
USENIX Association LASER 2014 • Learning from Authoritative Security Experiment Result 1

Clusters and Markers for Keystroke Typing Rhythms

Shing-hon Lau
Machine Learning Department

Carnegie Mellon University

Roy Maxion
Computer Science Department

Carnegie Mellon University

Abstract
Background . People’s blood comes in four types: A,
B, AB and O. The markers for these blood types are the
presence or absence of specific antigens. If people’s typ-
ing rhythms – the unique pattern of someone’s typing –
can be similarly grouped into a small number of types, it
could have forensic importance, allowing insider investi-
gators to rule out a substantial fraction of suspects, just
as Type-A blood rules out 60% of the population.
Aim . We aim to determine whether typing rhythms can
be grouped into a small number (e.g., 3-10) of charac-
teristic groups, and to find a marker that places a typist
squarely into one group, as antigens do in blood typing.
Method . Data were 50 repetitions of a password
(.tie5Roanl) from 51 typists. Agglomerative clustering
elicited groupings in the data. Sparse logistic regression
discovered the distinguishing characteristics of groups.
A support vector machine identified specific markers.
Results . Three major groupings, or rhythm types, were
identified, along with one singleton outlier. Preliminary
work focused mainly on just one of these groups, whose
members turned out to comprise all women. A Chi-
Square test of independence determined that this was un-
likely to have been a chance event (χ 2(d f = 2,N = 50)=
13.1714, p< 0.005). The singleton subject, an egregious
outlier, suffered from a neurological disorder.
Conclusions . Typists can be grouped into a small num-
ber of types, as is done in blood typing. Markers can
identify an individual as a member of a distinct type.

1 Introduction
Keystroke dynamics is the study of individual’s typ-
ing rhythms, usually for the purpose of discriminating
amongst different users. Most keystroke dynamics re-
search has focused on the development of new classi-
fication algorithms to improve discrimination amongst
users. Typically, researchers propose a new algorithm,

gather a keystroke dataset, and evaluate the algorithm
on this dataset. However, regardless of whether the re-
sults are better or worse than existing results in the liter-
ature, there is little understanding of why the algorithm
performed better or worse. One reason for this dearth
of understanding is the paucity of knowledge about the
properties of keystroke data itself.
The field of keystroke dynamics is largely predicated

on the fact that there is structure in the data; specifically,
there is an assumption that different users generate dif-
ferent typing data. The differences can be used to dis-
tinguish between users. But this is not the only structure
that exists. Users have various physiological and behav-
ioral traits which may affect typing (e.g., gender, hand-
edness, touch typist vs. hunt-and-peck, etc). Users with
similar traits should produce similar data; such similarity
may define a new aspect of structure in keystroke data.

Almost no research efforts have focused on under-
standing this additional structure. Bereft of this un-
derstanding, developers of new classification algorithms
lack a guiding framework to improve classification accu-
racy. Instead of systematically exploiting this structure
to improve accuracy, developers take a trial-and-error ap-
proach. This approach has not met with much success;
most new algorithms are not markedly better than the
simple algorithms proposed decades ago [8].

Our goal is to search for and quantify this additional
structure in keystroke dynamics. We intend to establish
a framework permitting future researchers to exploit this
structure when developing new classification algorithms,
whether for forensic, authentication, medical, or other
purposes. We search a keystroke dataset for clusters –
sub-groups of users that are distinct from the rest. We
show that the clustered users share similar typing char-
acteristics, which can be refined into markers for each
sub-group. Markers are properties of a user’s keystroke
data that reliably identify the user as a member (or non-
member) of a particular cluster, just as certain antigens
classify a person as having a particular blood type.

2 LASER 2014 • Learning from Authoritative Security Experiment Results USENIX Association

2 Problem and approach
Our primary research question is: do people’s typing
rhythms fall into one of a few groups, or types? An-
cillary questions ask whether these groups can be dis-
tinguished on the basis of their characteristic features,
whether markers can be found that uniquely assign a
user to a specific group, and whether any demographic
traits are associated with the groupings, or types. Our
approach comprises the following steps:
• Find groupings in the data . Groupings, or clusters,

are found using agglomerative cluster analysis.
• Discover distinguishing features . Characteristics

(features) of the data that distinguish members of one
cluster from all other clusters or subjects are found with
a sparse logistic regression classifier. This is an inter-
pretable classifier which pinpoints specific characteris-
tics unique to the users in a cluster.
• Identify markers . A Support Vector Machine

(SVM) is used to create a table that rank-orders sub-
jects by their median hold and latency keystroke timings.
Users in the same cluster are ranked consecutively at the
top of this table. A user is marked as a member of a
cluster only if his rank lies below a particular threshold.
• Associate clusters with demographic data . User

traits associated with clusters are found by matching
cluster members against demographic information.

3 Related work
There are over 400 papers on keystroke dynamics (some-
times called keystroke biometrics or behavioral biomet-
rics). None that we know of are relevant to grouping
types of typing rhythms, but we can provide an overview
of the field, as well as some pointed details, in the follow-
ing paragraph. All of the cited survey papers generally
treat keystroke dynamics as an authentication technique,
but none unite the field’s results into a pattern or theory
of operation.

