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Abstract	


Monitoring network traffic has become increasingly 
challenging in terms of number of hosts, protocol pro-
liferation and probe placement topologies. Virtualised 
environments and cloud services shifted the focus from 
dedicated hardware monitoring devices to virtual ma-
chine based, software traffic monitoring applications. 
This paper covers the design and implementation of 
ntopng, an open-source traffic monitoring application 
designed for high-speed networks. ntopng’s key fea-
tures are large networks real-time analytics and the abil-
ity to characterise application protocols and user traffic 
behaviour. ntopng was extensively validated in various 
monitoring environments ranging from small networks 
to .it ccTLD traffic analysis.	

!
1. Introduction	


Network traffic monitoring standards such as sFlow [1] 
and NetFlow/IPFIX [2, 3] have been conceived at the 
beginning of the last decade. Both protocols have been 
designed for being embedded into physical network 
devices such as routers and switches where the network 
traffic is flowing. In order to keep up with the increas-
ing network speeds, sFlow natively implements packet 
sampling in order to reduce the load on the monitoring 
probe. While both flow and packet sampling is support-
ed in NetFlow/IPFIX, network administrators try to 
avoid these mechanisms in order to have accurate traffic 
measurement. Many routers have not upgraded their 
monitoring capabilities to support the increasing num-
bers of 1/10G ports. Unless special probes are used, 
traffic analysis based on partial data results in inaccu-
rate measurements.	



Physical devices cannot monitor virtualised environ-
ments because inter-VM traffic is not visible to the 
physical network interface. Over the years however, 
virtualisation software developers have created virtual 
network switches with the ability to mirror network 
traffic from virtual environments into physical Ethernet 
ports where monitoring probes can be attached. Recent-
ly, virtual switches such as VMware vSphere Dis-
tributed Switch or Open vSwitch natively support Net-
Flow/sFlow for inter-VM communications [4], thus 

facilitating the monitoring of virtual environments. 
These are only partial solutions because either v5 Net-
Flow (or v9 with basic information elements only) or 
inaccurate, sample-based sFlow are supported. Network 
managers need traffic monitoring tools that are able to 
spot bottlenecks and security issues while providing 
accurate information for troubleshooting the cause. This 
means that while NetFlow/sFlow can prove a quantita-
tive analysis in terms of traffic volume and TCP/UDP 
ports being used, they are unable to report the cause of 
the problems. For instance, NetFlow/IPFIX can be used 
to monitor the bandwidth used by the HTTP protocol 
but embedded NetFlow probes are unable to report that 
specific URLs are affected by large service time.	



Today a single application may be based on complex 
cloud-based services comprised of several processes 
distributed across a LAN. Until a few years ago web 
applications were constructed using a combination of 
web servers, Java-based business logic and a database 
servers. The adoption of cache servers (e.g. memcache 
and redis) and mapReduce-based databases [5] (e.g. 
Apache Cassandra and MongoDB) increased the appli-
cations’ architectural complexity. The distributed nature 
of this environment needs application level information 
to support effective network monitoring. For example, 
it is not sufficient to report which specific TCP connec-
tion has been affected by a long service time without 
reporting the nature of the transaction (e.g. the URL for 
HTTP, or the SQL query for a database server) that 
caused the bottleneck. Because modern services use 
dynamic TCP/UDP ports the network administrator 
needs to know what ports map to what application. The 
result is that traditional device-based traffic monitoring 
devices need to move towards software-based monitor-
ing probes that increase network visibility at the user 
and application level. As this activity cannot be per-
formed at network level (i.e. by observing traffic at a 
monitoring point that sees all traffic), software probes 
are installed on the physical/virtual servers where ser-
vices are provided. This enables probes to observe the 
system internals and collect information (e.g. what user/
process is responsible for a specific network connec-
tion) that would be otherwise difficult to analyse out-
side the system’s context just by looking at packets.	
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Network administrators can then view virtual and cloud 
environments in real-time. The flow-based monitoring 
paradigm is by nature unable to produce real-time in-
formation [17]. Flows statistics such as throughput can 
be computed in flow collectors only for the duration of 
the flow, which is usually between 30 and 120 seconds 
(if not more). This means that using the flow paradigm, 
network administrators cannot have a real-time traffic 
view due to the latency intrinsic to this monitoring ar-
chitecture (i.e. flows are first stored into the flow cache, 
then in the export cache, and finally sent to the collec-
tor) and also because flows can only report average 
values (i.e. the flow throughout can be computed by 
dividing the flow data volume for its duration) thus hid-
ing, for instance, traffic spikes.	



