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Abstract 
 

Deploying a large-scale distributed ecosystem such as 
HBase/Hadoop in the cloud is complicated and error-prone. 
Multiple layers of largely independently evolving software 
are deployed across distributed nodes on third party 
infrastructures. In addition to software incompatibility and 
typical misconfiguration within each layer, many subtle and 
hard to diagnose errors happen due to misconfigurations 
across layers and nodes. These errors are difficult to 
diagnose because of scattered log management and lack of 
ecosystem-awareness in many diagnosis tools and 
processes.  
 
We report on some failure experiences in a real world 
deployment of HBase/Hadoop and propose some initial 
ideas for better trouble-shooting during deployment. We 
identify the following types of subtle errors and the 
corresponding challenges in trouble-shooting: 1) dealing 
with inconsistency among distributed logs, 2) 
distinguishing useful information from noisy logging, and 
3) probabilistic determination of root causes.  

1. Introduction 
 
With the maturing of cloud and Hadoop technologies, more 
and more organizations are deploying and using systems in 
the Hadoop ecosystem for various purposes.  Hadoop is an 
ecosystem that consists of multiple layers of largely 
independently evolving software and its deployment is 
across distributed nodes and different layers.  

Even for experienced operational professionals with limited 
experience with the Hadoop ecosystem, the deployment 
and use is highly error-prone and error diagnosis and root 
cause identification takes a significant amount of time.  

Traditionally, logs and error messages are important 
sources of information for error diagnosis. In a distributed 
system, logs are generated from multiple sources with 
different granularities and different syntax and semantics. 
Sophisticated techniques have been proposed to produce 
better logs or analyze existing logs to improve error 
diagnosis. However, there are a number of limitations of 
the existing approaches for the situation outlined above. 

Consider one of the error messages that we encountered in 

our experiments “java.net.ConnectException: Connection refused “. 
One existing approach is to correlate error messages with 
source code. Yet knowing where in the Java library this 
message was generated will not help determine the root 
cause. The cause of this error is, most likely, a 
misconfiguration but it is a misconfiguration that indicates 
inconsistency between multiple items in the ecosystem. 
Trouble shooting an error message such as this requires 
familiarity with the elements of the ecosystem and how 
they interact. This familiarity is primarily gained through 
experience, often painful. Furthermore, the messages 
leading up to this error message may be inconsistent or 
irrelevant. They are usually voluminous, however. 

Providing assistance to non-expert installers of a 
complicated eco-system such as HBase/Hadoop is the goal 
of the work we report on here. In this paper, we report 
some failure experiences in real world deployments of 
HBase/Hadoop. Specifically, we focus on three key 
challenges: 1) dealing with inconsistency among distributed 
logs, 2) distinguishing useful information from noisy 
logging, and 3) probabilistic determination of root causes. 

There are two assumptions about this work. First, it came 
out of observing and studying errors committed by non-
expert installers of Hadoop ecosystems. Our target is 
system administrators and non-experts in HBase/Hadoop. 
Second, we assume that the developers of such systems will 
not change the way they record logs significantly although 
we do hope they produce them with operators more in 
mind. Thus our initial solutions are around dealing with 
inconsistency and uncertainties with existing logs.  The 
case studies are all based on an Hadoop/HBase [3][5] 
cluster running on AWS EC2s[2]. 

The contributions of this paper include: 
1. Identification of different types of errors in Hadoop 
ecosystem deployment using real world cases and 
investigations into the root causes of these errors. The 
majority of errors can be classified into four types: 

• Operational errors such as missing/incorrect 
operations and missing artifacts. Errors introduced 
during restarting/shutting down nodes, artifacts (files 
and directories) not created, created with the wrong 
permission or mistakenly moved and disallowed 
operations due to inconsistent security environment are 
the major ones.  
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• Configuration errors include errors such as illegal, 
lexical, and syntax errors in standalone software 
systems and cross-systems/nodes inconsistency in an 
ecosystem.  

• Software errors include compatibility issues among 
different parts of an ecosystem (e.g. HBase and HDFS 
compatibility issues) and bugs.  

• Resource errors include resource unavailability or 
resource exhaustion, especially in cloud environment, 
that manifest themselves in highly uncertain ways and 
lead to system failures. 

The diagnosis of these errors and locating the true causes is 
more difficult in an ecosystem setting, which leads to our 
second contribution. 
2. Identified specific error diagnosis challenges in multi-
layer ecosystems deployed in distributed systems: 1) 
dealing with inconsistency among distributed logs, 2) 
distinguishing useful information from noisy logging, and 
3) probabilistic determination of root causes. These 
highlighted the gaps in the current approaches and lead to 
our third contribution. 
3. Introduced a new two-phase error diagnosis general 
framework for distributed software ecosystem from the 
operator (rather than the developer) perspective. This new 
approach attempts to remove some inconsistency and noise 
by combining phase-one local diagnosis with phase-two 
global diagnosis and produces a probability-ranked list of 
potential root causes. This simplifies the complexities of 
constructing correlations between logging information and 
root causes.  

