
USENIX Association LASER 2013 • Learning from Authoritative Security Experiment Result 37

Dismal Code: Studying the Evolution of Security Bugs

Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas
Department of Management Science and Technology,

Athens University of Economics and Business
dimitro@aueb.gr, bkarak@aueb.gr, louridas@aueb.gr

Georgios Gousios
Software Engineering Research Group, Delft University of Technology

G.Gousios@tudelft.nl

Diomidis Spinellis
Department of Management Science and Technology,

Athens University of Economics and Business
dds@aueb.gr

Abstract

Background. Security bugs are critical programming er-
rors that can lead to serious vulnerabilities in software.
Such bugs may allow an attacker to take over an applica-
tion, steal data or prevent the application from working
at all.
Aim. We used the projects stored in the Maven reposi-
tory to study the characteristics of security bugs individ-
ually and in relation to other software bugs. Specifically,
we studied the evolution of security bugs through time.
In addition, we examined their persistence and their re-
lationship with a) the size of the corresponding version,
and b) other bug categories.
Method. We analyzed every project version of the
Maven repository by using FindBugs, a popular static
analysis tool. To see how security bugs evolve over time
we took advantage of the repository’s project history and
dependency data.
Results. Our results indicate that there is no simple
rule governing the number of security bugs as a project
evolves. In particular, we cannot say that across projects
security-related defect counts increase or decrease sig-
nificantly over time. Furthermore, security bugs are not
eliminated in a way that is particularly different from the
other bugs. In addition, the relation of security bugs with
a project’s size appears to be different from the relation
of the bugs coming from other categories. Finally, even
if bugs seem to have similar behaviour, severe security
bugs seem to be unassociated with other bug categories.
Conclusions. Our findings indicate that further research

should be done to analyze the evolution of security
bugs. Given the fact that our experiment included only
Java projects, similar research could be done for another
ecosystem. Finally, the fact that projects have their own
idiosyncrasies concerning security bugs, could help us
find the common characteristics of the projects where se-
curity bugs increase over time.

1 Introduction

A security bug is a programming error that introduces
a potentially exploitable weakness into a computer sys-
tem [34]. This weakness could lead to a security breach
with unfortunate consequences in different layers, like
databases, native code, applications, libraries and others.
Despite the significant effort to detect and eliminate such
bugs, little attention has been paid to study them in rela-
tion to software evolution [26]. One of the most common
approaches to identify security bugs is static analysis [6].
This kind of analysis involves the inspection of the pro-
gram’s source or object code without executing it.

In this paper we present how we used a large software
ecosystem to analyse the relationship of different types
of security vulnerabilities to evolving software packages.
For our research we used FindBugs,1 a static analysis
tool that examines bytecode to detect software bugs and
has already been used in research [1, 19, 36]. Specifi-
cally, we ran FindBugs on all the project versions of all
the projects that exist in the Maven Central Repository2

(approximately 265GB of data—see Section 3.2). Then
we observed the changes that involved the security bugs

37

38 LASER 2013 • Learning from Authoritative Security Experiment Results USENIX Association

and their characteristics.
We chose to focus our study on security bugs rather

than other types of software defects. This is because
compared to other bug categories, failures due to security
bugs have two distinct features: they can severely affect
an organization’s infrastructure [33], and they can cause
significant financial damage to an organization [39, 2].
Specifically, whereas a software bug can cause a soft-
ware artifact to fail, a security bug can allow a malicious
user to alter the execution of the entire application for his
or her own gain. In this case, such bugs could give rise
to a wide range of security and privacy issues, like the
access of sensitive information, the destruction or modi-
fication of data, and denial of service. Moreover, security
bug disclosures lead to a negative and significant change
in market value for a software vendor [38]. Hence, one
of the basic pursuits in every new software release should
be to mitigate such bugs.