The creation of ntopng, an open-source web-based 
monitoring console, was motivated by the challenges of 
monitoring modern network topologies and the limita-
tions of current traffic monitoring protocols. The main 
goal of ntopng is the ability to provide a real-time view 
of network traffic flowing in large networks (i.e. a few 
hundred thousand hosts exchanging traffic on a multi-
Gbit link) while providing dynamic analytics able to 
show key performance indicators and bottleneck root 
cause analysis. The rest of the paper is structured as 
follow. Section 2 describes the ntopng design goals. 
Section 3 covers the ntopng architecture and its major 
software components. Section 4 evaluates the ntopng 
implementation using both real and synthetic traffic. 
Section 5 covers the open issues and future work items. 
Section 6 lists applications similar to ntopng, and final-
ly section 7 concludes the paper.	

!
2. ntopng Design Goals	


ntopng’s design is based on the experience gained from 
creating its predecessor, named ntop (and thus the name 
ntop next generation or ntopng) and first introduced in 
1998. When the original ntop was designed, networks 
were significantly different. ntopng’s design reflects 
new realities:	



• Today’s protocols are all IP-based, whereas 15 years 
ago many others existed (e.g. NetBIOS, AppleTalk, 
and IPX). Whereas only limited non-IP protocol sup-
port is needed, v4/v6 needs additional, and more ac-
curate, metrics including packet loss, retransmissions, 
and network latency.	



• In the past decade the number of computers connect-
ed to the Internet has risen significantly. Modern 
monitoring probes need to support hundreds of thou-
sand of active hosts. 	



• While computer processing power increased in the 

last decade according to the Moore’s law, system ar-
chitecture support for increasing network interface 
speeds (10/10 Mbps to 10/40 today) has not always 
been proportional. As it will be later explained it is 
necessary to keep up with current network speeds 
without dropping packets.	



• While non-IP protocols basically disappeared, appli-
cation protocols have significantly increased and they 
still change rapidly as new popular applications ap-
pear (e.g. Skype). The association UDP/TCP port 
with an application protocol is no longer static, so 
unless other techniques, such as DPI (Deep Packet 
Inspection) [6] are in place, identifying applications 
based on ports is not reliable.	



• As TLS (Transport Layer Security) [7] is becoming 
pervasive and no longer limited to secure HTTP, net-
work administrators need partial visibility of encrypt-
ed communications. 	



• The HTTP protocol has greatly changed, as it is no 
longer used to carry, as originally designed, hypertext 
only. Instead, it is now used for many other purposes 
including audio/video streaming, firewall trespassing 
and in many peer-to-peer protocols. This means that 
today HTTP no longer identifies only web-related 
activities, and thus monitoring systems need to char-
acterise HTTP traffic in detail.	



In addition to the above requirements, ntopng has been 
designed to satisfy the following goals:	



• Created as open-source software in order to let users 
study, improve, and modify it. Code availability is not 
a minor feature in networking as it enables users to 
compile and run the code on heterogeneous platforms 
and network environments. Furthermore, the adoption 
of this license allows existing open-source libraries 
and frameworks to be used by ntopng instead of cod-
ing everything from scratch as it often happens with 
closed-source applications.	



• Operate at 10 Gbit without packet loss on a network 
backbone where user traffic is flowing (i.e. average 
packet size is 512 bytes or more), and support at least 
3 Mpps (Million Packets/sec) per core on a commodi-
ty system, so that a low-end quad-core server may 
monitor a 10 Gbit link with minimal size packets (64 
bytes).	



• All monitoring data must be immediately available, 
with traffic counters updated in real-time without 
measurement latency and average counters that are 
otherwise typical of probe/collector architectures.	



• Traffic monitoring must be fully implemented in 
software with no specific hardware acceleration re-
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quirements. While many applications are now ex-
ploiting GPUs [8] or accelerated network adapters 
[9], monitoring virtual and cloud environments re-
quires pure software-based applications that have no 
dependency on specific hardware and that can be mi-
grated, as needed, across VMs.	



• In addition to raw packet capture, ntopng must sup-
port the collection of sFlow/NetFlow/IPFIX flows, so 
that legacy monitoring protocols can also be support-
ed.	



• Ability to detect and characterise the most popular 
network protocols including (but not limited to) 
Skype, BitTorrent, multimedia (VoIP and streaming), 
social (FaceBook, Twitter), and business (Citrix, We-
bex). As it will be explained below, this goal has been 
achieved by developing a specific framework instead 
of including this logic within ntopng. This avoids the 
need of modifying ntopng when new protocols are 
added to the framework.	



• Embedded web-based GUI based on HTML5 and 
dynamic web pages so that real-time monitoring data 
can be displayed using a modern, vector-based graph-
ical user interface. These requirements are the foun-
dation for the creation of rich traffic analytics.	



• Scriptable and multi-threaded monitor engine so that 
dynamic web pages can be created and accessed by 
multiple clients simultaneously.	



• Efficient monitoring engine not only in terms of 
packet processing capacity, but in its ability to operate 
on a wide range of computers, including low-power 
embedded systems as well as multi-core high-end 
servers. Support of low-end systems is necessary in 
order to embed ntopng into existing network devices 
such as Linux-based routers. This feature is to pro-
vide a low-cost solution for monitoring distributed 
and SOHO (Small Office Home Office) networks.	