2. Related Works 
 
In previous work, efforts have been placed into the 
improvement of logging mechanisms for providing more 
comprehensive system information to assist system 
management. For example, Apache Flume [2] aims to offer 
a scalable service for efficiently collecting, aggregating, 
and moving large amounts of log data in large-scale 
distributed computing environments. Similar logging 
systems include Facebook Scribe [9], Netflix Edda [13] and 
Chukwa [16], which are systems for aggregating real-time 
streams of log data from a large number of servers. These 
developments of logging systems provide a good basis for 
collecting up-to-date system information in complex 
distributed systems, but they do not have the capability to 
bridge the gap between logging information and error 
diagnosis. 
Another focus of research of using logging information to 
assist troubleshooting is to explore effective machine 
learning approaches for mining critical messages associated 
with  known problems. For example, Xu et. al. [21] studied 
the correlation between logs and source code. In [12], 
Nagaraj et. al. troubleshoot performance problems by using 
machine learning to compare system logging behaviors to 

infer associations between components and performance. In 
[11], Narasimhan and her team members studied the 
correlation of OS metrics for failure detection in distributed 
systems. In [24][25][26], Zhou’s research group studied the 
trace of logging information in source codes, and 
introduced a new logging mechanism to locate the position 
of bugs with more efficiency.  And in [15], Oliner et. al. 
studied the connections between heterogeneous logs and 
quantified the interaction between components using these 
logs. There is a general lack of ecosystem awareness in 
these tools and the ability to deal with log inconsistency 
and uncertainty as well as cross system incompatability. 
Misconfigurations are another significant issues leading to 
software system errors. Zhou and her colleagues conducted 
an empirical study over different types of 
misconfigurations and their effects on systems by studying 
several open source projects, including MySQL, Tomcat 
and etc. [23]. They focus on the misconfigurations of each 
individual system, while the correlation of configurations 
across systems, especially in a distributed environment, is 
ignored. Randy Katz and his colleagues [17] studied the 
connection between configuration and software source code 
to improve misconfiguration detection but did not cover the 
connection between configurations and logs, which is 
critical to operators.  
These existing works give a good basis for understanding 
some challenges in error diagnosis. But many studies are 
from the viewpoint of software developers rather than 
operators. They also did not consider issues around the 
connections among the logs and configurations at different 
layers and across different nodes.  

3. Case Study: HBase Cluster on Amazon 
EC2 
 
Our case study comes from a real world privacy research 
project where the goal is to process large amounts of 
anonymised information using different approaches to see 
if one can still infer identity from the information. Several 
sub-projects want to share a HBase/Hadoop cluster which 
is deployed in Amazon EC2. The operators and users of the 
cluster are IT-savvy researchers and system admins but not 
Hadoop or distributed system experts. Although Amazon 
provides an Elastic Map Reduce (EMR) system with 
Hadoop pre-installed, the different requirements of the sub-
projects led to a fresh deployment on EC2 virtual machines.   
 
An HBase/Hadoop cluster consists of Hadoop Distributed 
File System (HDFS) for distributed files storage, 
Zookeeper for distributed service coordination, and HBase 
for fast individual record lookups and updates in distributed 
files. Each node in an HBase cluster consists of multiple 
layers of software systems, shown as Figure 1 (a). Every 
layer must perform in a correct manner to ensure the 
communication across layers/nodes and overall system 
availability, as shown in Figure 1 (b).   
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The communication between nodes in a Hadoop ecosystem 
relies on SSH connections, so security, ports and protocols 
required by SSH must be available. Hadoop, Zookeeper 
and HBase rely on Java SDK. Updated versions of Java 
that are compatible are necessary. The Hadoop layer is the 
basis of an HBase cluster. This layer is controlled by HDFS 
and MapReduce [3]. The configurations over the 
Namenode and all Datanodes [3] must be correct, ensuring 
the communication and computation over this layer, so that 
clients of Hadoop can access HDFS or MapReduce 
services. (HBase does not need MapReduce, but 
applications of HBase may require MapReduce). 
Zookeeper performs a role of distributed service 
coordinator for HBase. Its responsibilities include tracking 
server failures and network partitions. Without Zookeeper, 
HBase is not operational. Based on these underlying 
distributed services, HBase requires communication 
between the HMaster and the Regional Servers [5] in the 
HBase layer. The full deployment and running of some of 
our small programs went through several false starts in a 
matter of weeks by different people independently. We 
asked the people to record their major errors, diagnosis 
experiences and root causes. 

  
(a) (b) 

Figure 1 Layers of software systems in Hadoop 
 

4. Logging Exceptions and Uncertainties in 
Determining Root Causes 
 
In Table 1, we list some key examples of logs and error 
messages collected in our Hadoop/HBase deployment 
process. The “Logging Exception” column records the error 
messages when the deployment process got interrupted. 
The “Possible Causes” column listed the possible causes 
and the relevant information that different operators 
mentally considered or physically examined during error 
diagnosis. For errors that are related to connection issues, 
we use Src and Dest to respectively represent the source 
and destination nodes.  

