
USENIX Association 27th Large Installation System Administration Conference 145
 1

Challenges to Error Diagnosis in Hadoop Ecosystems

Jim (Zhanwen) Li1, Siyuan He2, Liming Zhu1,3,Xiwei Xu1,
Min Fu3, Len Bass1,3, Anna liu1,3, An Binh Tran3

1NICTA, Sydney, Australia
2Citibank, Toronto, Canada

3School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

Abstract

Deploying a large-scale distributed ecosystem such as
HBase/Hadoop in the cloud is complicated and error-prone.
Multiple layers of largely independently evolving software
are deployed across distributed nodes on third party
infrastructures. In addition to software incompatibility and
typical misconfiguration within each layer, many subtle and
hard to diagnose errors happen due to misconfigurations
across layers and nodes. These errors are difficult to
diagnose because of scattered log management and lack of
ecosystem-awareness in many diagnosis tools and
processes.

We report on some failure experiences in a real world
deployment of HBase/Hadoop and propose some initial
ideas for better trouble-shooting during deployment. We
identify the following types of subtle errors and the
corresponding challenges in trouble-shooting: 1) dealing
with inconsistency among distributed logs, 2)
distinguishing useful information from noisy logging, and
3) probabilistic determination of root causes.

1. Introduction

With the maturing of cloud and Hadoop technologies, more
and more organizations are deploying and using systems in
the Hadoop ecosystem for various purposes. Hadoop is an
ecosystem that consists of multiple layers of largely
independently evolving software and its deployment is
across distributed nodes and different layers.

Even for experienced operational professionals with limited
experience with the Hadoop ecosystem, the deployment
and use is highly error-prone and error diagnosis and root
cause identification takes a significant amount of time.

Traditionally, logs and error messages are important
sources of information for error diagnosis. In a distributed
system, logs are generated from multiple sources with
different granularities and different syntax and semantics.
Sophisticated techniques have been proposed to produce
better logs or analyze existing logs to improve error
diagnosis. However, there are a number of limitations of
the existing approaches for the situation outlined above.

Consider one of the error messages that we encountered in

our experiments “java.net.ConnectException: Connection refused “.
One existing approach is to correlate error messages with
source code. Yet knowing where in the Java library this
message was generated will not help determine the root
cause. The cause of this error is, most likely, a
misconfiguration but it is a misconfiguration that indicates
inconsistency between multiple items in the ecosystem.
Trouble shooting an error message such as this requires
familiarity with the elements of the ecosystem and how
they interact. This familiarity is primarily gained through
experience, often painful. Furthermore, the messages
leading up to this error message may be inconsistent or
irrelevant. They are usually voluminous, however.

Providing assistance to non-expert installers of a
complicated eco-system such as HBase/Hadoop is the goal
of the work we report on here. In this paper, we report
some failure experiences in real world deployments of
HBase/Hadoop. Specifically, we focus on three key
challenges: 1) dealing with inconsistency among distributed
logs, 2) distinguishing useful information from noisy
logging, and 3) probabilistic determination of root causes.

There are two assumptions about this work. First, it came
out of observing and studying errors committed by non-
expert installers of Hadoop ecosystems. Our target is
system administrators and non-experts in HBase/Hadoop.
Second, we assume that the developers of such systems will
not change the way they record logs significantly although
we do hope they produce them with operators more in
mind. Thus our initial solutions are around dealing with
inconsistency and uncertainties with existing logs. The
case studies are all based on an Hadoop/HBase [3][5]
cluster running on AWS EC2s[2].

The contributions of this paper include:
1. Identification of different types of errors in Hadoop
ecosystem deployment using real world cases and
investigations into the root causes of these errors. The
majority of errors can be classified into four types:

• Operational errors such as missing/incorrect
operations and missing artifacts. Errors introduced
during restarting/shutting down nodes, artifacts (files
and directories) not created, created with the wrong
permission or mistakenly moved and disallowed
operations due to inconsistent security environment are
the major ones.

146 27th Large Installation System Administration Conference USENIX Association
 2

• Configuration errors include errors such as illegal,
lexical, and syntax errors in standalone software
systems and cross-systems/nodes inconsistency in an
ecosystem.

• Software errors include compatibility issues among
different parts of an ecosystem (e.g. HBase and HDFS
compatibility issues) and bugs.

• Resource errors include resource unavailability or
resource exhaustion, especially in cloud environment,
that manifest themselves in highly uncertain ways and
lead to system failures.

The diagnosis of these errors and locating the true causes is
more difficult in an ecosystem setting, which leads to our
second contribution.
2. Identified specific error diagnosis challenges in multi-
layer ecosystems deployed in distributed systems: 1)
dealing with inconsistency among distributed logs, 2)
distinguishing useful information from noisy logging, and
3) probabilistic determination of root causes. These
highlighted the gaps in the current approaches and lead to
our third contribution.
3. Introduced a new two-phase error diagnosis general
framework for distributed software ecosystem from the
operator (rather than the developer) perspective. This new
approach attempts to remove some inconsistency and noise
by combining phase-one local diagnosis with phase-two
global diagnosis and produces a probability-ranked list of
potential root causes. This simplifies the complexities of
constructing correlations between logging information and
root causes.