Peacock and his colleagues [11] provide a now
somewhat-dated overview of the field, but one that is
particularly accessible. Yampolskiy and Govindaraju
[15] treat keystroke dynamics in the broader context
of behavioral biometrics. Shanmugapriya and Padma-
vathi [13] give a short review of methods and metrics in
keystroke dynamics. Karnan and his colleagues [4] give
an overview of features and feature-extraction methods
for keystroke dynamics, as well as a range of classifi-
cation techniques. Banerjee and Woodard [1] provide a
wide-ranging survey of the field, including the psychol-
ogy of keystroke dynamics, data acquisition and environ-
mental issues, and the usual list of technical approaches.
Teh and his colleagues [14] provide a longer, more re-
cent and broader-coverage review of the field, examining
most of the same material as their predecessors, but in-
cluding a longer and more recent list of cited papers.

Killourhy and Maxion have examined the influence
of a variety of factors on the classification accuracy of
keystroke dynamics classifiers, including the resolution
of the clock used to perform keystroke timing [7], the
definition of a successful login [9], and myriad other fac-
tors [6]. Their work parallels our present work. Whereas
they focused on identifying and quantifying factors that
affect classifier accuracy, we focus on finding identifying
and quantifying structure in the keystroke data itself.

4 Data and data collection
We used a publicly-available dataset1 whose key aspects
are summarized below. Details of the experimental ap-
paratus and instrumentation are given in [9]. Details of
subject population, stimulus selection and experimental
procedures are given in [7]. Human-subject trials were
cleared by the CMU Institutional Review Board.
Subjects . 51 volunteers (30 male, 21 female), from a
university population, contributed typing samples.
Apparatus . A Windows application on a PC (running
the XP OS) prompted subjects to type the password.
Typographical errors were discarded, and re-prompted,
resulting in perfectly-typed repetitions of the password.
Keystroke timings, taken with customized and calibrated
hardware, were accurate to within ± 200 microseconds.
Stimuli . A 10-character string was used: .tie5Roanl fol-
lowed by <return>.
Procedure . Subjects typed the 10-character string 50
times in each of 8 sessions, with at least one day between
sessions. Total number of password repetitions was 400.
Demographic survey . Subjects provided demographic
data, e.g., gender, age group, dominant hand, etc.
Data features . The data consist of hold times (the du-
ration between pressing and releasing a key) and latency
times (the durations between the release of a key and the
depression of the next key). The hold and latency times
are collectively referred to as features. Each repetition
is treated as a feature vector, which consists of 11 hold
times and 10 latency times.
Data set . The original data set [8] contained eight 50-
repetition sessions for each of the 51 subjects. In the
present work we use only the data from the eighth of 8
sessions, because that session is most representative of a
subject’s normal, practiced typing.

5 Step 1: Grouping the data
The first step in looking for groups in data is to cluster
the data. This itself is a two-step process. First, the data
need to be preprocessed into a form suitable for input
to the clustering algorithm; then the clustering algorithm
is run. We describe the preprocessing step first, to give
readers some intuition about the form of the data; then
we describe the clustering routine.

USENIX Association LASER 2014 • Learning from Authoritative Security Experiment Result 3

5 .1 Method
We use the agnes clustering algorithm to find the groups
[5]. Before applying the clustering algorithm, we prepro-
cess each subject’s multidimensional data so that they are
represented as a single median vector.

Preprocessing . Before we can use a clustering algo-
rithm, the input data must be preprocessed so that each of
the 51 subjects is summarized in a single entity – a single
vector. As previously mentioned, we have 50 repetitions
of the password from each subject. Since we wish to
consider each subject as a single item in the clustering
algorithm, we summarize each subject by a single vec-
tor. To compress a subject into a single vector, we start
by taking the median value, over all 50 repetitions, for
each feature. This results in 11 median hold times and
10 median latency times. When concatenated, these 21
median times constitute a median vector. This process is
repeated for each subject, resulting in 51 median vectors,
one per subject. These 51 median vectors are then fed
into the agnes algorithm.

Agnes clustering . Traditional clustering algorithms
(e.g., k-means [3]) take some number of items to be clus-
tered as input, and then output an assignment of each
item to a single cluster. In our case, since we are inter-
ested in clustering subjects, the k-means algorithm will
assign each subject to a single cluster. One major down-
side to these traditional clustering algorithms is that they
often require the researcher to state the targeted number
of clusters to be found (e.g., the k in k-means). When
the number of clusters is unknown, researchers must use
heuristic approaches to estimate the number of clusters
that are present in the data.

Hierarchical clustering algorithms differ in that they
return a hierarchy of clusters. Each subject will be a
member of multiple hierarchical clusters. For example, a
subject may be classified as a left-handed, female typist,
as well as a left-handed typist, as well as a typist. Each
successive cluster is more encompassing than its prede-
cessor. Such hierarchical clusterings are often depicted
as dendrograms, as shown in Figure 1. Unlike traditional
algorithms, hierarchical clustering algorithms do not re-
quire the researcher to provide the targeted number of
clusters as input; the clusters are derived automatically.
In this work, we use the agglomerative nesting clus-

tering algorithm called Agnes [5]. This algorithm is an
example of a “bottom-up” clustering, where each item is
initially assigned to its own cluster. During iterations of
the algorithm, clusters are merged together, until only a
single, high-level cluster remains; this final cluster con-
tains all items in the data set. More specifically, the al-
gorithm is initialized by assigning each item to its own
cluster. With each iteration of the algorithm, the two
most similar clusters are merged. Similarity between two
clusters is defined as the average Manhattan distance be-

tween all possible pairwise combinations of items in the
two clusters. The algorithm iterates until all elements
belong to the same, high-level cluster.