 
 

Table 1: Logging Exceptions and Potential Causes 
 
  Source Logging Exception Possible Causes: Required Information for Examination  
1 HBase/Had

oop  
“org.apache.hadoop.hdfs.server.datanode.DataNod
e: DataNode is shutting down: 
org.apache.hadoop.ipc.RemoteException: 
org.apache.hadoop.hdfs.protocol.UnregisteredData
nodeException” 

In the problematic DataNodes: 

• Instance	  is	  down:	  ping,	  ssh	  connection	  
• Access	  permission:	  check	  authentication	  keys,	  check	  ssh	  connection	  
• HDFS	  configuration:	  conf/slaves	  
• HDFS	  missing	  components:	  check	  the	  datanode	  setting	  and	  directories	  in	  hdfs	  

2 Zookeeper 
 

“java.net.UnknownHostException at 
org.apache.zookeeper.ZooKeeper.<init>(ZooKeepe
r.java:445)” 

In Src and Dest nodes: 
• DSN:	  DSN	  configuration	  and	  testing	  
• Network	  connection:	  ssh	  testing	  
• Zookeeper	  connection:	  JPS	  and	  logging	  messages	  in	  zoo.out	  
• Zookeeper	  configuration:	  zoo.cfg	  
• Zookeeper	  status:	  processes	  (PID	  and	  JPS)	  
• Cross-‐node	  configuration	  consistency	  

3  HDFS/ 
MapReduce
/ HBase/ 
Zookeeper 

“java.net.ConnectException: Connection refused “ In Src and Dest: 
• Network	  connection:	  ping	  IPs,	  ping	  hostnames	  and	  check	  ssh	  connection	  
• Security	  setting:	  check	  ssh	  connection	  and	  check	  authentication	  keys	  
• Hostname/IP/Ports	  configuration:	  check	  configuration	  files,	  netstat	  and	  lsof	  
• Software	  status:	  check	  processes	  
• Software	  compatibility:	  detect	  and	  check	  system	  and	  library	  versions	  
• Cross-‐layer	  configuration	  consistency	  
• Cross-‐node	  configuration	  consistency	  

4   HBase/Had
oop 

“org.apache.hadoop.hdfs.server.namenode.NameN
ode: java.lang.IllegalArgumentExcepti 
on: Does not contain a valid host:port authority: 
file” 

In Src and Dest: 
• Missing	  configuration	  files:	  hostfile,	  hadoop	  configuraitons	  	  	  
• Security	  file	  missing	  or	  incorrect:	  connection	  permission,	  host/port	  permission	  
• Host	  and	  Port	  setting	  in	  HDFS:	  core-‐site.xml,	  hdfs-‐site.xml	  	  
• Host	  and	  Port	  settings	  in	  DNS	  
• Network	  host	  and	  port	  settings:	  netstat,	  lsof	  etc	  
• Cross-‐node	  configuration	  consistency	  

5 HBase/Had
oop 

“org.apache.hadoop.hdfs.server.common.Inconsiste
ntFSStateException: Directory 

In the problematic nodes: 
• Missing	  files	  in	  HDFS	  file	  system:	  look	  for	  directory	  in	  hdfs	  

OS
JAVA SDK

Hadoop

HBase

Z
ookeeper

Network

security NodeNode

HDFS

ZooKeeper

HBase

HDFS

ZooKeeper

HBase
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/app/hadoop/tmp/dfs/name is in an inconsistent 
state: storage directory does not exist or is not 
accessible.” 

• Missing/Incorrect	  operations	  on	  HDFS:	  hdfs	  format	  	  
• Directory	  misconfiguration:	  core-‐site.xml	  

6 HBase/Had
oop 

“WARNorg.apache.hadoop.metrics2.impl.MetricsS
ystemImpl: Source name ugi already exists! 
ERRORorg.apache.hadoop.hdfs.server.datanode.D
ataNode: java.io.IOException: Incompatible 
namespaceIDs in /app/hadoop/tmp/dfs/data:” 

In the problematic NameNode and DataNode: 
• Misconfigurations	  on	  the	  hadoop:	  scan	  the	  name	  space	  setting	  in	  hadoop	  
• File	  System	  duplication:	  scan	  the	  hdfs	  file	  system	  	  
• Other	  nodes	  with	  the	  same	  name	  started:	  scan	  configurations	  and	  hostfiles	  
 

7 Zookeeper  “JMX enabled by default 
Using config: /home/ubuntu/zookeeper-
3.4.5/bin/../conf/zoo.cfg 
Error contacting service. It is probably not 
running.” 

In the problematic Nodes: 
• Misconfigurations	  on	  JAVA:	  Java	  version	  and	  Java	  Path	  
• Missing	  components	  in	  JAVA:	  Update	  Java	  version	  
• JAVA	  configurations	  in	  Zookeeper:	  JAVA_HOME	  Path	  
• Zookeeper	  configurations:	  configurations	  in	  zoo.cfg	  
• Zookeeper	  version	  problem:	  the	  compatibility	  of	  Zookeeper,	  JAVA	  and	  OS	  

8 Hadoop/Ma
pReduce 

 In deployment testing, “class is not found: 
maxtempreturemapper , and the job is not defined 
in the jar , when running map reduce jobs…” 

In the problematic Nodes: 
• Misconfiguration	  in	  Jobtracker:	  the	  path	  to	  the	  MapReduce	  Jar	  
• Misconfigurations	  in	  MapReduce:	  mapred-‐site.xml	  
• Class	  compiling	  by	  JAVA:	  the	  Java	  compiler	  
• The	  correctness	  of	  the	  Jar	  file:	  the	  source	  code	  of	  the	  MR	  application	  

9 HBase/Had
oop 

“ERROR 
org.apache.hadoop.security.UserGroupInformation: 
PriviledgedActionException as:ubuntu 
cause:java.io.IOException: File 
/app/hadoop/tmp/mapred/system/jobtracker.info 
could only be replicated to 0 nodes, instead of 1” 