2. Related Works

In previous work, efforts have been placed into the
improvement of logging mechanisms for providing more
comprehensive system information to assist system
management. For example, Apache Flume [2] aims to offer
a scalable service for efficiently collecting, aggregating,
and moving large amounts of log data in large-scale
distributed computing environments. Similar logging
systems include Facebook Scribe [9], Netflix Edda [13] and
Chukwa [16], which are systems for aggregating real-time
streams of log data from a large number of servers. These
developments of logging systems provide a good basis for
collecting up-to-date system information in complex
distributed systems, but they do not have the capability to
bridge the gap between logging information and error
diagnosis.
Another focus of research of using logging information to
assist troubleshooting is to explore effective machine
learning approaches for mining critical messages associated
with known problems. For example, Xu et. al. [21] studied
the correlation between logs and source code. In [12],
Nagaraj et. al. troubleshoot performance problems by using
machine learning to compare system logging behaviors to

infer associations between components and performance. In
[11], Narasimhan and her team members studied the
correlation of OS metrics for failure detection in distributed
systems. In [24][25][26], Zhou’s research group studied the
trace of logging information in source codes, and
introduced a new logging mechanism to locate the position
of bugs with more efficiency. And in [15], Oliner et. al.
studied the connections between heterogeneous logs and
quantified the interaction between components using these
logs. There is a general lack of ecosystem awareness in
these tools and the ability to deal with log inconsistency
and uncertainty as well as cross system incompatability.
Misconfigurations are another significant issues leading to
software system errors. Zhou and her colleagues conducted
an empirical study over different types of
misconfigurations and their effects on systems by studying
several open source projects, including MySQL, Tomcat
and etc. [23]. They focus on the misconfigurations of each
individual system, while the correlation of configurations
across systems, especially in a distributed environment, is
ignored. Randy Katz and his colleagues [17] studied the
connection between configuration and software source code
to improve misconfiguration detection but did not cover the
connection between configurations and logs, which is
critical to operators.
These existing works give a good basis for understanding
some challenges in error diagnosis. But many studies are
from the viewpoint of software developers rather than
operators. They also did not consider issues around the
connections among the logs and configurations at different
layers and across different nodes.

3. Case Study: HBase Cluster on Amazon
EC2

Our case study comes from a real world privacy research
project where the goal is to process large amounts of
anonymised information using different approaches to see
if one can still infer identity from the information. Several
sub-projects want to share a HBase/Hadoop cluster which
is deployed in Amazon EC2. The operators and users of the
cluster are IT-savvy researchers and system admins but not
Hadoop or distributed system experts. Although Amazon
provides an Elastic Map Reduce (EMR) system with
Hadoop pre-installed, the different requirements of the sub-
projects led to a fresh deployment on EC2 virtual machines.

An HBase/Hadoop cluster consists of Hadoop Distributed
File System (HDFS) for distributed files storage,
Zookeeper for distributed service coordination, and HBase
for fast individual record lookups and updates in distributed
files. Each node in an HBase cluster consists of multiple
layers of software systems, shown as Figure 1 (a). Every
layer must perform in a correct manner to ensure the
communication across layers/nodes and overall system
availability, as shown in Figure 1 (b).

USENIX Association 27th Large Installation System Administration Conference 147
 3

The communication between nodes in a Hadoop ecosystem
relies on SSH connections, so security, ports and protocols
required by SSH must be available. Hadoop, Zookeeper
and HBase rely on Java SDK. Updated versions of Java
that are compatible are necessary. The Hadoop layer is the
basis of an HBase cluster. This layer is controlled by HDFS
and MapReduce [3]. The configurations over the
Namenode and all Datanodes [3] must be correct, ensuring
the communication and computation over this layer, so that
clients of Hadoop can access HDFS or MapReduce
services. (HBase does not need MapReduce, but
applications of HBase may require MapReduce).
Zookeeper performs a role of distributed service
coordinator for HBase. Its responsibilities include tracking
server failures and network partitions. Without Zookeeper,
HBase is not operational. Based on these underlying
distributed services, HBase requires communication
between the HMaster and the Regional Servers [5] in the
HBase layer. The full deployment and running of some of
our small programs went through several false starts in a
matter of weeks by different people independently. We
asked the people to record their major errors, diagnosis
experiences and root causes.

(a) (b)

Figure 1 Layers of software systems in Hadoop

4. Logging Exceptions and Uncertainties in
Determining Root Causes

In Table 1, we list some key examples of logs and error
messages collected in our Hadoop/HBase deployment
process. The “Logging Exception” column records the error
messages when the deployment process got interrupted.
The “Possible Causes” column listed the possible causes
and the relevant information that different operators
mentally considered or physically examined during error
diagnosis. For errors that are related to connection issues,
we use Src and Dest to respectively represent the source
and destination nodes.

Table 1: Logging Exceptions and Potential Causes

 Source Logging Exception Possible Causes: Required Information for Examination
1 HBase/Had

oop
“org.apache.hadoop.hdfs.server.datanode.DataNod
e: DataNode is shutting down:
org.apache.hadoop.ipc.RemoteException:
org.apache.hadoop.hdfs.protocol.UnregisteredData
nodeException”

In the problematic DataNodes:

• Instance	 is	 down:	 ping,	 ssh	 connection	
• Access	 permission:	 check	 authentication	 keys,	 check	 ssh	 connection	
• HDFS	 configuration:	 conf/slaves	
• HDFS	 missing	 components:	 check	 the	 datanode	 setting	 and	 directories	 in	 hdfs	

2 Zookeeper

“java.net.UnknownHostException at
org.apache.zookeeper.ZooKeeper.<init>(ZooKeepe
r.java:445)”

In Src and Dest nodes:
• DSN:	 DSN	 configuration	 and	 testing	
• Network	 connection:	 ssh	 testing	
• Zookeeper	 connection:	 JPS	 and	 logging	 messages	 in	 zoo.out	
• Zookeeper	 configuration:	 zoo.cfg	
• Zookeeper	 status:	 processes	 (PID	 and	 JPS)	
• Cross-‐node	 configuration	 consistency	

3 HDFS/
MapReduce
/ HBase/
Zookeeper

“java.net.ConnectException: Connection refused “ In Src and Dest:
• Network	 connection:	 ping	 IPs,	 ping	 hostnames	 and	 check	 ssh	 connection	
• Security	 setting:	 check	 ssh	 connection	 and	 check	 authentication	 keys	
• Hostname/IP/Ports	 configuration:	 check	 configuration	 files,	 netstat	 and	 lsof	
• Software	 status:	 check	 processes	
• Software	 compatibility:	 detect	 and	 check	 system	 and	 library	 versions	
• Cross-‐layer	 configuration	 consistency	
• Cross-‐node	 configuration	 consistency	