• Ability to generate alerts based on traffic conditions. 
In particular the alert definition should be config-
urable my means of a script, so that users can define 
their own conditions for triggering alerts.	



• Integration with the system where traffic is observed, 
so that on selected servers, it is possible to correlate 
network events with system processes.	



The following section covers in detail the ntopng soft-
ware architecture and describes the various components 
on which the application is layered. !
3. ntopng Software Architecture	


ntopng is coded in C++ which enables source code 

portability across systems (e.g. X86, MIPS and ARM) 
and clean class-based design, while granting high exe-
cution speed.	



1. ntopng Architecture	



ntopng is divided in four software layers:	



• Ingress data layer: monitoring data can be raw pack-
ets captured from one or more network interfaces, or 
collected NetFlow/IPFIX/sFlow flows after having 
been preprocessed.	



• Monitoring engine: the ntopng core responsible for 
processing ingress data and consolidating traffic 
counters into memory.	



• Scripting engine: a thin C++ software layer that ex-
ports monitoring data to Lua-based scripts.	



• Egress data layer: interface towards external applica-
tion that can access real-time monitoring data.	



3.1.  Ingress Data Layer	


The ingress layer is responsible for receiving monitor-
ing data. Currently three network interfaces are imple-
mented:	



• libpcap Interface: capture raw packets by means of 
the popular libpcap library.	



• PF_RING Interface: capture raw packets using the 
open-source PF_RING framework for Linux systems 
[10] developed by ntop for enhancing both packet 
capture and transmission speed. PF_RING is divided 
in two parts: a kernel module that efficiently interacts 
with the operating system and network drivers, and a 
user-space library that interacts with the kernel mod-

Libpcap PF_RING

Lua-based Scripting Engine

Web-Server

Incoming Packets
(Raw Traffic)

NetFlow/IPFIX, sFlow

n
nProbe

Redis
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ule, and implements an API used by PF_RING-based 
applications. The main difference between libpcap 
and PF_RING, is that when using the latter it is pos-
sible to capture/receive minimum size packets at 10 
Gbit with little CPU usage using commodity network 
adapters. PF_RING features these performance fig-
ures both on physical hosts and on Linux KVM-based 
virtual machines, thus paving the way to line-rate 
VM-based traffic monitoring.	



• ØMQ Interface. The ØMQ library [12] is an open-
source portable messaging library coded in C++ that 
can be used to implement efficient distributed appli-
cations. Each application is independent, runs on its 
own memory space, and it can be deployed on the 
same host where ntopng is running, or on remote 
hosts. In ntopng it has been used to receive traffic-
related data from distributed systems. ntopng creates 
a ØMQ socket and waits for events formatted as 
JSON (JavaScript Object Notation) [16] strings en-
coded as “<element id>”: “<value>”, where <element 
id> is a numeric identifier as defined in the NetFlow/
IPFIX RFCs. The advantages of this approach with 
respect of integrating a native flow collector, are 
manyfold :	



• The complexities of flow standards are not propa-
gated to ntopng, because open-source applications 
such as nProbe [13] act as a proxy by converting 
flows into JSON strings delivered to ntopng via 
ØMQ. 

• Any non-flow network event can be collected using 
this mechanism. For instance, Linux firewall logs 
generated by netfilter, can be parsed and sent to 
ntopng just like in commercial products such as 
Cisco ASA. 

Contrary to what happens with flow-based tools where 
the probe delivers flows to the collector, when used 
over ØMQ ntopng acts as a consumer. As depicted in 
Fig 1., ntopng (as flow consumer) connects to nProbe 
(that acts as flow producer) that acts as flow probe or 
proxy (i.e. nProbe collects flows sent by a probe and 
forwards them to ntopng). Flows are converted into 
JSON messages that are read by ntopng via ØMQ.	



{“IPV4_SRC_ADDR”:”10.10.20.15","IPV4_D-
ST_ADDR":"192.168.0.200","IPV4_NEXT_HOP":
"0.0.0.0","INPUT_SNMP":0,"OUTPUT_SNMP":
0,"IN_PKTS":12,"IN_BYTES":
11693,"FIRST_SWITCHED":
1397725262,"LAST_SWITCHED":
1397725262,"L4_SRC_PORT":
80,"L4_DST_PORT":50142,"TCP_FLAGS":

27,"PROTOCOL":6,"SRC_TOS":0,"SRC_AS":
3561,"DST_AS":0,"TOTAL_FLOWS_EXP":8} 

2. NetFlow/IPFIX flow converted in JSON by nProbe 

The JSON message uses as field key the string values 
defined in the NetFlow RFC [2], so in essence this is a 
one-to-one format translation from NetFlow to JSON. 
The combination of ØMQ with redis can also be used to 
employ ntopng as a visualisation console for non-pack-
et related events. For instance at the .it ccTLD, ntopng 
receives JSON messages via ØMQ from domain name 
registration system that are accessed via the Whois 
[35], DAS (Domain Availability Service) [36] and EPP 
(Extensible Provisioning Protocol) [37] protocols. Such 
protocol messages are formatted in JSON using the 
standard field key names defined in the NetFlow RFC, 
and add extra fields for specifying custom information 
not defined in the RFC (e.g. the DNS domain name 
under registration). In essence the idea is that ntopng 
can be used to visualise any type of network related 
information, by feeding into it (via ZMQ) data format-
ted in JSON. In case the JSON stream carries unknown 
fields, ntopng will just be able to display the field on the 
web interface but the data processing will not be affect-
ed (i.e. messages with unknown field names will not be 
discarded).	