In the problematic Nodes: 
• Security	  setting:	  RSA	  settings	  	  
• Directory	  configuration:	  scan	  configuration	  files	  core-‐site.xml	  
• HDFS	  files	  system	  directories:	  scan	  the	  Hadoop	  file	  system,	  run	  hadoop	  scripts,	  
or	  scan	  hadoop	  log	  	  

 
10 HBase/Had

oop 
“FATAL org.apache.hadoop.hdfs.StateChange: 
BLOCK* NameSystem.getDatanode … 
ERROR 
org.apache.hadoop.security.UserGroupInformation: 
PriviledgedActionException as:ubuntu 
cause:org.apache.hadoop.hdfs.protocol.Unregistere
dDatanodeException” 

In the problematic Nodes: 
• Hadoop	  misconfiguration:	  scan	  hadoop	  configuration	  files	  core-‐site.xml	  and	  
conf/slaves	  

• HDFS	  not	  formatted:	  scan	  hadoop	  file	  system,	  run	  hadoop	  scripts	  
• HBase	  Configurations:	  scan	  	  HBase	  configurations	  conf/hbase-‐site.xml	  
• Cross-‐layer	  configuration	  consistency:	  scan	  the	  configurations	  with	  
dependencies	  in	  HBase	  and	  Hadoop	  

• System	  security:	  test	  SSH	  conncetions	  
11 HBase/Had

oop 
“org.apache.hadoop.hbase.client.RetriesExhausted
Exception: Failed setting up proxy interface 

In the Src and Dest Nodes: 
• Hadoop	  status:	  scan	  processes	  by	  PID	  and	  JPS,	  use	  Hadoop	  commands	  	  
• Hadoop	  client	  and	  server	  configurations:	  the	  master	  name	  setting	  in	  hdfs	  	  
• Permission	  in	  the	  system:	  RSA	  and	  ssh	  connnections	  
• Cross-‐layer	  configuration	  consistency:	  HBase	  configurations	  is	  inconsistent	  to	  
the	  Hadoop	  configuraitons,	  e.g.,	  the	  ports	  and	  the	  names	  of	  file	  systems	  

12 HBass/Had
oop 

"WARN 
org.apache.hadoop.hdfs.server.datanode.DataNode: 
java.io.IOException: Too many open files at 
java.io.UnixFileSystem.createFileExclusively(Nati
ve Method) at 
java.io.File.createNewFile(File.java:883)  
 … 

In nodes used by HBase 
• configuration	  of	  HBase:	  maximum	  number	  of	  files	  setting	  
• Workload	  of	  HBase:	  under	  heavy	  work	  load	  
• Configuration	  of	  Hadoop:	  maximum	  number	  of	  files	  setting	  
• OS	  environment	  misconfiguration:	  e.g.	  default	  ulimit	  (user	  file	  limit)	  on	  most	  
unix	  systems	  insufficient	  

  
13  Hadoop “org.apache.hadoop.hdfs.DFSClient: DataStreamer 

Exception: 
org.apache.hadoop.ipc.RemoteException: 
java.io.IOException: File 
/app/hadoop/tmp/mapred/system/jobtracker.info 
could only be replicated to 0 nodes, instead of 3” 

In Src and Dest Nodes 
• Hadoop	  Status:	  scan	  processes	  by	  PID	  and	  JPS,	  use	  Hadoop	  commands	  
• MapReduce	  Status:	  scan	  processes	  by	  PID	  and	  JPS,	  use	  MapReduce	  commands	  
• Directory	  in	  Hadoop	  configurations:	  the	  number	  of	  replicas	  in	  hdfs-‐site.xml,	  the	  
number	  of	  slaves	  in	  conf/slaves	  

• Connection	  problems:	  e.g.	  node	  IP	  configurations	  
• HDFS	  file	  system:	  the	  directory	  does	  not	  exist	  in	  the	  HDFS	  	  
• Cross-‐node	  configuration	  consistency:	  the	  Hadoop	  states	  in	  each	  node	  

14  Zookeeper “org.apache.zookeeper.ClientCnxn: Session 
0x23d41f532090005 for server null, unexpected 
error, closing socket connection and attempting 
reconnect” 

In Src and Dest Nodes 
• Zookeeper	  Configurations:	  the	  clinet	  port,	  name	  of	  nodes	  etc.	  in	  zoo.cfg	  
• Network	  Configurations:	  the	  ssh	  connections	  to	  other	  nodes	  
• Security	  Configurations:	  the	  RSA	  settings	  
• Cross-‐node	  configuration	  consistency:	  the	  zookeeper	  configurations	  in	  each	  
node,	  the	  configuration	  over	  networks	  in	  each	  node	  

• States	  of	  Zookeeper:	  running,	  waiting	  or	  failed	  
15 HBase/Had

oop/Zookee
per 

“FATAL 
org.apache.hadoop.hbase.regionserver.HRegionSer
ver: ABORTING region server 
hbaseSlave1,60020,1362958856599: Unexpected 
exception during initialization, aborting 
org.apache.zookeeper.KeeperException$Connectio
nLossException: KeeperErrorCode = 

In Src and Dest Nodes 
• HBase	  configurations:	  the	  zookeeper	  setting	  in	  HBase,	  conf/hbase-‐site	  and	  
conf/hbase-‐env.sh,	  the	  authority	  to	  use	  Zookeeper	  from	  HBase	  

• The	  OS/Network	  problem	  on	  the	  nodes:	  the	  ssh	  connection	  and	  the	  
compatibility	  between	  JAVA,	  HBase	  and	  OS	  