4 HBase/Had
oop

“org.apache.hadoop.hdfs.server.namenode.NameN
ode: java.lang.IllegalArgumentExcepti
on: Does not contain a valid host:port authority:
file”

In Src and Dest:
• Missing	 configuration	 files:	 hostfile,	 hadoop	 configuraitons	 	 	
• Security	 file	 missing	 or	 incorrect:	 connection	 permission,	 host/port	 permission	
• Host	 and	 Port	 setting	 in	 HDFS:	 core-‐site.xml,	 hdfs-‐site.xml	 	
• Host	 and	 Port	 settings	 in	 DNS	
• Network	 host	 and	 port	 settings:	 netstat,	 lsof	 etc	
• Cross-‐node	 configuration	 consistency	

5 HBase/Had
oop

“org.apache.hadoop.hdfs.server.common.Inconsiste
ntFSStateException: Directory

In the problematic nodes:
• Missing	 files	 in	 HDFS	 file	 system:	 look	 for	 directory	 in	 hdfs	

OS
JAVA SDK

Hadoop

HBase

Z
ookeeper

Network

security NodeNode

HDFS

ZooKeeper

HBase

HDFS

ZooKeeper

HBase

148 27th Large Installation System Administration Conference USENIX Association
 4

/app/hadoop/tmp/dfs/name is in an inconsistent
state: storage directory does not exist or is not
accessible.”

• Missing/Incorrect	 operations	 on	 HDFS:	 hdfs	 format	 	
• Directory	 misconfiguration:	 core-‐site.xml	

6 HBase/Had
oop

“WARNorg.apache.hadoop.metrics2.impl.MetricsS
ystemImpl: Source name ugi already exists!
ERRORorg.apache.hadoop.hdfs.server.datanode.D
ataNode: java.io.IOException: Incompatible
namespaceIDs in /app/hadoop/tmp/dfs/data:”

In the problematic NameNode and DataNode:
• Misconfigurations	 on	 the	 hadoop:	 scan	 the	 name	 space	 setting	 in	 hadoop	
• File	 System	 duplication:	 scan	 the	 hdfs	 file	 system	 	
• Other	 nodes	 with	 the	 same	 name	 started:	 scan	 configurations	 and	 hostfiles	

7 Zookeeper “JMX enabled by default
Using config: /home/ubuntu/zookeeper-
3.4.5/bin/../conf/zoo.cfg
Error contacting service. It is probably not
running.”

In the problematic Nodes:
• Misconfigurations	 on	 JAVA:	 Java	 version	 and	 Java	 Path	
• Missing	 components	 in	 JAVA:	 Update	 Java	 version	
• JAVA	 configurations	 in	 Zookeeper:	 JAVA_HOME	 Path	
• Zookeeper	 configurations:	 configurations	 in	 zoo.cfg	
• Zookeeper	 version	 problem:	 the	 compatibility	 of	 Zookeeper,	 JAVA	 and	 OS	

8 Hadoop/Ma
pReduce

 In deployment testing, “class is not found:
maxtempreturemapper , and the job is not defined
in the jar , when running map reduce jobs…”

In the problematic Nodes:
• Misconfiguration	 in	 Jobtracker:	 the	 path	 to	 the	 MapReduce	 Jar	
• Misconfigurations	 in	 MapReduce:	 mapred-‐site.xml	
• Class	 compiling	 by	 JAVA:	 the	 Java	 compiler	
• The	 correctness	 of	 the	 Jar	 file:	 the	 source	 code	 of	 the	 MR	 application	

9 HBase/Had
oop

“ERROR
org.apache.hadoop.security.UserGroupInformation:
PriviledgedActionException as:ubuntu
cause:java.io.IOException: File
/app/hadoop/tmp/mapred/system/jobtracker.info
could only be replicated to 0 nodes, instead of 1”

In the problematic Nodes:
• Security	 setting:	 RSA	 settings	 	
• Directory	 configuration:	 scan	 configuration	 files	 core-‐site.xml	
• HDFS	 files	 system	 directories:	 scan	 the	 Hadoop	 file	 system,	 run	 hadoop	 scripts,	
or	 scan	 hadoop	 log	 	

10 HBase/Had

oop
“FATAL org.apache.hadoop.hdfs.StateChange:
BLOCK* NameSystem.getDatanode …
ERROR
org.apache.hadoop.security.UserGroupInformation:
PriviledgedActionException as:ubuntu
cause:org.apache.hadoop.hdfs.protocol.Unregistere
dDatanodeException”

In the problematic Nodes:
• Hadoop	 misconfiguration:	 scan	 hadoop	 configuration	 files	 core-‐site.xml	 and	
conf/slaves	

• HDFS	 not	 formatted:	 scan	 hadoop	 file	 system,	 run	 hadoop	 scripts	
• HBase	 Configurations:	 scan	 	 HBase	 configurations	 conf/hbase-‐site.xml	
• Cross-‐layer	 configuration	 consistency:	 scan	 the	 configurations	 with	
dependencies	 in	 HBase	 and	 Hadoop	

• System	 security:	 test	 SSH	 conncetions	
11 HBase/Had

oop
“org.apache.hadoop.hbase.client.RetriesExhausted
Exception: Failed setting up proxy interface