The motivation behind our work was to validate
whether programmers care for the risk posed by secu-
rity bugs when they release a new version of their soft-
ware. In addition, we wanted to investigate other criti-
cal features associated with such vulnerabilities like the
persistence of a bug; in essence, to see whether critical
bugs stay unresolved for a long time. Also, we wanted
to elaborate more on the relation of security bugs with
other bug categories. In the same manner, we tried to
examine the relationship between the size of a project re-
lease and the number of security bugs that it contains,
knowing the that research has produced contradictory re-
sults on this issue [35, 28, 13]. Finally, we examined the
Maven ecosystem as a whole from a security perspective.
Its structure gave us the opportunity to see if a project
version that is a dependency of a large number of others
contains a low rate of security bugs.

In this work we:

• Analyze how security bugs found through static
analysis evolve over time. To achieve this, we in-
spected all releases of every project. Our hypothe-
sis is that security bugs should decrease as a project
evolves, for they form critical issues, which devel-
opers should eliminate.

• Examine security bug persistence across releases.
We expect that security bugs should be eliminated
earlier than other bugs.

• Study the relation between security bugs and a
project release’s size. Our hypothesis is that secu-
rity bugs are proportional to a project release’s size
(defined in terms of bytecode size).

• Examine the correlation of security bugs with other
bug categories. Our hypothesis is that security bugs

appear together with bugs that are related with per-
formance, coding practices, and product stability.

In the rest of this paper we outline related work (Sec-
tion 2), describe the processing of our data and our ex-
periment (Section 3), present and discuss the results we
obtained (Section 4), and end up with a conclusion and
directions for future work (Section 5).

2 Related Work

There are numerous methods for mining software repos-
itories in the context of software evolution [20]. In this
section we focus on the ones that highlight the relation-
ship between software bugs and evolution and try to ex-
tract useful conclusions.

Refactoring identification through software evolution
is an approach used to relate refactorings with software
bugs. Weißgerber et al. found that a high ratio of refac-
torings is usually followed by an increasing ratio of bug
reports [40]. In addition, they indicated that software
bugs are sometimes introduced after an incomplete refac-
toring [12]. Ratzinger et al. [31] showed that the number
of bugs decreases, when the number of refactorings in-
creases. Finally, Kim M. et al. [22] indicated that API-
level refactorings aid bug fixes.

Micro patterns, proposed by Kim et al. [24] detect
bug-prone patterns among source code. Micro patterns
describe programming idioms like inheritance, data man-
agement, immutability and others. The approach in-
volved the examination of all revisions of three open-
source projects to extract bug introduction rates for each
pattern. Gil et al. [11] analysed the prevalence of micro
patterns across five Sun JDK versions to conclude that
pattern prevalence tends to be the same in software col-
lections.

Querying techniques are used to answer a broad
range of questions regarding the evolution history of
a project [17]. Bhattacharya et al. [4, 3] proposed a
framework that is based on recursively enumerable lan-
guages. The framework can correlate software bugs with
developers in various ways. For instance, return the
list of bugs fixed by a specific developer. Fischer et
al. [10] proposed an approach for populating a release
history database that combines code information with
bug tracking data. In this way, a developer can cou-
ple files that contain common bugs, estimate code ma-
turity with respect to the bugs, etc. The “Ultimate De-
bian Database” [29] is an SQL-based framework that in-
tegrates information about the Debian project from var-
ious sources to answer queries related to software bugs
and source code.

D’Ambros et al. have used bug history analysis to de-
tect the critical components of a project [7]. This is done

38

USENIX Association LASER 2013 • Learning from Authoritative Security Experiment Result 39

by using an evolutionary meta-model [8]. The same ap-
proach was also used by Zimmermann et al. [42] to check
the correlation of bugs with software properties like code
complexity, process quality and others and to predict fu-
ture properties.