5 .2 Results
Figure 1 shows the output of the agnes clustering algo-
rithm, represented as a dendrogram, when applied to the
51 aforementioned median vectors. Nodes are labeled by
subject number; red nodes are female.

A dendrogram visualization of a clustering is always a
binary tree. Each child of the tree is either a cluster with a
single subject (e.g., s002 at the far left), or a cluster that
contains multiple subjects (e.g., the sub-tree containing
both s002 and s020). The point at which two clusters
merge is called a junction. For example, the first com-
mon junction of s002 and s020 represents the merger of
those two subjects into a single cluster. The junction at
height 38 (on the y-axis) represents the merger of two
large clusters; all of the subjects are included in this clus-
ter, excepting subject s036 at the far upper right.

The dissimilarity between any two subjects or clusters
is proportional to the height (on the y-axis) of the first
common junction that they share. For example, s002 and
s020 (both on the left side of the dendrogram) are simi-
lar to each other since their first common junction has a
low height, 16. However, s002 and s043 (on the extreme
left and right sides of the dendrogram) are very distinct,
because their first common junction is at height 38.

Four distinct clusters are visible in Figure 1: the “left
cluster” containing s002 to s040; the “right cluster” con-
taining s017 to s043; and the “middle cluster” containing
all the rest of the subjects except s036, which is a single-
ton cluster at the far upper right.
In this paper we focus on only two of the clusters: the

one containing only subject s036, and the one we called
the “left cluster”. A singleton cluster like s036 was com-
pletely unexpected. The “left cluster” happened to be
all female subjects, again unexpected. For these reasons,
and due to space constraints, we concentrate on these two
clusters in the remainder of the paper. However, the tech-
niques used from here on will generalize to any cluster or
any individual subject.

6 Step 2: Discover distinguishing features
Having identified the four clusters into which the 51 sub-
jects were grouped, we turn to the matter of determin-
ing which typing-rhythm features best distinguish one
group (or, for that matter, one subject) from everyone
else. Again we use a two-step process: the first is a data
preprocessing step; the second, where the work is actu-
ally done, is sparse logistic regression.

4 LASER 2014 • Learning from Authoritative Security Experiment Results USENIX Association

0
20

40
60

Subjects

H
ei

gh
t (

ar
bi

tra
ry

 u
ni

ts
)

s0
02

s0
20 s0

12 s0
41 s0

03
s0

30
s0

33
s0

40
s0

04
s0

27
s0

07
s0

34 s0
18

s0
08

s0
13 s0
15 s0
57 s0
32 s0

10
s0

51
s0

21
s0

29
s0

54 s0
37

s0
50

s0
26

s0
48 s0

39 s0
35

s0
31

s0
46 s0

38 s0
42

s0
53

s0
25

s0
47 s0

11
s0

55
s0

56 s0
05

s0
49

s0
16

s0
52

s0
17

s0
24

s0
28 s0

44 s0
19

s0
22

s0
43

s0
36

Figure 1: Dendrogram, based on session-8 median vectors, showing the hierarchical clusters of subjects produced by
the agnes algorithm. Red subject numbers are female. Note the two clusters of interest: the “left cluster” of all female
subjects at the far left, and the s036 singleton cluster at the far upper right.

6 .1 Method

To identify the distinguishing features we use a sparse lo-
gistic regression classifier, the parameters for which are
chosen via 10-fold cross validation.

Preprocessing . As a reminder, each of 51 subjects
typed 50 repetitions of a password (.tie5Roanl). Each
password contains ten characters plus <return>. The
features are 11 hold times (the time a key is held down)
and 10 latency times (the time taken to transition from
one key to the next, from key-up to key-down). The
typed text is preprocessed to represent the passwords as
feature vectors, each of which contains the 11 hold times
and 10 latency times, for a total of 21 features. The en-
tire data set comprises 51 subjects x 50 repetitions = 2550
feature vectors. These feature vectors are provided as in-
put to the sparse logistic regression classifier.

Sparse Logistic Regression . To identify distinguish-
ing features that discriminate one user from others, or
one cluster from the rest, we use a sparse logistic re-
gression classifier. Since we will be directly interpret-
ing the output of the classifier to identify distinguishing
features, it is helpful to understand how the classifier op-
erates. A typical logistic regression classifier takes n fea-
ture vectors (denoted xi for i = 1, ...,n) as input, along
with a classification designation for each feature vector
(denoted yi for i = 1, ...,n). In our case, we designate

vectors belonging to subjects in the cluster with a ‘1’ and
vectors belonging to subjects not in the cluster with a ‘0’.
The output of a logistic regression classifier is not only a
classification of the feature vectors, but also a vector of
weights, w, which indicate the usefulness of each feature
for the sake of accurate classification. This weight vector
is the output of primary interest.
The logistic function is defined as

logistic(x) =
1

1+ exp(−x)

and the score is defined as

score = w ·x =
K

∑
j
(x j ×w j),

where K is the number of features in each vector. With
these definitions in mind, a logistic regression classifier
assumes that the probability of a particular feature vector
belonging to a subject in the cluster is:

P(yi = 1|xi;w) = logistic(score).
Of course, the classifier must actually choose w. It

does this through a maximum-likelihood approach. The
likelihood function is given by:

∏
i

P(y = yi|xi;w).