In the Src and Dest Nodes:
• Hadoop	 status:	 scan	 processes	 by	 PID	 and	 JPS,	 use	 Hadoop	 commands	 	
• Hadoop	 client	 and	 server	 configurations:	 the	 master	 name	 setting	 in	 hdfs	 	
• Permission	 in	 the	 system:	 RSA	 and	 ssh	 connnections	
• Cross-‐layer	 configuration	 consistency:	 HBase	 configurations	 is	 inconsistent	 to	
the	 Hadoop	 configuraitons,	 e.g.,	 the	 ports	 and	 the	 names	 of	 file	 systems	

12 HBass/Had
oop

"WARN
org.apache.hadoop.hdfs.server.datanode.DataNode:
java.io.IOException: Too many open files at
java.io.UnixFileSystem.createFileExclusively(Nati
ve Method) at
java.io.File.createNewFile(File.java:883)
 …

In nodes used by HBase
• configuration	 of	 HBase:	 maximum	 number	 of	 files	 setting	
• Workload	 of	 HBase:	 under	 heavy	 work	 load	
• Configuration	 of	 Hadoop:	 maximum	 number	 of	 files	 setting	
• OS	 environment	 misconfiguration:	 e.g.	 default	 ulimit	 (user	 file	 limit)	 on	 most	
unix	 systems	 insufficient	

13 Hadoop “org.apache.hadoop.hdfs.DFSClient: DataStreamer

Exception:
org.apache.hadoop.ipc.RemoteException:
java.io.IOException: File
/app/hadoop/tmp/mapred/system/jobtracker.info
could only be replicated to 0 nodes, instead of 3”

In Src and Dest Nodes
• Hadoop	 Status:	 scan	 processes	 by	 PID	 and	 JPS,	 use	 Hadoop	 commands	
• MapReduce	 Status:	 scan	 processes	 by	 PID	 and	 JPS,	 use	 MapReduce	 commands	
• Directory	 in	 Hadoop	 configurations:	 the	 number	 of	 replicas	 in	 hdfs-‐site.xml,	 the	
number	 of	 slaves	 in	 conf/slaves	

• Connection	 problems:	 e.g.	 node	 IP	 configurations	
• HDFS	 file	 system:	 the	 directory	 does	 not	 exist	 in	 the	 HDFS	 	
• Cross-‐node	 configuration	 consistency:	 the	 Hadoop	 states	 in	 each	 node	

14 Zookeeper “org.apache.zookeeper.ClientCnxn: Session
0x23d41f532090005 for server null, unexpected
error, closing socket connection and attempting
reconnect”

In Src and Dest Nodes
• Zookeeper	 Configurations:	 the	 clinet	 port,	 name	 of	 nodes	 etc.	 in	 zoo.cfg	
• Network	 Configurations:	 the	 ssh	 connections	 to	 other	 nodes	
• Security	 Configurations:	 the	 RSA	 settings	
• Cross-‐node	 configuration	 consistency:	 the	 zookeeper	 configurations	 in	 each	
node,	 the	 configuration	 over	 networks	 in	 each	 node	

• States	 of	 Zookeeper:	 running,	 waiting	 or	 failed	
15 HBase/Had

oop/Zookee
per

“FATAL
org.apache.hadoop.hbase.regionserver.HRegionSer
ver: ABORTING region server
hbaseSlave1,60020,1362958856599: Unexpected
exception during initialization, aborting
org.apache.zookeeper.KeeperException$Connectio
nLossException: KeeperErrorCode =

In Src and Dest Nodes
• HBase	 configurations:	 the	 zookeeper	 setting	 in	 HBase,	 conf/hbase-‐site	 and	
conf/hbase-‐env.sh,	 the	 authority	 to	 use	 Zookeeper	 from	 HBase	

• The	 OS/Network	 problem	 on	 the	 nodes:	 the	 ssh	 connection	 and	 the	
compatibility	 between	 JAVA,	 HBase	 and	 OS	

• Zookeeper	 configurations:	 the	 Zookeeper	 availability	
• Cross-‐layer	 configuration	 consistency:	 the	 ports,	 quorum	 and	 authority	 setup	

USENIX Association 27th Large Installation System Administration Conference 149
 5

ConnectionLoss for /hbase/master
 at
org.apache.zookeeper.KeeperException.create(Kee
perException.java:99)”

in	 zookeeper	 and	 HBase	

From the operator experiences in the project, locating a root
cause from a logging exception is very difficult. A logging
exception could result from multiple causes while the
connections to these causes are not obvious from an error
message. For example, a logging
“java.net.ConnectException: Connection refused”, shown
in Figure 2, has at least 10 possible causes. And exceptions
on different software (in the ecosystem) or on different
nodes are sometimes inconsistent but related in a direct and
indirect manner. It is an extremely exhausting search
process to locate a root cause in a large-scale domain with
highly coupled information and many uncertainties.

In this study, we classify the error analysis into three
layers: exception, source and cause. Exception is the error
message returned in log files or console; source is defined
as the component that originally leads to this exception
message; and cause is the reason that the source got the
exception. And we classify errors into four groups:
operations, configurations, software and resources. We use
these classifications in our proposed approach to organize
local diagnosis and a global diagnosis.

Figure 2 Three layers of error diagnosis: exception-source-
cause

Configuration errors
Misconfigurations include legal ones with unintended
effects and illegal ones (e.g. lexical, and syntax errors) that
are commonly seen in standalone software systems [23].
We also include the cross-domain inconsistent
configurations in such distributed ecosystems. The later one
is more difficult to detect because all configurations must
be taken as a whole for error examination. We give an
example that caused issues in the project.

Example 1. HDFS directory used in HBase must be
consistent with the Hadoop file system default name. In
HBase, hbase-site.xml, the setting of hbase.rootdir:

must be consistent with the setting of fs.default.name in
Hadoop core-site.xml

Mismatch of these configurations results in failures of
HBase startup. For an enterprise HBase cluster deployment,
such as CDH4, there are hundreds of options requiring
customizable configurations in 20+ sub-systems [7][17].
These configurations are inter-correlated, but
misconfigurations are hard to detect.