The evolution of software artifacts has also been anal-
ysed to reduce the false alarms of the various static anal-
ysis tools. To achieve this, Spacco et al. [36] introduced
pairing and warning signatures. In the former, they tried
to pair sets of bugs between versions in order to find
similar patterns. In the latter, they computed a signa-
ture for every bug. This signature contained elements
like the name of the class where the bug was found, the
method and others. Then they searched for similar sig-
natures between versions. In their research they studied
the evolution of 116 sequential builds of the Sun Java
Sevelopment Kit (JDK). Their findings indicated that
high priority bugs are fixed over time. To improve the
precision of bug detection, Kim et al. [23] proposed a
history-based warning prioritization algorithm by mining
the history of bug-fixes of three different projects. Work-
ing towards the same direction, Heckman et al. [15, 14]
have introduced benchmarks that use specific correlation
algorithms and classification techniques to evaluate alert
prioritization approaches.

Lu et al. [25] studied the evolution of file-system code.
Specifically, they analysed the changes of Linux file-
system patches to extract bug patterns and categorize
bugs based on their impact. Their findings indicated that
the number of file-system bugs does not die down over
time. By categorizing bugs they also showed the fre-
quency of specific bugs in specific components.

Completing the above approaches, our work focuses
on the subset of security bugs. Focusing on such bugs is
not a new idea. Ozment and Schechter [30] examined the
code base of the OpenBSD operating system to determine
whether its security is increasing over time. In particular,
they measured the rate at which new code has been intro-
duced and the rate at which defects have been reported
over a 7.5 year period and fifteen releases. Even though
the authors present statistical evidence of a decrease in
the rate at which vulnerabilities are being reported, de-
fects seem to appear persistent for a period of at least 2.6
years. Massacci et al. [27] observed the evolution of soft-
ware defects by examining six major versions of Firefox.
To achieve this they created a database schema that con-
tained information coming from the “Mozilla Firefox-
related Security Advisories” (MFSA) list,3 Bugzilla en-
tries and others. Their findings indicated that security
bugs are persistent over time. They also showed that
there are many web users that use old versions of Firefox,
meaning that old attacks will continue to work. Zaman
et al. [41] focused again on Firefox to study the relation
of security bugs with performance bugs. This was also

done by analysing the project’s Bugzilla. Their research
presented evidence that security bugs require more ex-
perienced developers to be fixed. In addition, they sug-
gested that security bug fixes are more complex than the
fixes of performance and other bugs. Shahzad et al. [34]
analysed large sets of vulnerability data-sets to observe
various features of the vulnerabilities that they consid-
ered critical. Such features were the functionality and
the criticality of the defects. Their analysis included the
observation of vulnerability disclosures, the behavior of
hackers in releasing exploits for vulnerabilities, patch-
ing and others. In their findings they highlighted the
most exploited defects and showed that the percentage
of remotely exploitable vulnerabilities has gradually in-
creased over the years. Finally, Edwards et al. [9] have
recently conducted a study similar to ours in which they
have considered only four projects. Their results demon-
strate that the number of exploitable bugs does not al-
ways improve with each new release and that the rate of
discovery of exploitable bugs begins to drop three to five
years after the initial release.

3 Methodology

Our experiment involved the collection of the metric re-
sults of the FindBugs tool. Before and during the ex-
periment, we performed a number of filters on the data
coming from the Maven repository, for reasons that we
will describe below.

3.1 Experiment
The goal of our experiment was to retrieve all the bugs
that FindBugs reports, from all the project versions ex-
isting on the Maven repository (in the Maven repository,
versions are actual releases). The experiment involved
four entities: a number of workers (a custom Python
script), a task queue mechanism (RabbitMQ—version
3.0.1), a data repository (MongoDB—version 2.2), and
the code repository, which in our case it was the public
Maven repository.

Maven is a build automation tool used primarily for
Java projects and it is hosted by the Apache Software
Foundation. It uses XML to describe the software project
being built, its dependencies on other external mod-
ules, the build order, and required plug-ins. To build
a software component, it dynamically downloads Java
libraries and Maven plug-ins from the Maven central
repository, and stores them in a local cache. The reposi-
tory can be updated with new projects and also with new
versions of existing projects.