The use of JSON not only allows application complexi-
ty to be reduced but it also promotes the creation of 
arbitrary application hierarchies. In fact each ntopng 
instance can act both as a data consumer or producer.	



3. Cluster of ntopng and nProbe applications.	



When a flow is expired, ntopng propagates the JSON-
formatted flow information to the configured instance 
up one hierarchy. Each ntopng instance can collect traf-
fic information from multiple producers, and each pro-
ducer can send traffic information to multiple con-
sumers. In essence using this technique it is possible to 
create a (semi-) centralised view of a distributed moni-
toring environment simply using ntopng without any 
third party tool or process that might make the overall 
architecture more complex. 

ntopng

nProbe

ntopng
ntopng

nProbe

JSON over ZMQ
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The overhead introduced by JSON is minor, as ntopng 
can collect more than 20k flows/sec per interface. In 
case more flows need to be collected, ntopng can be 
configured to collect flows over multiple interfaces. 
Each ingress interface is self-contained with no cross-
dependencies. When an interface is configured at start-
up, ntopng creates a data polling thread bound to it. All 
the data structures, used to store monitoring data are 
defined per-interface and are not global to ntopng. This 
has the advantage that each network interface can oper-
ate independently, likely on a different CPU core, to 
create a scalable system. This design choice is one of 
the reasons for ntopng’s superior data processing per-
formance as will be shown in the following section. 

3.2. Monitoring Engine	


Data is consolidated in ntopng’s monitoring engine. 
This component is implemented as a single C++ class 
that is instantiated, one per ingress interface, in order to 
avoid performance bottlenecks due to locking when 
multiple interfaces are in use. Monitoring data is organ-
ised in flows and hosts, where by flow we mean a set of 
packets having the same 6-tuple (VLAN, Protocol, IP/
Port Source/Destination) and not as defined in flow-
based monitoring paradigms where flows have addi-
tional properties (e.g. flow duration and export). In 
ntopng a flow starts when the first packet of the flow 
arrives, and it ends when no new data belonging to the 
flow is observed for some time. Regardless of the 
ingress interface type, monitoring data is classified in 
flows. Each ntopng flow instance references two host 
instances (one for flow source and the other for flow 
destination) that are used to keep statistics about the 
two peers. This is the flow lifecycle: 

• When a packet belonging to a new flow is received, 
the monitoring engine decodes the packet and search-
es a flow instance matching the packet. If not found, a 
flow instance is created along with the two flow host 
instances if not existing. 

• The flow and host counters (e.g. bytes and packets) 
are updated according to the received packets. 

• Periodically ntopng purges flows that have been idle 
for a while (e.g. 2 minutes with no new traffic re-
ceived). Hosts with no active flows that have also 
been idle for some time are also purged from memo-
ry. 

Purging data from memory is necessary to avoid ex-
hausting all available resources and discard information 
no longer relevant. However this does not mean that 
host information is lost after data purge but that it has 
been moved to a secondary cache. Fig. 1 shows that 
monitoring engine connects with Redis [14], a key-val-

ue in-memory data store. ntopng uses redis as data 
cache where it stores: 

• JSON-serialised representation of hosts that have 
been recently purged from memory, along with their 
traffic counters. This allows hosts to be restored in 
memory whenever they receive fresh traffic while 
saving ntopng memory. 

• In case ntopng has been configured to resolve IP ad-
dress into symbolic names, redis stores the associa-
tion numeric-to-symbolic address. 

• ntopng configuration information. 

• Pending activities, such as the queue of numeric IPs, 
waiting to be resolved by ntopng.  

Redis has been selected over other popular databases 
(e.g. MySQL and memcached) for various reasons: 

• It is possible to specify whether stored data is persis-
tent or temporary. For instance, numeric-to-symbolic 
data is set to be volatile so that it is automatically 
purged from redis memory after the specified dura-
tion with no action from ntopng. Other information 
such as configuration data is saved persistently as it 
happens with most databases. 

• Redis instances can be federated. As described in [15] 
ntopng and nProbe instances can collaborate and cre-
ate a microcloud based on redis. This microcloud 
consolidates the monitoring information reported by 
instances of ntopng/nProbe in order to share traffic 
information, and effectively monitor distributed net-
works. 