Operation errors:
Operation errors include missing operations and incorrect
operations. Operation errors cause missing components and
abnormal system behaviors, resulting in software failures.
For example, HDFS initialization requires a newly
formatted file system. Inconsistent File System State
Exception shown below will return if this required
operation was missing. The formatting is performed
externally. The message is not obviously interpretable to
lack of formatting.

Example 2:

Software errors
Software errors came from software incompatibility and
bugs. One instance is the incompatibility between Hadoop
0.20.x version and HBase 0.90.2, resulting in potential data
loss [14]. Another commonly seen failure due to system
incompatibility is certain required Java libraries do not
exist. Such case usually happens because of the
incompatibility between Java and the OS, and so some
required Java libraries are not installed. Here are two
examples of logging errors returned by Hadoop and
Zookeeper installation in the project. However, both
messages are not at all clear about the root causes and can
lead operators to the wrong places. But after examining
related logs in other layers, the root cause was located.

<property>
 <name>hbase.rootdir</name>
 <value>hdfs://hbaseMaster:54310/hbase</value>
 </property>

<property>
 <name>fs.default.name</name>
 <value>hdfs://hbaseMaster: 54310/value>
 </property>

org.apache.hadoop.hdfs.server.common.InconsistentFSStateEx
ception: Directory /app/hadoop/tmp/dfs/name is in an
inconsistent state: storage directory does not exist or is not
accessible.

150 27th Large Installation System Administration Conference USENIX Association
 6

Example 3: JAVA problem in Hadoop:

Example 4: JAVA problem in ZooKeeper:

Resource errors
Resource errors refer to resource unavailability occurring in
the computing environment. For example, limitation of
disk I/O (or failure of SAN disks) could result in significant
performance degradation in some nodes, resulting in some
exceptions of timeout. However, one key challenge is that
many such resource errors are hidden in log files and not
correlated with respective resource metrics. Only by
looking at different logs from different layers of software in
the ecosystem, can the root cause be identified.

5. Discussion: Three Challenges to
Troubleshoot Errors with Logs

Logs guide error diagnosis. There are three challenges that
should be addressed for achieving more accurate and
efficient error diagnosis in distributed ecosystem.

5.1 Dealing with inconsistency among logs

Inconsistent loggings around states and events introduce
significant issues to error diagnosis. Inconsistency may
occur in a single log file, across multiple log files in
different components. Inconsistency of logging information
includes two types: inconsistent contexts and inconsistent
timestamps.

Taking a Hadoop ecosystem as an example, an ecosystem
consists of a large number of interacting heterogeneous
components. Each component has logging mechanism for
capturing specific states and events, what messages are put
into log files is often determined by the requirements of
component itself with no global coordinator for managing
these logging messages across components. The decisions
of what states and events are put into the log file under
what context are not the same in different components.
When taking these logging messages across components as
a whole for error diagnosis, missing, redundant and
contradictory information may introduce context
inconsistency.

Another type of inconsistency comes from inconsistent
timestamps in large-scale systems where network latency

cannot be ignored. Information logging could be
asynchronous as errors and other corresponding
information are written into log files. This asynchronous
logging contributes to risks of timing inconsistency, which
may be misleading in error diagnosis and omit correlated
events. Solutions to timing correlation problems exist such
as NTP1 and Google Spanner [8] but these solutions are
not currently implemented in our test stack. Again, we are
attempting to deal with what is, rather than what should be.

5.2 Distinguishing useful information from noisy
logging

Large-scale distributed systems are constantly producing a
huge amount of logs for both developers and operators.
Collecting all of them into a central system is often itself a
significant challenges. Systems have emerged to create
such centralized log collection, for example Scribe from
Facebook, Flume from Apache, Logstash2 and Chukwa
[16] .
Due to the large amount of information available, error
diagnosis is often very time-consuming whether it is done
by humans querying the centralized log system or through
machine learning systems across all the logs. Traditional
error analysis algorithms could encounter scalability issues
dealing with a large number of logging messages. Some
scalable clusters for logging analysis were developed for
addressing this issue [21][22]. But these solutions focus on
offline analysis to identify source code bugs while
operation issues often require online or nearline analysis
putting significant challenge to the analysis infrastructure
and algorithm. Thus, it is important to discard noise earlier
and effectively for different types of errors at different
times.
In many cases, such as performance issues and connection
problems, additional tests and associated logs are required
for analysis. They are often time consuming if planned and
done reactively through human operators. These additional
tests should be incorporated into the error diagnosis tools
and logging infrastructure so they are automatically carried
out at certain stage of the error diagnosis or proactively
done, adding more useful signals to the error diagnosis
process.

5.3 Probabilistic determination of root causes dealing
with uncertain correlations

In error diagnosis, correlation of logging events is critical
for identifying the root causes. Many machine-learning
techniques have been developed for exploring the
correlated events in log files in order to construct more
accurate and more comprehensive models for

1 http://en.wikipedia.org/wiki/Network_Time_Protocol
2 http://logstash.net/

Error msg: "java[13417:1203] Unable to load realm info from
SCDynamicStore" when running any HDFS command

JMX enabled by default
Using config: /home/ubuntu/zookeeper3.4.5/bin/../conf/zoo.cfg
Error contacting service. It is probably not running.

USENIX Association 27th Large Installation System Administration Conference 151
 7

troubleshooting [11]. However, uncertainties in logs
introduce significant challenges in determining root causes
Uncertainties in log files are often caused by missing
logging messages, inconsistent information and ambiguity
of logging language (lexical and syntax). We classify the
uncertainties into four types:

Uncertainties Between Exceptions
In distributed systems, an error occurring in one place often
triggers a sequence of responses across a number of
connected components. These responses may or may not
introduce further exceptions at different components.
However, simply mining exception messages from these
distributed log files may not detect the connections among
these exceptions. Known communications between
components should be considered in correlating exceptions
and comparing different root causes diagnosis at each
component or node.