First, we scanned the Maven repository for appropriate
JARs and created a list that included them. We discuss the
JAR selection process in the next section. With the JAR

39

40 LASER 2013 • Learning from Authoritative Security Experiment Results USENIX Association

Maven Repository

artf
URL

Project Events
Queue

Worker Worker Worker

Queue
 Loader

RabbitMQ

artf
URL

Figure 1: The data processing architecture.

list at hand, we created a series of processing tasks and
added them to the task queue. Then we executed twenty
five (Unix-based) workers that checked out tasks from
the queue, processed the data and stored the results to
the data repository.

A typical processing cycle of a worker included the
following steps: after the worker spawned, it requested a
task from the queue. This task contained the JAR name,
which was typically a project version that was down-
loaded locally. First, specific JAR metadata were cal-
culated and stored. Such metadata included its size, its
dependencies, and a number that represented the chrono-
logical order of the release. This order was derived from
an XML file that accompanies every project in the Maven
repository called maven-metadata.xml. Then, FindBugs
was invoked by the worker and its results were also
stored in the data repository. When the task was com-
pleted the queue was notified and the next task was re-
quested. This process was executed for all the available
JARs in the task queue. A schematic representation of the
data processing architecture can be seen in Figure 1.

3.2 Data Provenance

Initially, we obtained a snapshot (January 2012) of the
Maven repository and handled it locally to retrieve a list
of all the names of the project versions that existed in
it. A project version can be uniquely identified by the
triplet: group id, artifact id and version.

FindBugs works by examining the compiled Java vir-
tual machine bytecodes of the programs it checks, us-
ing the bytecode engineering library (BCEL). To detect a
bug, FindBugs uses various formal methods like control
flow and data flow analysis. It has also other detectors
that employ visitor patterns over classes and methods
by using state machines to reason about values stored

Table 1: Descriptive statistics measurements for the
Maven repository.

Measurement Value
Projects 17,505
Versions (total) 115,214
Min (versions per project) 1
Max (versions per project) 338
Mean (versions per project) 6.58
Median (versions per project) 3
Range (over versions) 337
1st Quartile (over versions) 1
3rd Quartile (over versions) 8

in variables or on the stack. Since FindBugs analyses ap-
plications written in the Java programming language, and
the Maven repository hosts projects from languages other
than Java such as Scala, Groovy, Clojure, etc., we filtered
out such projects by performing a series of checks in the
repository data and metadata.

In addition, we implemented a series of audits in
the worker scripts that checked if the JARs are valid in
terms of implementation. For instance, for every JAR
the worker checked if there were any .class files before
invoking FindBugs. After the project filtering, we nar-
rowed down our data set to 17,505 projects with 115,214
versions. Table 1 summarises the data set informa-
tion and provides the basic descriptive statistic measure-
ments. The distribution of version count among the se-
lected projects is presented in Figure 2.

The statistical measurements presented in Table 1 in-
dicate that we have 17,505 projects and the data set’s me-
dian is 3, which means that almost 50% (8,753 projects)
of the project population have 1 to 3 versions. In gen-
eral, most projects have a few number of versions, there
are some projects with ten versions and only a few with
hundreds of versions. The maximum number of versions
for a project is 338. The 3rd quartile measurement also
indicated that 75% (13,129) of the projects have a maxi-
mum of 8 versions.

3.3 Threats to Validity

A threat to the internal validity of our experiment could
be the false alarms of the FindBugs tool [1, 18]. False
positives and negatives of static analysis tools and how
they can be reduced is an issue that has already been
discussed in the literature (see Section 2). In addition,
reported security bugs may not be applicable to an ap-
plication’s typical use context. For instance, FindBugs
could report an SQL injection vulnerability [32] in an ap-
plication that receives no external input. In this particular
context, this would be a false positive alarm.

40

USENIX Association LASER 2013 • Learning from Authoritative Security Experiment Result 41

3421 10 100

5500

1

10

100

1000

Number of Versions

Nu
m

be
r o

f P
ro

jec
ts

Figure 2: Distribution of version count among project
population.