USENIX Association LASER 2014 • Learning from Authoritative Security Experiment Result 5

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic function

score

P(
y

=
1

| x
;w

)

In cluster

Not in cluster

Figure 2: Logistic function . The logistic function con-
verts any real-valued score into the probability that a fea-
ture vector belongs to a subject who is a member of the
cluster. Vectors with a probability above 0.5 (dashed
line) are classified as belonging to a subject in the clus-
ter; points with a probability below 0.5 are classified as
belonging to a subject that is not in the cluster.

Armed with the inner workings of the classifier, we
can now gain an intuition about how the classifier oper-
ates. Figure 2 depicts the logistic function, which takes
in any real-valued score as input and outputs a value be-
tween 0 and 1, which is interpreted as P(y = 1|x;w), the
probability that the feature vector x belongs to a subject
in the cluster.

Note that the score of a feature vector is the sole de-
terminant of whether it is labeled with a ‘1’ or a ‘0’. A
positive score will result in a feature vector being labeled
as being from a subject who is in the cluster. Conversely,
a negative score will result in a feature vector being la-
beled as being from a subject who is not in the cluster.
The score is just the sum of terms; each term is the prod-
uct between a weight and a feature value. The simple
nature of the score makes it easy to interpret the infor-
mation offered by the weights.

Consider any term in the score. The larger the mag-
nitude of the term, the more influence it has on the final
score and on the final label of the feature vector. If a
term has a large magnitude and a positive sign, the label
of the feature vector will be “pushed” towards ‘1’. If the
term has a large magnitude and a negative sign, the la-
bel of the feature vector will be “pushed” towards ‘0’. A
term will have a large magnitude if the weight has a large
magnitude. Thus, features corresponding to high magni-
tude weights, regardless of sign, are important features

because their terms have a large impact on the score.
At this point, it would seem that the most important

features are those with the highest-magnitude weights.
However, this is not necessarily the case. Keystroke fea-
tures take on a wide range of values; latency times are
sometimes an order of magnitude larger than hold times.
Suppose that a latency time and a hold time have equal
importance, and that the latency time is roughly 10 times
greater than the hold time. In such a case, the hold time
will receive a weight that is roughly 10 times that which
was assigned to the latency time. Due to this bias, we
cannot simply look for the highest-magnitude weights.

Rather, we examine the normalized weights, which are
obtained by dividing each weight by the standard devia-
tion of its associated feature. Weight normalization ac-
counts for the bias in the weights. We can now interpret
the normalized weights directly; the larger the magnitude
of the normalized weight, the more important the feature.

Notice that we have been discussing a logistic regres-
sion classifier, not a sparse logistic regression classifier.
We did this because the standard classifier is simpler to
explain, and there is no difference in the interpretation
of the weights generated by the two versions of the
classifier. The sole difference between the two classifiers
is the addition of an L1-regularization penalty to the
likelihood of the sparse logistic regression classifier:

∏
i

P(y = yi|xi;w)−λ
K

∑
j
|w j|,

L1 regularization uses a penalty term that encourages the
sum of the absolute values of the parameters to be zero,
making the model less complex, due to having fewer op-
erative features. The magnitude of the penalty is con-
trolled solely by the parameter λ . Its purpose is to cause
unimportant features to have their weights set to 0, in-
stead of a small number. The larger λ is, the more im-
portant a feature has to be to have a non-zero weight.
The advantage of this penalty, and the advantage of the
sparse logistic regression classifier, is that interpretation
of the weights is easier since we need only focus on non-
zero weights; all non-zero weights can be considered im-
portant, though their importance is still governed by the
magnitude of the weight. The choice of λ is made via
10-fold cross-validation, discussed below.

For this work, we use an implementation of the sparse
logistic regression classifier in the R statistical environ-
ment (version 2.15.2) [12], glmnet package [2].

Selection of λ via 10-fold cross-validation . As pre-
viously mentioned, the sparse logistic regression classi-
fier has a single parameter, λ , which must be chosen.
We choose this value through the use of 10-fold cross-
validation. We start by selecting candidate values of λ .
We use the default of the glmnet package, which chooses
100 candidate values of λ . The smallest candidate is

6 LASER 2014 • Learning from Authoritative Security Experiment Results USENIX Association

equal to 0.0001 times the smallest value of λ that would
result in all weights being set to 0. Each successive can-
didate after the smallest is equal to 1.1 times the value
of its predecessor (e.g., the second smallest candidate is
1.1 times the smallest candidate and the third smallest
candidate is 1.1 times the second smallest candidate).

Next, we divide the data into 10 equally-sized parti-
tions, called folds. For each candidate value of λ , 10
classifiers will be trained. Each classifier is trained on
9 of the 10 folds, and then tested on the remaining fold;
each fold is chosen to be the test fold exactly once. The
error rates of each of 10 classifiers are averaged to give
an error rate for the candidate value of λ . This process is
repeated for every candidate value. The chosen value of
λ is the one that has the lowest average error rate.

Fitting the classifier . Prior to classification, the data
are standardized so that each feature has zero mean and
unit variance. The purpose of the standardization is to al-
low the sparse logistic regression classifier to view each
feature equally.2 Data from the cluster of interest (either
s036 or “left”) is labeled with a ‘1’ and all other repeti-
tions are labeled with a 0. Note that different classifiers
are fit for the s036 and the “left” cluster. When fitting the
classifier for s036, the repetitions from subjects in the
“left” cluster are labeled with a 0. Similarly, when fitting
the classifier for the “left” cluster, repetitions from s036
and other clusters would be labeled with a ‘0’. After the
standardization and labeling process, cross-validation is
used to select a value of λ . Finally, a classifier is fit with
the chosen value of λ , using all of the data.