Uncertainties Between Component States
Accurate logging states and context help filter useless
information and guides error diagnosis. They are important
information for understanding component statuses and
limiting the scope for searching the root cause to errors.
Logging states could be fully coupled or fully independent,
or with somehow indirect connections. But these dependent
relationships among state logging are not described in log
files. And missing and inconsistent states logging may
further introduce uncertainties in the relationships between
states. Dependencies in an ecosystem must be taken into
consideration when analysing state logs.

Uncertainties Between Events
In error diagnosis exploring the coherence of logging
events is a critical task for tracking the change of system
subject to errors, providing a basis for inferring the root
cause from exceptions. A challenge for constructing event
coherence is uncertainties lying in the relationships
between logging events. These uncertainties destroy
connections between information, losing data for modeling
the sequence of system change subject to errors.

Uncertainties Between States And Events
In most cases, logging states and events must be considered
at the same time for modeling the system behavior in terms
of logging conditions. Ideally logging messages deliver
details of events and of corresponding sates across this
process. But this obviously is over optimistic. In most log
files the connections between states and events contain
uncertainties, which destroy the event-state mapping,
creating a gap for finding the root causes from logging
errors.

6. A Two-Phase Error Diagnosis Framework

The above challenges are the consequence of current
logging mechanisms and overall designs, which are often

out of the control of the users. So error diagnosis requires
an effective approach that is capable of figuring out the
most possible root causes for errors despite of the
inconsistency, noise and uncertainty in logs. To achieve
this goal in a large-scale distributed computing
environment, we are working on two ideas. The first idea is
to treat the operations as a set of explicit processes
interacting with each other. We model and analyze these
processes and track the their progression at runtime. We
use the processes to connect seemingly independent events
and states scattered in various logs and introduce “process
context” for error diagnosis [27]. In this paper, we
introduce the second idea, which proposes a two-phase
error diagnosis framework for error diagnosis. The first-
phase error diagnosis is conducted at each distributed node
with agents for local troubleshooting, and a second-phase is
performed on a centralized server for global error diagnosis
to compare the various local diagnoses and deal with node-
to-node errors. Unlike existing solutions that have a
centralized database aggregating all logging information, in
our approach information is highly filtered for the second-
phase diagnosis depending on the error types, environment
and local diagnosis.

A framework of this design is shown in Figure 3. The key
is to let each node or log-file propose a set of potential
causes for the errors (if there are logging exceptions in the
file) and gather the states of the relevant components, then
send these likely causes and component states to a
centralized second-phase diagnosis for probability-ranked
list of causes using a gossip algorithm [19]. The logging
information that we consider in this framework includes log
files from software components, e.g. Hadoop, Zookeeper
and HBase, and historical information of resource
components, which include records of resource
(CPU/Memory) consumption, disk I/O, network
throughput, and process states monitored by agent-based
systems (e.g. JMX and Nagios in our environment). All of
these are seen as log files of components in our approach.

Figure 3: Architecture of the 2-phase error diagnosis

Node

Logs

Agent
for 1st-
phase
error

diagnose

2nd-phase error
diagnosis

msg

msg

...

Node

Logs

Agent
for 1st-
phase
error

diagnose

msg

152 27th Large Installation System Administration Conference USENIX Association
 8

6.1 The first-phase error diagnosis

The first-phase error diagnosis is conducted with agents
located at each distributed node for identifying the errors in
the components in the node. This process is described with
Figure 4.

Figure 4: The process of error diagnosis in the first-phase

Inputs to an agent include log files of components and
configuration files. An agent first summarizes each log file,
which is a process to convert logging information into a
standard format with consistent terms (lexical and syntax)
for later identification. This operation is conducted in the
stage of log simplification. For each summarized log file
given by the log simplification, the agent uses a mapper,
which is a small expert knowledge base responsible to
deliver a set of likely causes in response to the logging
exception. A mapper offers: a) a list of candidate causes
that may contribute to the logging exceptions (which
include ERROR and WARNING messages), denoted by
Ce

r, standing for a cause r that may lead to an exception e
in component C. Each cause may include a set of sub-
causes Ce’

r’, and b) the status of the component, denoted by
Cs, which includes the status of domain name, ports,
accounts, security, tractable actions for software
components, and utilization and performance for resource
components. Each Ce

r is associated with a weight w, whose
initial value is 1. We define a tuple [Ce

r, w] to indicate this
relationship. These proposed causes and monitored
component statuses are considered as a whole by a gossip
algorithm, updating the weight w of each Ce

r with a rule:
when a cause Ce

r conflicts to a component status C’
s, the

associate weight w is reduced by 1; and when a cause Ce
r is

supported by another log file, the weight w is then
increased by 1. This strategy reduces the number of
correlated features (across logging messages) that are less
related to errors, creating potential for handling complex
problems in a large-scale systems.

6.1.1 An Example
The following is an example for troubleshooting cross-
system inconsistent configuration within an HBase cluster.
Cross-system misconfiguration is hard to detect because it
is difficult to trace exceptions across multiple systems. In
an HBase node (with IP: 10.141.133.22, which is a master
node in this cluster), it includes log files respectively from
HBase, Hadoop, Zookeeper. When a log file from HBase
returns an exception, shown as:

2013-03-08 09:31:44,934 INFO org.apache.hadoop.ipc.Client:
Retrying connect to server: hbaseMaster/10.141.133.22:9000.

Already tried 9 time(s).