• ntopng can exploit the publish/subscribe mechanisms 
offered by redis in order to be notified when a specif-
ic event happens (e.g. a host is added to the cache) 
and thus easily create applications that execute spe-
cific actions based on triggers. This mechanism is 
exploited by ntopng to distribute traffic alerts to mul-
tiple consumers using the microcloud architecture 
described later on this section. 

In ntopng all the objects can be serialised in JSON. This 
design choice allows them to be easily stored/retrieved 
from redis, exported to third party applications (e.g. 
web apps), dumped on log files, and immediately used 
in web pages though Javascript. Through JSON object 
serialisation it is possible to migrate/replicate host/flow 
objects across ntopng instances. As mentioned above, 
JSON serialisation is also used to collect flows from 
nProbe via ØMQ and import network traffic informa-
tion from other sources of data. 

In addition to the 6-tuple, ntopng attempts to detect the 
real application protocol carried by the flow. For col-
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lected flows, unless specified into the flow itself, the 
application protocol is inferred by inspecting the IP/
ports used by the flows. For instance, if there is a flow 
from a local PC to a host belonging to the Dropbox Inc 
network on a non-known port, we assume that the flow 
uses the dropbox protocol. When network interfaces 
operate on raw packets, we need to inspect the packets’ 
payload. ntopng does application protocol discovery 
using nDPI [18], a home-grown GPLv3 C library for 
deep packet inspection. To date nDPI recognises over 
170 protocols including popular ones such as BitTor-
rent, Skype, FaceBook, Twitter , Citrix and Webex. 1

nDPI is based on an a protocol-independent engine that 
implements services common to all protocols, and pro-
tocol-specific dissectors that analyse all the supported 
protocols. If nDPI is unable to identify a protocol based 
on the packet payload it can try to infer the protocol 
based on the IP/port used (e.g. TCP on port 80 is likely 
to be HTTP). nDPI can handle both plain and encrypted 
traffic: in the case of SSL (Secure Socket Layers) nDPI 
decodes the SSL certificate and it attempts to match the 
server certificate name with a service. For instance en-
crypted traffic with server certificate *.amazon.com is 
traffic for the popular Amazon web site, and *.viber.-
com identifies the traffic produced by the mobile Viber 
application. The library is designed to be used both in 
user-space inside applications like ntopng and nProbe, 
and in the kernel inside the Linux firewall. The advan-
tage of having a clean separation between nDPI and 
ntopng is that it is possible to extend/modify these two 
components independently without polluting ntopng 
with protocol-related code. As described in [19], nDPI 
accuracy and speed is comparable to similar commer-
cial products and often better than other open-source 
DPI toolkits. 
 

!
4. Application Protocol Classification vs. Traffic Char-
acterisation  

In addition to DPI, ntopng is able to characterise traffic 
based on its nature. An application’s protocol describes 

how data is transported on the wire, but it tells nothing 
about the nature of the traffic. To that end ntopng na-
tively integrates Internet domain categorisation services 
freely provided to ntopng users by http://block.si. For 
instance, traffic for cnn.com is tagged as “News and 
Media”, whereas traffic for FaceBook is tagged as 
“Social”. It is thus possible to characterise host be-
haviour with respect to traffic type, and thus tag hosts 
that perform potentially dangerous traffic (e.g. access to 
sites whose content is controversial or potentially inse-
cure) that is more likely to create security issues. This 
information may also be used to create host traffic pat-
terns that can be used to detect potential issues, such as 
when a host changes its traffic pattern profile over time; 
this might indicate the presence of viruses or unwanted 
applications. Domain categorisation services are pro-
vided as a cloud-service and accessed by ntopng via 
HTTP. In order to reduce the number of requests and 
thus minimise the network traffic necessary for this 
service, categorisation responses are cached in redis 
similar to the IP/host DNS mapping explained earlier in 
this section. 

In addition to domain classification, ntopng can also 
identify hosts that are previously marked as malicious. 
When specified at startup, ntopng can query public ser-
vices in order to track harvesters, content spammers, 
and other suspicious activities. As soon as ntopng de-
tects traffic for a new host not yet observed, it issues a 
DNS query to the Project Honeypot [34] that can report 
information about such host. Similar to what happens 
with domain categorisation, ntopng uses redis to cache 
responses (the default cache duration is 12 hours) in 
order to reduce the number of DNS queries. In case a 
host has been detected as malicious, ntopng triggers an 
alert and reports in the web interface the response re-
turned that includes threat score and type. 

3.3. Scripting Engine	


The scripting engine sits on top of the monitoring en-
gine, and it implements a Lua-based API for scripts that 
need to access monitoring data. ntopng embeds the Lua 
JIT (Just In Time) interpreter, and implements two Lua 
classes able to access ntopng internals.	



• interface: access to interface-related data, and to flow 
and host traffic statistics. 	



• ntop: it allows scripts to interact with ntopng configu-
ration and the redis cache.	