6 .2 Results

We present results for two clusters: the s036 singleton,
and the “left” cluster.

s036 Cluster . Table 1 shows the non-normalized and
normalized weights produced by the sparse logistic re-
gression classifier. For reasons previously discussed in
Section 6.1, we use the magnitude of the normalized
weights to determine the importance of features for dis-
criminating between s036 and the remaining subjects.

We can see that the hold time on ‘shift r’, ‘a’, and ‘n’
are the most important features. There is a large gap be-
tween the magnitude of the weights on these three fea-
tures and the next largest magnitude. Moreover, all three
weights share a negative sign, indicating that small val-
ues of the features are indicative of s036. After the gap,
the next most important feature is the latency time for
‘n-l’. Its positive sign indicates that large values of that
feature are indicative of s036.
In fact, these 4 features are sufficient to discriminate

every single repetition of s036 from every repetition for
any other user. All repetitions meeting the criteria below
belong to s036. Any repetition that does not meet all 4

Index Feature Weight Normalized Weight
1 H.Shift.r -137.71 -3802.45
2 H.a -80.75 -2336.48
3 H.n -67.38 -2178.82
4 UD.n.l 14.66 114.87
5 H.o -2.93 -102.49
6 UD.Shift.r.o 9.96 63.89
7 UD.l.Return 9.90 55.95
8 UD.o.a 4.98 55.80
9 UD.a.n 3.93 43.91
10 UD.i.e 4.52 40.95
11 UD.period.t 2.42 14.50
12 UD.e.five 0.65 3.29
13 H.l -0.01 -0.30
14 UD.five.Shift.r 0.05 0.23
15 H.period 0.00 0.00
16 H.t 0.00 0.00
17 H.i 0.00 0.00
18 H.e 0.00 0.00
19 H.five 0.00 0.00
20 H.Return 0.00 0.00
21 UD.t.i 0.00 0.00

Table 1: Sparse logistic regression weights: s036 . The
normalized weights (right column) with the highest mag-
nitudes correspond to the features with the most influ-
ence on correctly separating s036 from all other subjects.
“H” indicates hold time; “UD” indicates key-up to key-
down interkey latency time.

of these criteria belongs to some other subject.

1. Hold time for ‘R’ is less than 60 milliseconds
2. Hold time for ’a’ is less than 80 milliseconds
3. Hold time for ’n’ is less than 60 milliseconds
4. Latency time for ‘n-l’ is more than 40 milliseconds

“Left” Cluster . Table 2 shows both non-normalized
and normalized weights that were produced by the sparse
logistic regression classifier. For reasons previously dis-
cussed in Section 6.1, we use the magnitude of the nor-
malized weights to determine the importance of features
for discriminating between subjects in the “left” cluster
and the remaining subjects.

One notable difference between the weights for the
“left” cluster and the weights for the s036 cluster is that
all of the “left” cluster weights are non-zero. The lack
of zero weights indicates that all features are of at least
some importance in discriminating between members of
the “left” cluster and all other subjects.

Note that the weights associated with hold times are
almost always positive, indicating that longer hold times
are indicative of subjects in the “left” cluster. Weights

USENIX Association LASER 2014 • Learning from Authoritative Security Experiment Result 7

Feature Weight Normalized Weight
1 H.i 92.45 3105.03
2 H.period 94.37 2843.08
3 H.a 89.98 2603.60
4 H.o 52.59 1842.87
5 H.l 44.29 1562.09
6 H.e 50.57 1343.99
7 H.n 25.55 826.16
8 H.Return 20.89 697.19
9 H.t 9.71 325.05
10 H.five 6.69 301.88
11 H.Shift.r -8.80 -243.03
12 UD.t.i 7.15 79.79
13 UD.a.n 6.43 71.82
14 UD.l.Return 5.66 32.00
15 UD.i.e -3.27 -29.57
16 UD.o.a 2.22 24.86
17 UD.Shift.r.o -2.11 -13.54
18 UD.e.five 2.61 13.21
19 UD.period.t 0.91 5.44
20 UD.n.l -0.65 -5.12
21 UD.five.Shift.r -0.50 -2.13

Table 2: Sparse logistic regression weights: “Left” .
The normalized weights (right column) with the highest
magnitudes correspond to the features with the most in-
fluence on correctly separating the subjects in the “left”
cluster from all others. “H” indicates hold time; “UD”
indicates key-up to key-down interkey latency time.

associated with latency times show no tendency to be ei-
ther positive or negative, so no particular conclusions can
be drawn.

7 Step 3: Identify markers
Thus far, we have accomplished two of our initial aims.
We have identified clusters of subjects in our data, and
we have identified features that distinguish them from the
remainder of the subjects. We now turn to summarizing
a large group of features into a single marker.

7 .1 Method
We first introduce the concepts of average hold and
latency-time rankings, and then refine these rankings fur-
ther with the use of a Support Vector Machine (SVM).

Average hold and latency-time rankings . In identi-
fying the important features for discriminating between
subjects in a cluster and subjects outside a cluster, we
noticed that both classifiers (one for the s036 cluster and
the other for the “left” cluster) identified important hold-
time and latency-time features. In an attempt to refine
these features down to a marker, we determined that a

rank-ordering of the subjects, from longest hold/latency
times to shortest hold/latency times, might allow us to
define a simple marker.