2013-03-08 09:31:44,938 FATAL
org.apache.hadoop.hbase.master.HMaster: Unhandled exception.
Starting shutdown.

java.net.ConnectException: Call to
hbaseMaster/10.141.133.22:9000 failed on connection exception:
java.net.ConnectException: Connection refused
…

ERROR org.apache.hadoop.hbase.master.HMasterCommandLine:
Failed to start master

,where hbaseMaster is a domain name defined in the
configuration file. In the phase-one error diagnosis, this
logging information is summarized as:
HBaseMaster:9000 failed
connection exception: hbaseMaster/10.141.133.22:9000
The mapper takes this as input and returns a set of likely
causes to the exception and gives the states of the
component:

1. Hadoop	 server:	 	 unavailable	 (Ce_HDavail:	 1)	
2. Hadoop	 server:	 	 not	 accessible	 (Ce_HDaccess:1),	 whose	

prerequisite:	 Cs_HDavail=true,	 and	 with	 sub	 causes:	
a. domain	 name	 is	 unavailable	 (Ce_HDhbaseMaster:9000	 :1)	
b. user	 account	 is	 unavailable	 (Ce_HDact	 :1)	
c. security	 setting	 is	 unavailable	 (Ce_HDsec	 :1)	

status: HBase HMaster: failed (Cs_HBseHMaster
avail = false).

In the same node, the log file from Hadoop NameNode
gives the information
2013-03-08 09:23:02,362 INFO
org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Roll
FSImage from 10.141.133.22

2013-03-08 09:23:02,362 INFO
org.apache.hadoop.hdfs.server.namenode.FSNamesystem:
Number of transactions: 0 Total time for transactions(ms):
0Number of transactions batched in Syncs: 0 Number of syncs: 1
SyncTimes(ms): 8

Because there are no logging exceptions, no causes are
proposed from this Hadoop log file. So it can give:
Cs_HD

avail=true. And since no configurations regarding
account and security are found in the configuration files, it
gives Cs_HD

act =true and Cs_HD
sec =true. And it can be achieved

from the summary of Hadoop log that:
Cs_HD

hbaseMaste:54310=true, where hbaseMaste:54310 is the
domain name of Hadoop.

A combination of this information given by Mappers is
used in the Gossip protocol for updating the weight
associated with each proposed cause. Output is shown as
below. The reasons are described in the bracket in the right-
hand side.

1. [Ce_HD

avail : 0] (Ce_HD
avail =false conflicts Cs_HD

avail=true)
2. [Ce_HD

access: 1] (Cs_HD
avail=true, and no information directly

related to Ce_HD
access)

 a.[Ce_HD
hbaseMaster:9000: 1] (no information directly related to

*
Configuration

Log
Simplification

Log File of
a

Component

causes to
exception

component
status

gossip protocol causes with
updated weightsMapper

USENIX Association 27th Large Installation System Administration Conference 153
 9

Ce_HD
hbaseMaster:9000)

 b.[Ce_HD
act :0] (Ce_HD

act =false conflicts Cs_HD
act=true)

 c.[Ce_HD
sec :0] (Ce_HD

sec =false conflicts Cs_HD
sec=true)

The cause to this “java.net.ConnectException” is limited to
the availability of domain name of hbaseMaster:9000 (cause
2.a). Although this approach does not provide a 100%
accurate error diagnosis, it shows the possibility of using
limited information to sort out the most likely causes for a
logging error in a complex computing environment with
many connected systems.

6.2 The second-phase error diagnosis

The second-phase error diagnosis offers troubleshooting for
the exceptions that may be across multiple nodes. This
process sorts out the possibility of causes that are delivered
by the agents in the first-phase error diagnosis.

Each agent summaries the output of the first-phase error
diagnosis into a message, which includes the likely causes
with updated weights (if the weight is greater than zero),
and the status of each component.

6.2.1 An Example
For example, the agent in the above node will deliver the
second-phases error diagnosis a message with the
information of:
Agent ID: 10.141.133.22
HBase Log:
[Ce_HD

access: 1]
[Ce_HD

ç:1]
Cs_HBseHMaster

 avail = false, Cs_HBseHMaster
 act =true, Cs_HBseHMaster

 sec
=true
Hadoop Log:
Cs_HD

avail=true, Cs_HD
hbaseMaste:54310=true, Cs_HD

 act =true, Cs_HD

sec=true
Zookeeper Log:
[Ce_ZK

hbaseSlave3:3888 :1]
Cs_ZK

avail=true, Cs_ZK
myID:1=follower, Cs_ZK

 act =true, Cs_ZK
 sec=true

This message includes the information of Zookeeper.
Because there is a WARN message given in the Zookeeper
log file, shown as:
Cannot open channel to 4 at election address
hbaseSlave3/10.151.97.82:3888

and the Zookeeper status has shown that this Zookeeper
quorum is performing follower, a possible cause with
weight is shown as [Ce_ZK

hbaseSlave3:3888 :1]. This warning error
message is related to anther Zookeeper quorum on:
hbaseSlave3:3888. It is handled by the second-phase error
diagnosis.

For this troubleshooting, input information regarding this
error for the second-phase error diagnosis includes:
Agent ID: 10.141.133.22, prose error [Ce_ZK

hbaseSlave3:3888 :1]

Agent ID: 10.36.33.18, where the zookeeper quorum is selected as
leader, propose error [Ce_ZK

hbaseSlave3:3888 :1]
Agent ID: 10.151.97.82, where locate the problematic zookeeper
quorum hbaseSlave3:3888

Because the Zookeeper status is found in the Agent ID:
10.151.97.82, the weight of Ce_ZK

hbaseSlave3:3888 is updated to
[Ce_ZK

hbaseSlave3:3888 :2]
in the second-phase error diagnosis with the gossip protocol
to find out the most likely cause to guide troubleshooting. It
locates the issue on the zookeeper quorum on 10.151.97.82.
And since no states of this Zookeeper quorum are returned,
the focus of troubleshooting can be limited on:
Network communication between nodes, and
Configurations of the zookeeper quorum in Zookeeper and
HBase

This simple example shows that the 2-phase error diagnosis
can use existing limited information to determine a list of
ranked possible causes to logging errors dealing with
uncertainty challenges we identified earlier. And the
strategy is simple to implement as it uses an existing gossip
algorithm to compare local diagnosis, which could be in
turn based on past work and ad-hoc knowledge database,
and it can handle cross-layer and cross-node errors.