The scripting engine decouples data access from traffic 
processing through a simple Lua API. Scripts are exe-

 Please note that technically FaceBook is HTTP(S) traffic from/to FaceBook Inc. servers. This also applies to Twitter traffic. However nDPI assigns them a specific 1

application protocol Id in order to distinguish them from plain HTTP(S) traffic.
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cuted when they are requested though the embedded 
web server, or based on periodic events. ntopng imple-
ments a small cron daemon that runs scripts periodical-
ly with one second granularity. Such scripts are used to 
perform periodic activities (e.g. dump the top hosts that 
sent/received traffic in the last minute) as well data 
housekeeping. For instance every night at midnight, 
ntopng runs a script that dumps on a SQLite database 
all the hosts monitored during the last 24 hours; this 
way ntopng implements a persistent historical view of 
the recent traffic activities.	



The clear separation of traffic processing from applica-
tion logic has been a deliberate choice in ntopng. The 
processing engine (coded in C++) has been designed to 
do simple traffic-related tasks that have to be performed 
quickly (e.g. receive a packet, parse it, update traffic 
statistics and move to the next packet). The application 
logic instead can change according to user needs and 
preferences and thus it has been coded with scripts that 
access the ntopng core by means of the Lua API. Given 
that the Lua JIT is very efficient in terms of processing 
speed, this solution allows users to modify the ntopng 
business logic by simply changing scripts instead of 
modifying the C++ engine.	



dirs = ntop.getDirs() 

package.path = dirs.installdir .. "/
scripts/lua/modules/?.lua;" .. package.-
path 

require "lua_utils" 

sendHTTPHeader('text/html') 

print('<html><head><title>ntop</title></
head><body>Hello ' .. os.date(“%d.%m.
%Y”)) 

print('<li>Default ifname = ' .. inter-
face.getDefaultIfName() 

5. Simple ntopng Lua Script	



When a script accesses an ntopng object, the result is 
returned to the Lua script as a Lua table object. In no 
case Lua references C++ object instances directly, thus 
avoiding costly/error-prone object locks across lan-
guages. All ntopng data structures are lockless, and Lua 
scripts lock C++ data structures only if they scan the 
hosts or flows hash. Multiple scripts can be executed 
simultaneously, as the embedded Lua engine is multi-
threaded and reentrant.	



It is worth to remark that the scripting engine is used 
only to report information produced by the monitoring 
engine and for other periodic activities such alert trig-
gering, and not to process monitoring information. The 

design choice of having a C++-based monitoring engine 
with Lua scripts for reporting data, is a good compro-
mise in terms of performance and flexibility. This be-
cause it allows to preserve the engine efficiency while 
enabling users to customise the GUI without having to 
modify the monitoring engine.	



3.4.  Egress Data Layer	


ntopng exports monitoring data through the embedded 
HTTP server that can trigger the execution of Lua 
scripts. The web GUI is based on the Twitter Bootstrap 
JavaScript framework [20] that enables the creation of 
dynamic web pages with limited coding. All charts are 
based on the D3.JS [25] that features a rich set of 
HTML5 components that can be used to represent mon-
itoring data in an effective way.	



!
6. ntopng HTML5 Web Interface	



The embedded web server serves static pages contain-
ing JavaScript code that triggers the execution of Lua 
scripts. Such scripts access ntopng monitoring data and 
return their results to the web browser in JSON format. 
Web pages are dynamically updated every second by 
the JavaScript code present in the web pages, that re-
quests the execution of Lua scripts.	



As stated earlier in this section, ntopng can manipulate 
JSON objects natively, thus enabling non-HTML appli-
cations to use ntopng as a server for network traffic data 
as well. Through Lua scripts, it is possible to create 
REST-compliant (Representational State Transfer) [21] 
Web services on top of ntopng.	



Another way to export monitoring data from ntopng, is 
by means of log files. With the advent of high-capacity 
log processing applications such as Splunk and Elastic-
Search/Logstash, ntopng can complement traditional 
service application logs with traffic logs. This allows 
network administrators to correlate network traffic in-
formation to service status. Export in log files is per-
formed through Lua scripts that can access the monitor-
ing engine and dump data into log files or send it via the 
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syslog protocol [22], a standard for remote message 
logging.	



3.5.  System Integration	


Monitoring network traffic is not enough to have a 
complete picture of the system. Often it is necessary to 
correlate traffic with system information. For this rea-
son ntopng has been integrated (on Linux only for the 
time being) with a nProbe plugin named sprobe. Such 
plugin is based on sysdig [38], a Linux kernel module 
and library that allows system events to be captured 
from user-space, similar to what happens with libpcap. 
The plugin listens to system events such as creation/
deletion of a network connection by intercepting system 
calls such as accept() and connect(). When such events 
happen, nProbe exports process information provides 
via ØMQ this event information formatted in JSON to 
ntopng or via NetFlow/IPFIX to standard flow collec-
tors. This way ntopng, for those systems where nProbe 
is active, can associate a communication flow with a 
process name.	



7. ntopng Report on Process Information received from 
sProbe	



8. ntopng Processes Interaction Report	



In addition to network information, sProbe reports in-
formation about the process itself by looking at the /
proc filesystem.	