We start our discussion with a rank-ordering of sub-
jects by their hold times. For each subject, we compute
the average hold-time ranking as follows:

1. Choose a single hold time for a single feature.
2. For each subject, compute the median value for that

hold time for that subject.
3. Rank the subjects from the largest hold time (rank

1) to the smallest (rank 51).
4. Repeat this process for each hold time, producing

11 rankings for each subject.
5. Average the 11 rankings to produce the average

hold-time ranking.

A subject that always has the longest hold time would
have an average rank of 1, while a subject that always has
the shortest hold time would have an average rank of 51
(as we have 51 subjects). An analogous process produces
the average latency-time ranking; the difference is that
there are 10 latency times as compared to 11 hold times.
Tables 3 and 4 show a portion of the average hold-time
ranking and the average latency-time ranking tables.

Support Vector Machine (SVM) . In an ideal world,
either the average hold-time rankings or the average
latency-time rankings would suffice as a marker. One
would hope that all subjects inside a cluster would be
consecutively listed on at least one of the two tables. In
such a scenario, the marker for a cluster would be an av-
erage hold-time (or latency-time) ranking between some
upper and lower limits. Unfortunately, this is not always
the case. Sometimes neither table lists cluster members
consecutively. In such a case, we wish to form a com-
bined ranking that does create such a consecutive list.

To ensure that the results are still easily interpretable,
we would like to create a combined ranking using a lin-
ear combination of the two rankings: combined ranking
= A × average hold-time ranking + B × average latency-
time ranking. Having decided on a linear combination,
the only task left is to choose the two-element coeffi-
cient vector which is comprised of A and B. So far, our
only stated goal is to have all subjects in a cluster listed
consecutively when sorted by the combined ranking. To
simplify this further, we can insist that all subjects inside
the cluster must have a combined ranking below some
threshold, while all other subjects must have a combined
ranking above that threshold. That is, when using this
combined ranking, we ask that subjects inside the cluster
are separated from subjects outside the cluster.
There may be many coefficient vectors, however, that

produce a combined ranking with the desired separation
property. Therefore, we need to have some criterion as

8 LASER 2014 • Learning from Authoritative Security Experiment Results USENIX Association

a basis for deciding which vector to pick. A natural ap-
proach would be to select a vector that separates subjects
inside and outside the cluster by the largest possible mar-
gin. The margin is the minimum distance between the
combined score of any subject inside the cluster and the
combined score of any subject outside the cluster. This
approach, though, is still not perfect. Suppose that some
pair of A and B creates a margin of 1; then the pair 10A
and 10B creates a margin of 10. To get around this scal-
ing issue, we add one final condition: the coefficient vec-
tor must have unit length.

This problem formulation is the same formulation that
underlies a Support Vector Machine (SVM) using a lin-
ear kernel. In particular, an SVM will take two items as
input. The first is the average hold-time ranking and av-
erage latency-time ranking for each subject. The second
is a label indicating whether each subject is inside the
cluster or not; subjects inside the cluster will be labeled
with a ‘1’ and subjects outside the cluster will be labeled
with a ‘0’. The SVM will output two coefficients, A and
B, that provide the largest margin of separation.

7 .2 Results
Tables 3 and 4 show a portion of the average hold-time
ranking and the average latency-time ranking tables, re-
spectively. The first column in each table contains the
position of each subject (2nd column) according to the
average hold/latency-time ranking (3rd column). The
fourth column shows the median hold/latency time in
milliseconds, to provide the reader some context of the
time scales at play. Some subjects omitted for brevity.

s036 cluster . Subject s036 stands out quite clearly in
both the average hold-time and latency-time ranking ta-
bles. He has the lowest average hold-time ranking out
of all the subjects, indicating that he has consistently
short hold times overall. He also has the highest average
latency-time ranking, so he has consistently long over-
all latency times, too. Since he is already well separated
from all other subjects, there is no need to apply an SVM.

There are several possible markers that we can choose
for s036. One marker is that the subject must have an av-
erage hold-time ranking above 48. Another would be that
the subject must have an average latency-time ranking
below 3. A third marker would be to insist that both these
criteria hold simultaneously. Any of these choices of
marker would cleanly separate s036 from all other sub-
jects or clusters. Note that in actually using the marker,
no additional classification needs to be done. The mere
presence of, say, an average hold-time ranking above 48
is enough to separate s036 from everyone else. That’s
the benefit of having a marker.

“Left” cluster . The subjects in the “left” cluster all
have a high average hold-time ranking. However, this

Position Subject Hold-time
Ranking

Median hold
time (ms)

1 s041 3 .09 157 .40
2 s012 4 .64 135 .25
3 s003 4 .82 143 .50
4 s033 6 .55 132 .05
5 s002 8 .00 124 .75
6 s020 8 .82 122 .50
7 s040 11 .64 117 .50
8 s011 12.82 114.05
9 s030 13 .09 113 .00

10 s056 15.82 104.75
...
...
50 s024 46.55 57.60
51 s036 49.55 50.70

Table 3: Average hold-time ranking for each subject.
Subjects in the “left” cluster are in boldface. Because
s011 (not in “left” cluster) is ranked higher than s030
(in “left” cluster), the table shows that average hold-time
ranking is an imperfect marker for membership in the
“left” cluster. Subjects in positions 11-49, not relevant
here, are omitted for brevity.

