowView [33], Lancope StealthWatch
[31], and Riverbed Cascade [32]. However, these appli-
cations are proprietary, often available only as a SaaS
(Software as a Service) and based on the flow-paradigm
(thus not fully real-time nor highly accurate) These ap-
plications are difficult to integrate with other monitor-
ing systems because they are self-contained. Many open
source network-monitoring tools are also available :
packet analysers such as Wireshark [30], flow-based
tools such as Vermont (VERsatile MONitoring Toolkit)
[27] or YAF (Yet Another Flowmeter) [29]. Yet, 15
years after its introduction, ntopng offers singular per-
formance, openness and ease of integration.	

 	

7. Final Remarks	

This paper presented ntopng, an open-source, real-time
traffic monitoring application. ntopng is fully scriptable
by means of an embedded Lua JIT interpreter, guaran-
teeing both flexibility and performance. Monitoring
data is represented using HTML 5 served by the em-
bedded web server, and it can be exported to external
monitoring applications by means of a REST API or
through log files that can be processed by distributed

Pr
oc

es
se

d
(G

bi
t)

0
1
2
3
4
5
6
7
8
9

10

Hosts
100 1K 10K 100K 1M

64-byte 128-byte 512-byte
1500-byte

H
os

ts

100

1K

10K

100K

1M

Memory Usage (MByte)
1 10 100 1000 10000

7.168
1.536

140
35

25

USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  79

log processing platforms. Validations tests have demon-
strated that ntopng can effectively monitor 10 Gbit traf-
fic on commodity hardware due to its efficient process-
ing framework.	

!
8. Code Availability	

This work is distributed under the GNU GPLv3 license
and is freely available in source format at the ntop
home page https://svn.ntop.org/svn/ntop/trunk/ntopng/
for both Windows and Unix systems including Linux,
MacOS X, and FreeBSD. The PF_RING framework
used during the validation phase is available from
https://svn.ntop.org/svn/ntop/trunk/PF_RING/.	

!
9. Acknowledgement	

Our thanks to Italian Internet domain Registry that has
greatly supported the development of ntopng, Alexan-
der Tudor <alex@ntop.org> and Filippo Fontanelli
<fontanelli@ntop.org> for their help and suggestions.	

!
10. References	

1. P. Phaal, S. Panchen, and S. McKee, InMon Corporation's sFlow:

A Method for Monitoring Traffic in Switched and Routed Net-
works, RFC 3176, September 2001.

2. B. Claise, Cisco Systems NetFlow Services Export Version 9,
RFC 3954, October 2004.

3. S. Leinen, Evaluation of Candidate Protocols for IP Flow Infor-
mation Export (IPFIX), RFC 3955, October 2004.

4. A. Caesar, Enabling NetFlow on a vSwitch, http://www.plixer.-
com/blog/network-monitoring/enabling-netflow-on-a-vswitch/,
May 2013.

5. R. Lämmel, Google’s MapReduce Programming Model — Revis-
ited, Science of Computer Programming, 2008.

6. R. Bendrath, M. Müller, The end of the net as we know it? Deep
packet inspection and internet governance, Journal of New Media
& Society, November 2011.

7. T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Pro-
tocol Version 1.1, RFC 4346, April 2006.

8. F. Fusco, M. Vlachos, X. Dimitropoulos, L. Deri, Indexing mil-
lion of packets per second using GPUs, Proceedings of IMC 2013
Conference, October 2013.

9. N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, R.
Raghuraman, L. Jianying, NetFPGA - An Open Platform for
Gigabit-Rate Network Switching and Routing, Proceeding of
MSE ’07 Conference, June 2007.

10. F. Fusco, L. Deri, High Speed Network Traffic Analysis with
Commodity Multi-core System, Proceedings of IMC 2010 Con-
ference, November 2010.

11. A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, kvm: The
Linux Virtual Machine Monitor, Proceedings of the 2007 Ottawa
Linux Symposium, July 2007.