• Zookeeper	  configurations:	  the	  Zookeeper	  availability	  
• Cross-‐layer	  configuration	  consistency:	  the	  ports,	  quorum	  and	  authority	  setup	  
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ConnectionLoss for /hbase/master 
 at 
org.apache.zookeeper.KeeperException.create(Kee
perException.java:99)” 

in	  zookeeper	  and	  HBase	  

 
From the operator experiences in the project, locating a root 
cause from a logging exception is very difficult. A logging 
exception could result from multiple causes while the 
connections to these causes are not obvious from an error 
message. For example, a logging 
“java.net.ConnectException: Connection refused”, shown 
in Figure 2, has at least 10 possible causes. And exceptions 
on different software (in the ecosystem) or on different 
nodes are sometimes inconsistent but related in a direct and 
indirect manner. It is an extremely exhausting search 
process to locate a root cause in a large-scale domain with 
highly coupled information and many uncertainties.  
 
In this study, we classify the error analysis into three 
layers: exception, source and cause. Exception is the error 
message returned in log files or console; source is defined 
as the component that originally leads to this exception 
message; and cause is the reason that the source got the 
exception.  And we classify errors into four groups: 
operations, configurations, software and resources. We use 
these classifications in our proposed approach to organize 
local diagnosis and a global diagnosis.  
 

 
Figure 2 Three layers of error diagnosis: exception-source-
cause 
 
Configuration errors 
Misconfigurations include legal ones with unintended 
effects and illegal ones (e.g. lexical, and syntax errors) that 
are commonly seen in standalone software systems [23]. 
We also include the cross-domain inconsistent 
configurations in such distributed ecosystems. The later one 
is more difficult to detect because all configurations must 
be taken as a whole for error examination. We give an 
example that caused issues in the project. 
 
Example 1.  HDFS directory used in HBase must be 
consistent with the Hadoop file system default name. In 
HBase, hbase-site.xml, the setting of hbase.rootdir: 

 

 
must be consistent with the setting of fs.default.name in 
Hadoop core-site.xml 

 
Mismatch of these configurations results in failures of 
HBase startup. For an enterprise HBase cluster deployment, 
such as CDH4, there are hundreds of options requiring 
customizable configurations in 20+ sub-systems [7][17]. 
These configurations are inter-correlated, but 
misconfigurations are hard to detect. 
 
Operation errors: 
Operation errors include missing operations and incorrect 
operations. Operation errors cause missing components and 
abnormal system behaviors, resulting in software failures.  
For example, HDFS initialization requires a newly 
formatted file system. Inconsistent File System State 
Exception shown below will return if this required 
operation was missing. The formatting is performed 
externally. The message is not obviously interpretable to 
lack of formatting.  
 
Example 2: 

 
 
Software errors 
Software errors came from software incompatibility and 
bugs. One instance is the incompatibility between Hadoop 
0.20.x version and HBase 0.90.2, resulting in potential data 
loss [14]. Another commonly seen failure due to system 
incompatibility is certain required Java libraries do not 
exist. Such case usually happens because of the 
incompatibility between Java and the OS, and so some 
required Java libraries are not installed.   Here are two 
examples of logging errors returned by Hadoop and 
Zookeeper installation in the project. However, both 
messages are not at all clear about the root causes and can 
lead operators to the wrong places. But after examining 
related logs in other layers, the root cause was located.  
 

<property> 
       <name>hbase.rootdir</name> 
       <value>hdfs://hbaseMaster:54310/hbase</value> 
 </property> 
 

<property> 
        <name>fs.default.name</name> 
        <value>hdfs://hbaseMaster: 54310/value>  
 </property> 

org.apache.hadoop.hdfs.server.common.InconsistentFSStateEx
ception: Directory /app/hadoop/tmp/dfs/name is in an 
inconsistent state: storage directory does not exist or is not 
accessible. 
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Example 3: JAVA problem in Hadoop: 

 
 
Example 4: JAVA problem in ZooKeeper: 

 
 
Resource errors 
Resource errors refer to resource unavailability occurring in 
the computing environment.  For example, limitation of 
disk I/O (or failure of SAN disks) could result in significant 
performance degradation in some nodes, resulting in some 
exceptions of timeout.  However, one key challenge is that 
many such resource errors are hidden in log files and not 
correlated with respective resource metrics. Only by 
looking at different logs from different layers of software in 
the ecosystem, can the root cause be identified.  
 

5. Discussion: Three Challenges to 
Troubleshoot Errors with Logs 
 
Logs guide error diagnosis. There are three challenges that 
should be addressed for achieving more accurate and 
efficient error diagnosis in distributed ecosystem. 
 
5.1 Dealing with inconsistency among logs 
 
Inconsistent loggings around states and events introduce 
significant issues to error diagnosis. Inconsistency may 
occur in a single log file, across multiple log files in 
different components. Inconsistency of logging information 
includes two types: inconsistent contexts and inconsistent 
timestamps.  
 
Taking a Hadoop ecosystem as an example, an ecosystem 
consists of a large number of interacting heterogeneous 
components. Each component has logging mechanism for 
capturing specific states and events, what messages are put 
into log files is often determined by the requirements of 
component itself with no global coordinator for managing 
these logging messages across components. The decisions 
of what states and events are put into the log file under 
what context are not the same in different components. 
When taking these logging messages across components as 
a whole for error diagnosis, missing, redundant and 
contradictory information may introduce context 
inconsistency.  
 