Position Subject Latency
Ranking

Median latency
time (ms)

1 s036 2.00 437.40
2 s022 5.00 255.65
...
...
7 s030 12 .30 143 .60

11 s033 16 .40 159 .35
13 s040 17 .00 173 .65
25 s002 24 .90 63 .10
33 s020 28 .80 70 .00
38 s041 36 .50 52 .35
48 s003 43 .50 3 .90
51 s012 44 .60 11 .05

Table 4: Average latency ranking for each subject. Sub-
jects in the “left” cluster are presented in boldface. The
subjects in the “left” cluster are not grouped by position
in the table; hence latency-time ranking is not a good
marker by itself. Many subjects are omitted for brevity.

separation is not perfect. As can be seen in Table 3, sub-
ject s011 has a ranking of 12.82. This is between the
rankings of subjects s040 (rank 11.64) and s030 (rank
13.09). Unfortunately, s011 is not in the “left” cluster
while subjects s040 and s030 are in the cluster. Look-
ing at Table 4, we can see that the subjects in the “left”
cluster have wildly varying latency-time rankings.

USENIX Association LASER 2014 • Learning from Authoritative Security Experiment Result 9

Position Subject Hold Ranking Latency Ranking In cluster? Combined Ranking
1 s033 6 .55 16 .40 1 10 .20
2 s041 3 .09 36 .50 1 11 .55
3 s002 8 .00 24 .90 1 13 .61
4 s003 4 .82 43 .50 1 14 .87
5 s012 4 .64 44 .60 1 14 .95
6 s040 11 .64 17 .00 1 15 .29
7 s020 8 .82 28 .80 1 15 .32
8 s030 13 .09 12 .30 1 15 .61
9 s005 16.36 15.30 0 19.49
10 s016 20.91 10.30 0 22.74
11 s011 12.82 44.30 0 22.83

Table 5: SVM Ranking. Subjects in the “left” cluster (bold) are perfectly separated from the rest. Subjects are sorted
by the combined ranking, which is computed as Combined Ranking (e.g., 10.20 in row 1) = 0.9722 × Hold Ranking
+ 0.2341 × Latency Ranking. Subjects after position 11 are omitted for brevity.

Since our goal is to obtain a marker that perfectly sep-
arates the “left” cluster from all other subjects, we take
the SVM approach. Table 5 shows the results. The SVM
chose 0.9722 as the coefficient for the average hold-time
ranking and 0.2341 for the average latency-time rank-
ing. Using these coefficients, the combined ranking can
be computed (right-most column of Table 5). This com-
bined ranking can be used as a marker to perfectly dis-
criminate between members of the “left” cluster and all
other subjects. All members of the “left” cluster have a
combined ranking of less than 17, while all other subjects
have a combined ranking of at least 17.

8 Step 4: Demographic association
After identifying two noteworthy clusters in the data, a
natural question to ask is whether the subjects in these
clusters share common characteristics.

8 .1 Method
We did a simple correlation between a modest data base
of demographic characteristics (gender, handedness, age,
special conditions) and the subjects in the clusters. Two
associations were found: gender and special conditions.

8 .2 Results
s036 cluster . This subject suffered from temporal
lobe epilepsy, a neurological disorder. Medication for
epilepsy can affect finemotor control, whichmay explain
the very short hold times and very long latency times ob-
served in the s036 data.

“Left” cluster . The only association between demo-
graphic data and the subjects in the “left” cluster was
gender. All the subjects in the “left” cluster were women.

A Chi-square test of independence was performed to
examine the relation between the “left” cluster and gen-
der. The relation between these variables was significant,
χ2(d f = 2,N = 50) = 13.1714, p < 0.005. That all the

subjects in the “left” cluster were female is highly un-
likely to have been a chance event. A Bonferroni correc-
tion [10] for multiple comparisons is probably unneces-
sary, but if one were applied, given an alpha of 0.05, and
four comparisons, the p-value would need to be less than
0.0125 to maintain significance, which it is. We don’t
know what unites these women. Perhaps it’s fingernails;
perhaps it’s nail polish; perhaps it’s hand size or hand ge-
ometry. We have neither the data nor the instrumentation
to make a determination at this time.

9 Discussion
We have demonstrated that a 3-step process can reveal a
small number of types into which typists can be grouped,
just as there is a small number of blood types in which all
people are included. Also, as in blood typing, we have
shown that markers can be found that make exact assign-
ments of typists to clusters, obviating the need for re-
clustering data when new subjects appear. We found that
one subject, all alone in one singleton cluster, suffered
from a neurological disorder, temporal lobe epilepsy. An
8-member cluster was made up entirely of women; as yet
we have no explanation for what unifies these women.

The clusters into which subjects are grouped consti-
tute new-found, fundamental structure in keystroke data,
heretofore unknown. These clusters show that there ap-
pear to be constellations of characteristics that unite sub-
jects into some groups, while isolating them from oth-
ers. Demographic correlations may shed further light on
these groupings or structures in the data. Extended de-
mographic data, information about typing postures (e.g.,
particular hand positions), and details regarding the ten-
dency to strike a given key with a given finger are needed
to take full advantage of the new structure. With these
kinds of details we may now be able to determine more
than a typical classifier can do; typical classifiers tell you
that two entities are different, but they don’t tell you how

10 LASER 2014 • Learning from Authoritative Security Experiment Results USENIX Association

they are different. The discovery and use of new struc-
ture is a step toward resolving that problem.