In particular it reports information about the memory 
being used (current and max memory), the number of 
VM page faults, and process CPU usage.	



If multiple sProbe instances feed ntopng, it is possible 
to correlate the information across system. For instance 
it is possible to see that Google Chrome on host 
192.168.2.13 is connected to ntopng running on system 
10.10.12.18. As flow information is periodically export-
ed by sProbe and not just at the beginning/end of the 
flow, ntopng can also report process activities over time 
thus combing network with system monitoring.	

!
4. Evaluation	


ntopng has been extensively tested by its users in vari-
ous heterogeneous environments. This section reports 
the results of some validation tests performed on a lab 
using both synthetic and real traffic captured on a net-
work.	



9. Tests Using Real Traffic (Average Packet Size 700 
bytes)	



The tests have been performed using ntopng v.1.1.1 
(r7100) on a system based on a low-end Intel Xeon E3-
1230 running at 3.30 GHz. ntopng monitors a 10 Gbit 
Intel network interface using PF_RING DNA v.5.6.1. 
The traffic generator and replay is pfsend, an open-
source tool part of the PF_RING toolset. In case of real 
traffic, pfsend has reproduced in loop at line rate the 
pcap file captured on a real network. In the case of syn-
thetic traffic, pfsend has generated the specified number 
of packets by forging packets with the specified hosts 
number. Please note that increasing the number of ac-
tive hosts also increases the number of active flows 
handled by ntopng. 	



The previous table reports the test with traffic captured 
on a real network and reproduced by pfsend at line rate. 
The result shows that ntopng is able to monitor a fully 
loaded 10 Gbit link without loss and with limited mem-
ory usage. Considered that the test system is a low-end 
server, this is a great result, which demonstrates that it 

Hosts 
Number PPS Gbit CPU 

Load
Packet	


Drops

Memory	


Usage

350 1’735’000 10 80% 0% 27 MB

600 1’760’000 10 80% 0% 29 MB
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is possible to monitor a fully loaded link with real traf-
fic using commodity hardware and efficient software. 
Using synthetic traffic we have studied how the number 
of monitored hosts affects the ntopng performance. In-
creasing the cardinality of hosts and flows, ntopng has 
to perform heavier operations during data structure 
lookup and periodic data housekeeping.	

!

!
10. Synthetic Traffic: Packet Size/Hosts Number vs. 
Processed Packets (PPS)	



The above figure shows how the number of hosts and 
packet size influence the number of processes packets. 
Packet capture is not a bottleneck due to the use of 
PF_RING DNA. However, ntopng’s processing engine 
performance is reduced in proportion with the number 
of active hosts and flows. Although networks usually 
have no more than a few thousand active hosts, we test-
ed ntopng’s performance across many conditions rang-
ing from a small LAN (100 hosts), a medium ISP (10k 
hosts) and large ISP (100k hosts) to a backbone (1M 
hosts). The setup we used was worst case, because, in 
practice it is not a good choice to send traffic from a 
million hosts to the same ntopng monitoring interface.	



 The PF_RING library named libzero has the ability 
to dispatch packets in zero-copy to applications, threads 
and KVM-based VMs. 

!  
11. pfdnacluster_master: PF_RING Zero Copy Traffic 
Balancing	



The open-source application pfdnacluster_master  2

can read packets from multiple devices and implement 
zero-copy traffic fan-out (i.e. the same ingress packet is 
replicated to various packet consumers) and/or traffic 
balancing. Balancing respects the flow-tuple, meaning 
that all packets of flow X will always be sent to the 
egress virtual interface Y; this mechanisms works also 
with encapsulated traffic such as GTP traffic used to 
encapsulate user traffic in mobile networks [23]. This 
application can create many egress virtual interfaces not 
limited by the number and type of physical interfaces 
from which packets are received. 

!  
12. Synthetic Traffic: Hosts Number vs. Processed 
Packets (PPS) 	



Thanks to PF_RING it is possible to balance ingress 
traffic to many virtual egress interfaces, all monitored 
by the same ntopng process that binds each packet pro-
cessing thread to a different CPU core. This practice 
enables concurrent traffic processing, as it also reduces 
the number of hosts/flows handled per interface, thus 
increasing the overall performance. In our tests we have 
decided to measure the maximum processing capability 
per interface so that we can estimate the maximum 
ntopng processing capability according to the number 
of cores available on the system. Using the results re-
ported in the previous figures, using real traffic bal-
anced across multiple virtual interfaces, ntopng could 
easily monitor multi-10 Gbit links, bringing real-time 
traffic monitoring to a new performance level.	



The previous chart above depicts the data in Fig. 10 by 
positioning the processing speed with respect to the 
number of hosts. As reported in Fig. 9 using real traffic 
on a full 10 Gbit link we have approximately 1.7 Mpps. 
At that ingress rate, ntopng can successfully handle 
more than 100K active hosts per interface, thus making 
it suitable for a large ISP. The following figure shows 
the same information as Fig. 12 in terms of Gbit instead 
of Pps (Packet/sec).	