Another type of inconsistency comes from inconsistent 
timestamps in large-scale systems where network latency 

cannot be ignored. Information logging could be 
asynchronous as errors and other corresponding 
information are written into log files. This asynchronous 
logging contributes to risks of timing inconsistency, which 
may be misleading in error diagnosis and omit correlated 
events. Solutions to timing correlation problems exist such 
as NTP1  and Google Spanner [8] but these solutions are 
not currently implemented in our test stack. Again, we are 
attempting to deal with what is, rather than what should be. 
 
5.2 Distinguishing useful information from noisy 
logging 
 
Large-scale distributed systems are constantly producing a 
huge amount of logs for both developers and operators. 
Collecting all of them into a central system is often itself a 
significant challenges. Systems have emerged to create 
such centralized log collection, for example Scribe from 
Facebook, Flume from Apache, Logstash2  and Chukwa 
[16] .  
Due to the large amount of information available, error 
diagnosis is often very time-consuming whether it is done 
by humans querying the centralized log system or through 
machine learning systems across all the logs. Traditional 
error analysis algorithms could encounter scalability issues 
dealing with a large number of logging messages. Some 
scalable clusters for logging analysis were developed for 
addressing this issue [21][22]. But these solutions focus on 
offline analysis to identify source code bugs while 
operation issues often require online or nearline analysis 
putting significant challenge to the analysis infrastructure 
and algorithm. Thus, it is important to discard noise earlier 
and effectively for different types of errors at different 
times.  
In many cases, such as performance issues and connection 
problems, additional tests and associated logs are required 
for analysis. They are often time consuming if planned and 
done reactively through human operators. These additional 
tests should be incorporated into the error diagnosis tools 
and logging infrastructure so they are automatically carried 
out at certain stage of the error diagnosis or proactively 
done, adding more useful signals to the error diagnosis 
process.  
 
5.3 Probabilistic determination of root causes dealing 
with uncertain correlations  
 
In error diagnosis, correlation of logging events is critical 
for identifying the root causes. Many machine-learning 
techniques have been developed for exploring the 
correlated events in log files in order to construct more 
accurate and more comprehensive models for 
                                                                    
1 http://en.wikipedia.org/wiki/Network_Time_Protocol 
2 http://logstash.net/ 

Error msg: "java[13417:1203] Unable to load realm info from 
SCDynamicStore" when running any HDFS command 

JMX enabled by default 
Using config: /home/ubuntu/zookeeper3.4.5/bin/../conf/zoo.cfg 
Error contacting service. It is probably not running. 
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troubleshooting [11]. However, uncertainties in logs 
introduce significant challenges in determining root causes 
Uncertainties in log files are often caused by missing 
logging messages, inconsistent information and ambiguity 
of logging language (lexical and syntax). We classify the 
uncertainties into four types:  
 
Uncertainties Between Exceptions 
In distributed systems, an error occurring in one place often 
triggers a sequence of responses across a number of 
connected components. These responses may or may not 
introduce further exceptions at different components. 
However, simply mining exception messages from these 
distributed log files may not detect the connections among 
these exceptions. Known communications between 
components should be considered in correlating exceptions 
and comparing different root causes diagnosis at each 
component or node. 
 
Uncertainties Between Component States  
Accurate logging states and context help filter useless 
information and guides error diagnosis. They are important 
information for understanding component statuses and 
limiting the scope for searching the root cause to errors. 
Logging states could be fully coupled or fully independent, 
or with somehow indirect connections. But these dependent 
relationships among state logging are not described in log 
files. And missing and inconsistent states logging may 
further introduce uncertainties in the relationships between 
states.  Dependencies in an ecosystem must be taken into 
consideration when analysing state logs.  
 
Uncertainties Between Events  
In error diagnosis exploring the coherence of logging 
events is a critical task for tracking the change of system 
subject to errors, providing a basis for inferring the root 
cause from exceptions. A challenge for constructing event 
coherence is uncertainties lying in the relationships 
between logging events. These uncertainties destroy 
connections between information, losing data for modeling 
the sequence of system change subject to errors.  
 
Uncertainties Between States And Events  
In most cases, logging states and events must be considered 
at the same time for modeling the system behavior in terms 
of logging conditions. Ideally logging messages deliver 
details of events and of corresponding sates across this 
process. But this obviously is over optimistic. In most log 
files the connections between states and events contain 
uncertainties, which destroy the event-state mapping, 
creating a gap for finding the root causes from logging 
errors.  
 

6. A Two-Phase Error Diagnosis Framework 
 
The above challenges are the consequence of current 
logging mechanisms and overall designs, which are often 

out of the control of the users. So error diagnosis requires 
an effective approach that is capable of figuring out the 
most possible root causes for errors despite of the 
inconsistency, noise and uncertainty in logs. To achieve 
this goal in a large-scale distributed computing 
environment, we are working on two ideas. The first idea is 
to treat the operations as a set of explicit processes 
interacting with each other. We model and analyze these 
processes and track the their progression at runtime. We 
use the processes to connect seemingly independent events 
and states scattered in various logs and introduce “process 
context” for error diagnosis [27]. In this paper, we 
introduce the second idea, which proposes a two-phase 
error diagnosis framework for error diagnosis. The first-
phase error diagnosis is conducted at each distributed node 
with agents for local troubleshooting, and a second-phase is 
performed on a centralized server for global error diagnosis 
to compare the various local diagnoses and deal with node-
to-node errors. Unlike existing solutions that have a 
centralized database aggregating all logging information, in 
our approach information is highly filtered for the second-
phase diagnosis depending on the error types, environment 
and local diagnosis.  
 