Furthermore, given that our analysis is done on open-
source projects written in the Java programming lan-
guage and hosted on Maven, a threat to the external va-
lidity of our work is the fact that our results may not be
applicable to other programming languages, ecosystems,
and development cultures. In particular, a large class of
security problems such as buffer overflows [21] do not
apply in our study since Java enforces bound checking at
runtime.

4 Results and Analysis

Our findings can be analysed at two levels. First, we
discuss some primary observations concerning the secu-
rity bugs of the Maven repository as a whole. Then, we
provide a comprehensive analysis of the results and high-
light our key findings.

4.1 Overview and Initial Results

FindBugs separates software bugs into nine categories
(see Table 2). Two of them involve security issues: Se-
curity and Malicious Code. From the total number of
releases, 4,353 of them contained at least one bug com-
ing from the first category and 45,559 coming from the
second.

Our first results involve the most popular bugs in the
Maven repository. Figure 3 shows how software bugs are
distributed among the repository. Together with the Bad
Practice bugs and the Style bugs, security bugs (the sum
of the Security and Malicious Code categories - 0.21% +

25

0

2

4

6

8

10

12

14

16

18

20

22

Bug Categories

%

Correctness

Bad Practice

MT_Correctness

Performance

Experimental

Style

i18n

Security

Figure 3: Bug percentage in Maven repository.

21.81%) are the most popular in the repository (≥ 21%
each). This could be a strong indication that program-
mers write code that implements the required function-
ality without considering its many security aspects; an
issue that has already been reported in literature [37].

Another observation involves bugs that we could call
Security High and they are a subset of the Security cat-
egory. Such bugs are related to vulnerabilities that ap-
pear due to the lack of user-input validation and can lead
to damaging attacks like SQL injection and Cross-Site
Scripting [32]. To exploit such vulnerabilities, a mali-
cious user does not have to know anything about the ap-
plication internals. For almost all the other security bugs
(coming from the Malicious Code category and the rest
of the Security category bugs), another program should
be written to incorporate references to mutable objects,
access non-final fields, etc. Also, as bug descriptions in-
dicate,4 if an application has bugs coming from the Se-
curity High category, it might have more vulnerabilities
that FindBugs doesn’t report. Table 3 presents the num-
ber of releases where at least one of these bugs exists.
In essence, 5,501 releases (≈ 4,77%), contained at least
one severe security bug. Given the fact that other projects
include these versions as their dependencies, they are au-
tomatically rendered vulnerable if they use the code frag-
ments that include the defects. The remaining bugs of
the Security category are grouped together with the bugs
of the Malicious Code category in another subcategory
that we call Security Low. This category contains for
the most part, bugs that imply violations of good OOP
(object-oriented programming) design (i.e. keeping vari-
ables private to classes and others). The above catego-
rization was done specifically to point out the behaviour
of bugs that currently top the corresponding lists of most

41

42 LASER 2013 • Learning from Authoritative Security Experiment Results USENIX Association

Table 2: Bug categorisation according to FindBugs.
Category Description
Bad Practice Violations of recommended and essential coding practice.
Correctness Involves coding misting a way that is particularly different from the other

bug sakes resulting in code that was probably not what the developer
intended.

Experimental Includes unsatisfied obligations. For instance, forgetting to close a file.
Internationalization (i18n) Indicates the use of non-localized methods.
Multi-Threaded (MT) Correctness Thread synchronization issues.
Performance Involves inefficient memory usage allocation, usage of non-static classes.
Style Code that is confusing, or written in a way that leads to errors.
Malicious Code Involves variables or fields exposed to classes that should not be using

them.
Security Involves input validation issues, unauthorized database connections and

others.