Packet Size 64 bytes 128 bytes 512 bytes 1500 bytes

Hosts	


Number

Processed 
PPS

Processed 
PPS

Processed 
PPS

Processed 
PPS

100 8’100’000 8’130’000 2’332’090 2’332’090

1’000 7’200’000 6’580’000 2’332’090 820’210

10’000 5’091’000 4’000’000 2’332’090 819’000

100’000 2’080’000 2’000’000 1’680’000 819’000

1’000’000 17’800 17’000 17’000 17’000
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 Source code available at https://svn.ntop.org/svn/ntop/trunk/PF_RING/userland/examples_libzero/pfdnacluster_master.c2
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!

!  
13. Synthetic Traffic: Hosts Number vs. Processed 
Packets (Gbit)	



Similar to processing performance, ntopng’s memory 
usage is greatly affected by the number of active hosts 
and flows. As the traffic is reproduced in loop, hosts and 
flows are never purged from memory as they receive 
continuously fresh new data.	



!  
14. Hosts Number vs. Memory Usage	



Memory usage ranges from 20 MB for 100 active hosts, 
to about 7 GB for 1 million hosts. Considered that low-
end ARM-based systems [26] such as the RaspberryPI 
and the BeagleBoard feature 512 MB of memory, their 
use enables the monitoring of ~40k simultaneous hosts 
and flows. This is an effective price-performance ratio 
given the cost ($25) and processing speed of such de-
vices. ntopng code compiles out of the box on these 
devices and also on the low-cost (99$) Ubiquity Edge-
Max router where it is able to process 1 Mpps. Both 
nProbe and ntopng run on the above mentioned plat-
forms and there are commercial companies that deploy 
such small boxes in order to complement traditional 
ping/traceroute/iperf remote monitoring with real-time 
traffic visualisation as produced by ntopng.	

!
5. Open Issues and Future Work	


While we have successfully run ntopng on systems with 
limited computation power, we are aware that in order 
to monitor a highly distributed network such as cloud 
system, it is necessary to consolidate all data in a cen-

tral location. As both VMs and small PCs have limited 
storage resources, we are working on the implementa-
tion of a cloud-based storage system that allows dis-
tributed ntopng instances to consolidate monitoring data 
onto the same data repository.	



Another future work item is the ability to further char-
acterise network traffic by assigning it a security score. 
Various companies provide something called IP reputa-
tion [24] a number which the danger potential of a giv-
en IP. We are planning to integrate cloud-based reputa-
tion services into ntopng similarly to what we have 
done for domain categorisation. This would enable spot 
monitoring of hosts that generate potentially dangerous 
network traffic.	



Finally we are planning to introduce data encryption 
and authentication in ZMQ communications. This prob-
lem was not properly addressed in ZMQ until recent 
library versions, and thus it needs also to be integrated 
into ntopng in order to guarantee secure data sharing 
across ntopng applications.	



 	



6. Related Work	


When the original ntop had been introduced in 1998 it 
was the first traffic open-source monitoring application 
embedding a web server for serving monitoring data. 
Several commercial applications that are similar to 
ntopng are available from companies such as Boundary 
[26], AppNeta FlowView [33], Lancope StealthWatch 
[31], and Riverbed Cascade [32]. However, these appli-
cations are proprietary, often available only as a SaaS 
(Software as a Service) and based on the flow-paradigm 
(thus not fully real-time nor highly accurate) These ap-
plications are difficult to integrate with other monitor-
ing systems because they are self-contained. Many open 
source network-monitoring tools are also available : 
packet analysers such as Wireshark [30], flow-based 
tools such as Vermont (VERsatile MONitoring Toolkit) 
[27] or YAF (Yet Another Flowmeter) [29]. Yet, 15 
years after its introduction, ntopng offers singular per-
formance, openness and ease of integration.	



 	



7. Final Remarks	


This paper presented ntopng, an open-source, real-time 
traffic monitoring application. ntopng is fully scriptable 
by means of an embedded Lua JIT interpreter, guaran-
teeing both flexibility and performance. Monitoring 
data is represented using HTML 5 served by the em-
bedded web server, and it can be exported to external 
monitoring applications by means of a REST API or 
through log files that can be processed by distributed 
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log processing platforms. Validations tests have demon-
strated that ntopng can effectively monitor 10 Gbit traf-
fic on commodity hardware due to its efficient process-
ing framework.	

!
8. Code Availability	


This work is distributed under the GNU GPLv3 license 
and is freely available in source format at the ntop 
home page https://svn.ntop.org/svn/ntop/trunk/ntopng/ 
for both Windows and Unix systems including Linux, 
MacOS X, and FreeBSD. The PF_RING framework 
used during the validation phase is available from 
https://svn.ntop.org/svn/ntop/trunk/PF_RING/.	

!
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