A framework of this design is shown in Figure 3. The key 
is to let each node or log-file propose a set of potential 
causes for the errors (if there are logging exceptions in the 
file) and gather the states of the relevant components, then 
send these likely causes and component states to a 
centralized second-phase diagnosis for probability-ranked 
list of causes using a gossip algorithm [19]. The logging 
information that we consider in this framework includes log 
files from software components, e.g. Hadoop, Zookeeper 
and HBase, and historical information of resource 
components, which include records of resource 
(CPU/Memory) consumption, disk I/O, network 
throughput, and process states monitored by agent-based 
systems (e.g. JMX and Nagios in our environment). All of 
these are seen as log files of components in our approach.  
 

 
 

Figure 3: Architecture of the 2-phase error diagnosis 
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6.1 The first-phase error diagnosis 
 
The first-phase error diagnosis is conducted with agents 
located at each distributed node for identifying the errors in 
the components in the node. This process is described with 
Figure 4.  
 

 
 

Figure 4: The process of error diagnosis in the first-phase 
 
Inputs to an agent include log files of components and 
configuration files. An agent first summarizes each log file, 
which is a process to convert logging information into a 
standard format with consistent terms (lexical and syntax) 
for later identification. This operation is conducted in the 
stage of log simplification. For each summarized log file 
given by the log simplification, the agent uses a mapper, 
which is a small expert knowledge base responsible to 
deliver a set of likely causes in response to the logging 
exception. A mapper offers: a) a list of candidate causes 
that may contribute to the logging exceptions (which 
include ERROR and WARNING messages), denoted by 
Ce

r, standing for a cause r that may lead to an exception e 
in component C. Each cause may include a set of sub-
causes Ce’ 

r’, and b) the status of the component, denoted by 
Cs, which includes the status of domain name, ports, 
accounts, security, tractable actions for software 
components, and utilization and performance for resource 
components. Each Ce

r is associated with a weight w, whose 
initial value is 1. We define a tuple [Ce

r, w] to indicate this 
relationship. These proposed causes and monitored 
component statuses are considered as a whole by a gossip 
algorithm, updating the weight w of each Ce

r with a rule: 
when a cause Ce

r conflicts to a component status C’
s, the 

associate weight w is reduced by 1; and when a cause Ce
r is 

supported by another log file, the weight w is then 
increased by 1. This strategy reduces the number of 
correlated features (across logging messages) that are less 
related to errors, creating potential for handling complex 
problems in a large-scale systems. 
 
6.1.1 An Example 
The following is an example for troubleshooting cross-
system inconsistent configuration within an HBase cluster. 
Cross-system misconfiguration is hard to detect because it 
is difficult to trace exceptions across multiple systems. In 
an HBase node (with IP: 10.141.133.22, which is a master 
node in this cluster), it includes log files respectively from 
HBase, Hadoop, Zookeeper. When a log file from HBase 
returns an exception, shown as: 
 
2013-03-08 09:31:44,934 INFO org.apache.hadoop.ipc.Client: 
Retrying connect to server: hbaseMaster/10.141.133.22:9000. 

Already tried 9 time(s). 

2013-03-08 09:31:44,938 FATAL 
org.apache.hadoop.hbase.master.HMaster: Unhandled exception. 
Starting shutdown. 

java.net.ConnectException: Call to 
hbaseMaster/10.141.133.22:9000 failed on connection exception: 
java.net.ConnectException: Connection refused 
… 

ERROR org.apache.hadoop.hbase.master.HMasterCommandLine: 
Failed to start master 

,where hbaseMaster is a domain name defined in the 
configuration file. In the phase-one error diagnosis, this 
logging information is summarized as: 
HBaseMaster:9000 failed  
connection exception: hbaseMaster/10.141.133.22:9000 
The mapper takes this as input and returns a set of likely 
causes to the exception and gives the states of the 
component: 
 
1. Hadoop	  server:	  	  unavailable	  (Ce_HDavail:	  1)	  
2. Hadoop	  server:	  	  not	  accessible	  (Ce_HDaccess:1),	  whose	  

prerequisite:	  Cs_HDavail=true,	  and	  with	  sub	  causes:	  
a. domain	  name	  is	  unavailable	  (Ce_HDhbaseMaster:9000	  :1)	  
b. user	  account	  is	  unavailable	  (Ce_HDact	  :1)	  
c. security	  setting	  is	  unavailable	  (Ce_HDsec	  :1)	  

status: HBase HMaster: failed (Cs_HBseHMaster
avail = false).  

 
In the same node, the log file from Hadoop NameNode 
gives the information  
2013-03-08 09:23:02,362 INFO 
org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Roll 
FSImage from 10.141.133.22 

2013-03-08 09:23:02,362 INFO 
org.apache.hadoop.hdfs.server.namenode.FSNamesystem: 
Number of transactions: 0 Total time for transactions(ms): 
0Number of transactions batched in Syncs: 0 Number of syncs: 1 
SyncTimes(ms): 8 

 
Because there are no logging exceptions, no causes are 
proposed from this Hadoop log file. So it can give: 
Cs_HD

avail=true. And since no configurations regarding 
account and security are found in the configuration files, it 
gives Cs_HD

act =true and Cs_HD
sec =true. And it can be achieved 

from the summary of Hadoop log that: 
Cs_HD

hbaseMaste:54310=true, where hbaseMaste:54310 is the 
domain name of Hadoop.  
 