Table 3: Number of project releases that contain at least one “Security High” bug.
Bug Description Number of Project Releases
HRS: HTTP cookie formed from untrusted input 151
HRS: HTTP response splitting vulnerability 1,579
PT: absolute path traversal in servlet 103
PT: relative path traversal in servlet 57
SQL: non-constant string passed to execute method on an SQL statement 1,875
SQL: a prepared statement is generated from a non-constant String 1,486
XSS: JSP reflected cross site scripting vulnerability 18
XSS: Servlet reflected cross site scripting vulnerability in error page 90
XSS: Servlet reflected cross site scripting vulnerability 142

security providers.5

Linus’s Law states that “given enough eyeballs, all
bugs are shallow”. In a context like this, we expect that
the project versions that are dependencies to many other
projects would have a small number of security bugs. To
examine this variation of the Linus’s Law and highlight
the domino effect [39] we did the following: during the
experiment we retrieved the dependencies of every ver-
sion. Based on this information we created a graph that
represented the snapshot of the Maven repository. The
nodes of the graph represented the versions and the ver-
tices their dependencies. The graph was not entirely ac-
curate. For instance, if a dependency was pointing only
to a project (and not to a specific version), we chose to
select the latest version found on the repository. Also,
this graph is not complete. This is because there were
missing versions. From the 565,680 vertices, 191,433
did not point to a specific version while 164,234 were
pointing to missing ones. The graph contained 80,354
nodes. Obviously, the number does not correspond to
the number of the total versions (see Section 3.2). This
is because some versions did not contain any informa-
tion about their dependencies so they are not represented
in the graph. After creating the graph, we ran the PageR-

ank algorithm [5] on it and retrieved all PageRanks for
every node. Then we examined the security bugs of the
fifty most popular nodes based on their PageRank. Con-
trary to Linus’s Law, thirty three of them contained bugs
coming from the Security Low subcategory, while two of
them contained Security High bugs. Twenty five of them
were latest versions at the time. This also highlights the
domino effect.

4.2 Analysis
Here, we present our key findings concerning the evolu-
tion of security bugs.

4.2.1 How Security Bugs Evolve Over Time

The relation between bugs and time can be traced from
the number of bugs per category in each project version.
We can then calculate the Spearman correlations between
the defects count and the ordinal version number across
all projects to see if bigger versions relate to higher or
lower defect counts. The results are shown in Table 4.
Although the tendency is for defect counts to increase,
this tendency is extremely slight.

42

USENIX Association LASER 2013 • Learning from Authoritative Security Experiment Result 43

The zero tendency applies to all versions of all projects
together. The situation might be different in individual
projects. We therefore performed Spearman correlations
between bug counts and version ordinals in all projects
we examined. These paint a different picture from the
above table, shown in Figure 4. The spike in point zero
is explained by the large number of projects for which
no correlation could be established—note that the scale
is logarithmic. Still, we can see that there were projects
where a correlation could be established, either positive
or negative. The Security High category is particularly
bimodal, but this is explained by the small number of
correlations that could be established, nine in total.

Overall, Table 4 and Figure 4 suggest that we cannot
say that across projects defect counts increase or de-
crease significantly across time. In individual projects,
however, defect counts can have a strong upwards or
downwards tendency. There may be no such thing as a
“project” in general, only particular projects with their
own idiosyncrasies, quality features, and coding prac-
tices.

Another take on this theme is shown in Figure 5, which
presents a histogram of the changes of different bug
counts in project versions. In most cases, a bug count
does not change between versions; but when it does
change, it may change upwards or downwards. Note also
the spectacular changes of introducing or removing thou-
sands of defects; this may be the result of doing and un-
doing a pervasive code change that runs foul of some bug
identification rule.