7. Conclusions and Future Works

Using a real world case study, we identified some difficult-
to-diagnosis errors committed by non-expert
Hadoop/HBase users. We classified errors and documented
the difficulties in error diagnosis, which led to three key
challenges in ecosystem error diagnosis. We proposed a
simple and scalable two-phased error diagnosis framework
that only communicates the absolute necessary information
for global diagnosis after local diagnosis. We
experimented and demonstrated the feasibility of the
approach using a small set of common Hadoop ecosystem
errors. We are currently implementing the full framework
and performing large-scale experiments.

8. Acknowledgement

NICTA is funded by the Australian Government as
represented by the Department of Broadband,
Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of
Excellence program.

9. References

[1] AWS EC2, http://aws.amazon.com/ec2/
[2] Apache Flume, http://flume.apache.org/ 2013
[3] Apache Hadoop, http://hadoop.apache.org/ 2013
[4] Apapche Hadoop, “HDFS High Availability Using the

Quorum Journal Manager”, 2013,
http://hadoop.apache.org/docs/r2.0.3-alpha/hadoop-

154 27th Large Installation System Administration Conference USENIX Association
 10

yarn/hadoop-yarn-site/HDFSHighAvailabilityWithQJM.html
[5] Apache HBase, http://hbase.apache.org/ 2013
[6] Apache Zookeeper, http://zookeeper.apache.org/ 2013
[7] Cloudera “CDH4 Installation Guide” 2013

http://www.cloudera.com/content/cloudera-content/cloudera-
docs/CDH4/latest/PDF/CDH4-Installation-Guide.pdf

[8] Corbett, J.C., et al. Spanner: Google’s Globally-Distributed
Database, Processings OSDI ’12, Tenth Symposium on
Operating System Design and Implementation, Hollywood,
Ca, October, 2012.

[9] Facebook Scribe, https://github.com/facebook/scribe
[10] Lars George, “HBase: The Definitive Guide”,

Publisher: O'Reilly Media, 2011
[11] Soila P. Kavulya, Kaustubh Joshi, Felicita Di Giandomenico,

Priya Narasimhan , “Failure Diagnosis of Complex
Systems”, In Journal of Resilience Assessment and
Evaluation of Computing Systems 2012, pp 239-261

[12] Karthik Nagaraj, Charles Killian, and Jennifer
Neville. “Structured Comparative Analysis of Systems Logs
to Diagnose Performance Problems”. In the Proceedings
of 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI '12). San Jose, CA. 25-27 April,
2012.

[13] Netflix Edda, https://github.com/Netflix/edda
[14] Michael G. Noll, “Building an Hadoop 0.20.x Version for

HBase 0.90.2”, 2011, http://www.michael-
noll.com/blog/2011/04/14/building-an-hadoop-0-20-x-
version-for-hbase-0-90-2/

[15] Adam J. Oliner , Ashutosh V. Kulkarni , Alex Aiken. “Using
correlated surprise to infer shared influence”, In the
Proceedings of Dependable Systems and Networks (DSN),
2010, June 28 2010-July 1 2010,

[16] Ariel Rabkin, Randy Katz “Chukwa: a system for reliable
large-scale log collection”, in Proceedings of the 24th
international conference on Large installation system
administration (LISA 10), 2010

[17] Ariel Rabkin, “Using Program Analysis to Reduce
Misconfiguration in Open Source Systems Software”, Ph.D
thesis 2012

[18] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey
C. Mogul, Mehul A. Shah, and Amin Vahdat. “Pip:
Detecting the Unexpected in Distributed Systems”. In
proceedings of Networked Systems Design and
Implementation (NSDI 2006). May 2006

[19] Devavrat Shah, “Gossip Algorithm”, MIT, 2009,
http://web.mit.edu/devavrat/www/GossipBook.pdf

[20] Tom White, “Hadoop: The Defintitive Guide”, the second
edition ,published by O’Reilly Media 2010

[21] Wei Xu, “System Problem Detection by Mining Console
Logs”, Ph.D thesis, EECS, UC Berkeley, Aug. 2010

[22] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael Jordan, “Large-scale system problem detection by
mining console logs”, In Proceeding of the 22nd ACM
Symposium on Operating Systems Principles (SOSP’ 09),
Big Sky, MT, October 2009

[23] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,
Lakshmi N. Bairavasundaram and Shankar Pasupathy. “An
Empirical Study on Configuration Errors in Commercial and
Open Source Systems.” In the Proceedings Of The 23rd
ACM Symposium On Operating Systems Principles
(SOSP'11), October 2011

[24] Ding Yuan, Soyeon Park, and Yuanyuan
Zhou. “Characterising Logging Practices in Open-Source
Software”. In the Proceedings of the 34th International

Conference on Software Engineering (ICSE'12), Zurich,
Switzerland, June 2012

[25] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou and
Stefan Savage. “Improving Software Diagnosability via Log
Enhancement”. In ACM Transactions on Computer Systems
(TOCS), Vol. 30, No. 1, Article 4, Februray 2012.

[26] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael
M. Lee, Xiaoming Tang, Yuanyuan Zhou and Stefan
Savage. “Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging” In the Proceedings of the 9th
ACM/USENIX Symposium on Operating Systems Design and
Implementation (OSDI'12), Hollywood, CA,

[27] X. Xu, L. Zhu, J. Li, L. Bass, Q. Lu, and M. Fu, "Modeling
and Analysing Operation Processes for Dependability," in
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Fast Abstract, 2013