A combination of this information given by Mappers is 
used in the Gossip protocol for updating the weight 
associated with each proposed cause. Output is shown as 
below. The reasons are described in the bracket in the right-
hand side. 
 
1. [Ce_HD

avail  : 0] (Ce_HD
avail =false conflicts  Cs_HD

avail=true ) 
2. [Ce_HD

access: 1] (Cs_HD
avail=true, and no information directly 

related to Ce_HD
access) 

     a.[Ce_HD
hbaseMaster:9000: 1] (no information directly related to 

*
Configuration

Log 
Simplification

Log File of 
a 

Component

causes to 
exception

component 
status

gossip protocol causes with 
updated weightsMapper
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Ce_HD
hbaseMaster:9000) 

     b.[Ce_HD
act :0] (Ce_HD

act =false conflicts  Cs_HD
act=true ) 

     c.[Ce_HD
sec :0] (Ce_HD

sec =false conflicts  Cs_HD
sec=true ) 

 
 
The cause to this “java.net.ConnectException” is limited to 
the availability of domain name of hbaseMaster:9000 (cause 
2.a). Although this approach does not provide a 100% 
accurate error diagnosis, it shows the possibility of using 
limited information to sort out the most likely causes for a 
logging error in a complex computing environment with 
many connected systems. 
  
6.2 The second-phase error diagnosis 
 
The second-phase error diagnosis offers troubleshooting for 
the exceptions that may be across multiple nodes. This 
process sorts out the possibility of causes that are delivered 
by the agents in the first-phase error diagnosis.  
 
Each agent summaries the output of the first-phase error 
diagnosis into a message, which includes the likely causes 
with updated weights (if the weight is greater than zero), 
and the status of each component.   
 
6.2.1 An Example 
For example, the agent in the above node will deliver the 
second-phases error diagnosis a message with the 
information of: 
Agent ID: 10.141.133.22 
HBase Log: 
[Ce_HD

access: 1] 
[Ce_HD

ç:1] 
Cs_HBseHMaster

 avail = false, Cs_HBseHMaster
 act =true, Cs_HBseHMaster

 sec 
=true 
Hadoop Log: 
Cs_HD

avail=true, Cs_HD
hbaseMaste:54310=true, Cs_HD

 act =true, Cs_HD
 

sec=true 
Zookeeper Log: 
[Ce_ZK 

hbaseSlave3:3888 :1] 
Cs_ZK

avail=true, Cs_ZK
myID:1=follower, Cs_ZK

 act =true, Cs_ZK
 sec=true 

 
This message includes the information of Zookeeper. 
Because there is a WARN message given in the Zookeeper 
log file, shown as: 
Cannot open channel to 4 at election address 
hbaseSlave3/10.151.97.82:3888 
 
and the Zookeeper status has shown that this Zookeeper 
quorum is performing follower, a possible cause with 
weight is shown as [Ce_ZK 

hbaseSlave3:3888 :1]. This warning error 
message is related to anther Zookeeper quorum on: 
hbaseSlave3:3888. It is handled by the second-phase error 
diagnosis. 
 
For this troubleshooting, input information regarding this 
error for the second-phase error diagnosis includes:  
Agent ID: 10.141.133.22, prose error [Ce_ZK 

hbaseSlave3:3888 :1] 

Agent ID: 10.36.33.18, where the zookeeper quorum is selected as 
leader, propose error [Ce_ZK 

hbaseSlave3:3888 :1] 
Agent ID: 10.151.97.82, where locate the problematic zookeeper 
quorum hbaseSlave3:3888  
 
Because the Zookeeper status is found in the Agent ID: 
10.151.97.82, the weight of Ce_ZK 

hbaseSlave3:3888 is updated to  
[Ce_ZK 

hbaseSlave3:3888 :2]  
in the second-phase error diagnosis with the gossip protocol 
to find out the most likely cause to guide troubleshooting. It 
locates the issue on the zookeeper quorum on 10.151.97.82. 
And since no states of this Zookeeper quorum are returned, 
the focus of troubleshooting can be limited on: 
Network communication between nodes, and  
Configurations of the zookeeper quorum in Zookeeper and 
HBase 
 
This simple example shows that the 2-phase error diagnosis 
can use existing limited information to determine a list of 
ranked possible causes to logging errors dealing with 
uncertainty challenges we identified earlier. And the 
strategy is simple to implement as it uses an existing gossip 
algorithm to compare local diagnosis, which could be in 
turn based on past work and ad-hoc knowledge database, 
and it can handle cross-layer and cross-node errors.  
 

7.  Conclusions and Future Works 
 
Using a real world case study, we identified some difficult-
to-diagnosis errors committed by non-expert 
Hadoop/HBase users. We classified errors and documented 
the difficulties in error diagnosis, which led to three key 
challenges in ecosystem error diagnosis. We proposed a 
simple and scalable two-phased error diagnosis framework 
that only communicates the absolute necessary information 
for global diagnosis after local diagnosis.  We 
experimented and demonstrated the feasibility of the 
approach using a small set of common Hadoop ecosystem 
errors. We are currently implementing the full framework 
and performing large-scale experiments. 
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