Table 4: Correlations between version and defects count.
Category Spearman Correlation p-value
Security High 0.08 � 0.05
Security Low 0.02 � 0.05
Style 0.03 � 0.05
Correctness 0.04 � 0.05
Bad Practice 0.03 � 0.05
MT Correctness 0.09 � 0.05
i18n 0.06 � 0.05
Performance (0.01) 0.07
Experimental 0.09 � 0.05

4.2.2 Persistence of Security Bugs

To examine the relation between the persistence of differ-
ent kinds of bugs, and of security bugs in particular, we
used as a persistence indicator the number of versions a
bug remains open in a project. To “tag” a bug we created
a bug identifier by using the type of the bug, the method
name and the class name in which the bug was found in.
We chose not to use the line number of the location of

the bug since it could change from version to version and
after a possible code refactoring. We grouped the persis-
tence numbers by bug categories and then performed a
Mann-Whitney U [16] test among all bug category pairs.
The results are presented in Table 6 (at the end of this pa-
per). Cells in brackets show pairs where no statistically
significant difference was found.

In general, although the average number of versions
bugs in different bug categories that remained open was
statistically different in many cases, the difference is not
spectacular. In all cases a bug persists on average be-
tween two and three versions, with the difference being
in the decimal digits.

4.2.3 The Relation of Defects with the size of a JAR

We explored the relation between defects with the size of
a project version, measured by the size of its JAR file by
carrying out correlation tests between the size and the de-
fect counts for each project and version. The results, all
statistically significant (p� 0.05) can be seen in Table 5.
The Security High category stands out by having a re-
markably lower effect than the other categories, even
Security Low that nearly tops the list. As we mentioned
earlier, bugs that belong to the Security High category
are related to user-input validation issues. Hence, even
if a programmer adds code to a new version, if this code
does not require user input, the possibility of such bug is
minimal.

Table 5: Correlations between JAR size and defects
count.

Category Spearman Correlation p-value
Security High 0.19 � 0.05
Security Low 0.65 � 0.05
Style 0.68 � 0.05
Correctness 0.51 � 0.05
Bad Practice 0.67 � 0.05
MT Correctness 0.51 � 0.05
i18n 0.53 � 0.05
Performance 0.63 � 0.05
Experimental 0.36 � 0.05

4.2.4 Security Bugs VS Other Bug Categories

To see whether bugs flock together we performed pair-
wise correlations between all bug categories. We cal-
culated the correlations between the number of distinct
bugs that appeared in a project throughout its lifetime,
see Figure 6. We found significant, but not always strong,
correlations between all pairs. In general, the Security

43

44 LASER 2013 • Learning from Authoritative Security Experiment Results USENIX Association

Figure 4: Histograms of correlations between bug counts and version ordinals per project. In brackets the total
population size and the number of no correlation instances.

Figure 5: Changes in bug counts between versions.

44

USENIX Association LASER 2013 • Learning from Authoritative Security Experiment Result 45

Figure 6: Correlation matrix plot for bug categories.

High category showed the weakest correlations with the
other categories. Our results show that in general bugs
do flock together. We do not find projects with only a
certain kind of bug; bugs come upon projects in swarms
of different kinds. Bugs of the Security High category,
though, are different: they are either not associated with
other bugs, or only weakly so. Perhaps it takes a special
kind of blunder to make it a security hazard. Thus, to find
such defects, code reviewers with experience in software
security issues might be needed.

5 Conclusions and Future Work

We analysed more than 260GB of interdependent project
versions to see how security bugs evolve over time, their
persistence, their relation with other bug categories, and
their relationship with size in terms of bytecode.6

Our primary hypothesis was that security bugs, and
especially severe ones, would be corrected as projects
evolve. We found that, although bugs do close over time
in particular projects, we do not have an indication that
across projects they decrease as projects mature. More-
over, defect counts may increase, as well as decrease in
time. Contrary to our second research hypothesis, we
found that security bugs are not eliminated in a way that
is particularly different from the other bugs. Also, hav-
ing an average of two to three versions persistence in a
sample where 60% of the projects have three versions, is
not a positive result especially in the case of the Security
High bugs. Concerning the relation between severe se-
curity bugs and a project’s size we showed that they are
not proportionally related. Given that, we could say that
it would be productive to search for and fix security bugs
even if a project grows bigger. Furthermore, the pair-

wise correlations between all categories indicated that
even though all the other categories are related, severe
bugs do not appear together with the other bugs. Also, it
is interesting to see that security bugs were one of the top
two bug categories existing in a large ecosystem. Finally,
we highlighted the domino effect, and showed evidence
that indicates that Linus’s Law does not apply in the case
of the security bugs.