We have provided a way to rule out people on the ba-
sis of their typing rhythms. For example, if an unidenti-
fied pedophile’s typing fell into a particular cluster, based
on monitoring of chat-room typing, the authorities would
know that they are looking for only one “type” of typist,
and could rule out others. The situation would be similar
in other forensic applications, such as insider threat.
Classification accuracy in keystroke biometrics may

improve on the basis of the new-found structure. In
keystroke research it is typical to discriminate amongst
a pool of users by running a classifier over the entire
pool, which produces a certain classification accuracy. If
the same classifier were run over just one cluster of that
pool, classification accuracy may well improve, because
the pool is smaller; and the distinction between that pool
and the rest of the users would already have been made
by the clustering algorithm itself. Moreover, it’s possi-
ble that different classifiers will be differentially effective
when applied to one cluster rather than another.

10 Limitations
The work presented in this paper is only a preliminary
investigation, leaving many stones unturned. We ex-
amined only one data set; generalization to other data
sets remains to be verified. We examined in detail only
one cluster (“left”) and one singleton (s036), leaving
out marker-finding for other clusters; this is because our
work here is intended as simply a proof of concept. Ex-
ploiting the new-found structure to increase classification
accuracy is left to future work. Subsequent investigations
will clarify these limitations.

11 Conclusion
We have shown that typists can be grouped into a small
number of types. Each type is distinguished from the rest
of the population by characteristic keystroke features,
which can be refined into simple markers. A user’s type
is determined by the presence of these markers, in the
same way that blood types are determined by the pres-
ence of certain antigens. Our findings constitute an ini-
tial step toward a more fundamental understanding of the
intrinsic structure in keystroke data. We hope that other
investigators will continue down this path by applying
our techniques to various publicly available data sets.

12 Acknowledgments
This work was supported by the National Science Foun-
dation, grant number CNS-1319117. Data collection
was supported by the National Science Foundation, grant
number CNS-0716677. The authors are very apprecia-
tive of the kind and generous help they received from
Professor David Banks, Department of Statistical Sci-
ence, Duke University.

References

[1] BANERJEE, S. P., AND WOODARD, D. L. Biometric authen-
tication and identification using keystroke dynamics: A survey.
Journal of Pattern Recognition Research 7 (2012), 116–139.

[2] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. Regulariza-
tion paths for generalized linear models via coordinate descent.
Journal of Statistical Software 33, 1 (2010), 1–22.

[3] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction.
Springer-Verlag, New York, 2001.

[4] KARNAN, M., AKILA, M., AND KRISHNARAJ, N. Biometric
personal authentication using keystroke dynamics: A review. Ap-
plied Soft Computing 11, 2 (March 2011), 1565–1573.

[5] KAUFMAN, L., AND ROUSSEEUW, P. Finding Groups in Data:
An Introduction to Cluster Analysis. Wiley, New York, 1990.

[6] KILLOURHY, K. S. A Scientific Understanding of Keystroke Dy-
namics. PhD thesis, Computer Science Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania, January 2012.

[7] KILLOURHY, K. S., AND MAXION, R. A. The effect of
clock resolution on keystroke dynamics. In 11th International
Symposium on Recent Advances in Intrusion Detection (RAID
2008) (Cambridge, MA, 15-17 September 2008), R. Lippmann,
E. Kirda, and A. Trachtenberg, Eds., vol. 5230 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 331–350.

[8] KILLOURHY, K. S., AND MAXION, R. A. Comparing anomaly
detectors for keystroke dynamics. In Proceedings of the 39th An-
nual International Conference on Dependable Systems and Net-
works (DSN-2009) (June 29–July 2, 2009, Estoril, Lisbon, Portu-
gal, 2009), IEEE Computer Society Press, Los Alamitos, Califor-
nia, pp. 125–134.

[9] MAXION, R. A., AND KILLOURHY, K. S. Keystroke biomet-
rics with number-pad input. In IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN-10) (Los
Alamitos, California, 28 June - 01 July 2010), IEEE Computer
Society Press, pp. 201–210. Chicago, Illinois.

[10] MILLER JR., R. G. Simultaneous Statistical Inference, 2nd ed.
Springer Series in Statistics. Springer-Verlag, New York, 1981.

[11] PEACOCK, A., KE, X., AND WILKERSON, M. Typing pat-
terns: A key to user identification. IEEE Security and Privacy
2, 5 (September/October 2004), 40–47.

[12] R CORE TEAM. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2012. ISBN 3-900051-07-0.

[13] SHANMUGAPRIYA, D., AND PADMAVATHI, G. A survey of bio-
metric keystroke dynamics: Approaches, security and challenges.
International Journal of Computer Science and Information Se-
curity 5, 1 (September 2009), 115–119.

[14] TEH, P. S., TEOH, A. B. J., AND YUE, S. A survey of keystroke
dynamics biometrics. The Scientific World Journal 2013 (2013).
Article ID 408280.

[15] YAMPOLSKIY, R. V., AND GOVINDARAJU, V. Behavioural bio-
metrics: A survey and classification. International Journal of
Biometrics 1, 1 (June 2008), 81–113.

Notes
1Dataset available at http://www.cs.cmu.edu/~keystroke
2We compare normalized weights when we are standardizing the

input data, because the glmnet package returns weights on the original
scale, effectively “un-normalizing” the weights.