12. P. Hintjens, ZeroMQ: Messaging for Many Applications, O’Reil-
ly, 2013.

13. L. Deri, nProbe: an Open Source NetFlow Probe for Gigabit
Networks, Proceedings of Terena TNC 2003 Conference, 2003.

14. J. A. Kreibich, S. Sanfilippo, P. Noordhuis, Redis: the Definitive
Guide: Data Modelling, Caching, and Messaging, O’Reilly, 2014.

15. L. Deri, F. Fusco, Realtime MicroCloud-based Flow Aggregation
for Fixed and Mobile Networks, Proceedings of TRAC 2013
workshop, July 2013.

16. D. Crockford, The application/json Media Type for JavaScript
Object Notation (JSON), RFC 4627, 2006.

17. B. Harzog, Real-Time Monitoring: Almost Always a Lie, http://
performancecriticalapps.prelert.com/articles/share/281286/, De-
cember 2013.

18. Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and Alfredo
Cardigliano, nDPI: Open-Source High-Speed Deep Packet In-
spection, Proceedings of TRAC 2014 Workshop, August 2014.

19. T. Bujlow, V. Carela-Español, P. Barlet-Ros, Comparison of Deep
Packet Inspection (DPI) Tools for Traffic Classification, Techni-
cal Report, Version 3, June 2013.

20. M. L. Reuven, At The Forge: Twitter Bootstrap, Linux Journal,
June 2012.

21. L. Richardson, S. Ruby, RESTful Web Services, O’Reilly, 2007.
22. R. Gerhards, The Syslog Protocol, RFC 5424, March 2009.
23. 3GPP, General Packet Radio Service (GPRS); Service Descrip-

tion, Stage 2, Technical Specification 3GPP SP-56, V11.2.0,
2012.

24. M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, N. Feamster,
Building a Dynamic Reputation System for DNS., Proceedings of
USENIX Security Symposium, 2010.

25. M. Bostock, Data-Driven Documents (d3.js): a Visualization
Framework for Internet Browsers Running JavaScript, http://
d3js.org, .2012.

26. M. Joshi, G. Chirag, Agent Base Network Traffic Monitoring,
International Journal of Innovative Research in Science, Engi-
neering and Technology, Vol. 2, Issue 5, May 2013.

27. B. Cook, Boundary Meter 2.0 – Design, http://boundary.com/
blog/2013/09/27/welcome-to-meter-2-design/, September 2013.

28. R. Lampert, et al., Vermont-A Versatile Monitoring Toolkit for
IPFIX and PSAMP, Proceedings of MonAM 2006, 2006.

29. C. Inacio, B. Trammell, Yaf: yet another flowmeter, Proceedings
of the 24th LISA Conference, 2010.

30. A. Orebaugh, G. Ramirez, J. Beale, Wireshark & Ethereal Net-
work Protocol Analyzer Toolkit, Syngress, 2006.

31. Lancope Inc., StealthWatch Architecture, http://www.lancope.-
com/products/stealthwatch-system/architecture/, 2014.

32. Riverbed Inc., Riverbed Cascade, http://www.riverbed.com/cas-
cade/products/riverbed-nba.php, 2014.

33. AppNeta Inc., Flow View, http://www.appneta.com/products/
flowview/, 2014.

34. Unspam Technologies Inc., Project HoneyPot, http://www.projec-
thoneypot.org, 2014.

35. L. Daigle, WHOIS Protocol Specification, RFC 3912, September
2004.

36. A. Newton, A Lightweight UDP Transfer Protocol for the Internet
Registry Information Service, RFC 4993, August 2007.

37. S. Hollenbeck, Extensible Provisioning Protocol (EPP), RFC
4930, August 2009.

38. Draios Inc, sysdig, http://www.sysdig.org, 2014.
39. ntop, Running nProbe and ntopng on a Ubiquity EdgeRouter Lite,

http://www.ntop.org/nprobe/running-nprobe-and-ntopng-on-ubiq-
uity-edgerouter-lite/, December 2013.