Contrary to the approaches that examine versions
formed after every change that has been committed to
the repository, our observations are made from a differ-
ent perspective. The versions examined in this work were
actual releases of the projects. As a result we do not have
an indication of how many changes have been made be-
tween the releases. In essence, these JARs were the ones
that were or still are, out there in the wild, being used
either as applications, or dependencies of others.

Furthermore, the fact that projects have their own id-
iosyncrasies concerning security bugs, could help us an-
swer questions like: what are the common characteris-
tics of the projects where security bugs increase over
time? In addition, by examining source code reposito-
ries more closely we could see how different develop-
ment styles (i.e. size of commits, number of developers)
affect projects.

By selecting an large ecosystem that includes appli-
cations written only in Java, we excluded by default
measurements that involve vulnerabilities like the infa-
mous buffer overflow defects [21]. Still, by examining
software artifacts with similar characteristics facilitates
the formation of an experiment. Thus, future work on
our approach could also involve the observation of other
ecosystems, that serve different languages, in the same
manner such as, Python’s PyPY (Python Package Index),
Perl’s CPAN (Comprehensive Perl Archive Network), and
Ruby’s RubyGems.

6 Acknowledgments

This research has been co-financed by the European
Union (European Social Fund - ESF) and Greek national
funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference
Framework - Research Funding Program: Heracleitus II.
Investing in knowledge society through the ESF.

References
[1] AYEWAH, N., AND PUGH, W. The google FindBugs fixit. In

Proceedings of the 19th international symposium on Software
testing and analysis (New York, NY, USA, 2010), ISSTA ’10,
ACM, pp. 241–252.

[2] BACA, D., CARLSSON, B., AND LUNDBERG, L. Evaluating
the cost reduction of static code analysis for software security. In

45

46 LASER 2013 • Learning from Authoritative Security Experiment Results USENIX Association

Proceedings of the third ACM SIGPLAN workshop on Program-
ming languages and analysis for security (New York, NY, USA,
2008), PLAS ’08, ACM, pp. 79–88.

[3] BHATTACHARYA, P. Using software evolution history to facil-
itate development and maintenance. In Proceedings of the 33rd
International Conference on Software Engineering (New York,
NY, USA, 2011), ICSE ’11, ACM, pp. 1122–1123.

[4] BHATTACHARYA, P., AND NEAMTIU, I. Bug-fix time predic-
tion models: can we do better? In Proceedings of the 8th Work-
ing Conference on Mining Software Repositories (New York, NY,
USA, 2011), MSR ’11, ACM, pp. 207–210.

[5] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-
tual web search engine. Comput. Netw. ISDN Syst. 30, 1-7 (Apr.
1998), 107–117.

[6] CHESS, B., AND WEST, J. Secure programming with static anal-
ysis, first ed. Addison-Wesley Professional, 2007.

[7] D’AMBROS, M. Supporting software evolution analysis with
historical dependencies and defect information. In ICSM (2008),
pp. 412–415.

[8] D’AMBROS, M., AND LANZA, M. A flexible framework to sup-
port collaborative software evolution analysis. In CSMR (2008),
pp. 3–12.

[9] EDWARDS, N., AND CHEN, L. An historical examination of
open source releases and their vulnerabilities. In Proceedings
of the 2012 ACM conference on Computer and communications
security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 183–
194.

[10] FISCHER, M., PINZGER, M., AND GALL, H. Populating a re-
lease history database from version control and bug tracking sys-
tems. In Proceedings of the International Conference on Software
Maintenance (Washington, DC, USA, 2003), ICSM ’03, IEEE
Computer Society, pp. 23–.

[11] GIL, J. Y., AND MAMAN, I. Micro patterns in java code. In
Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applica-
tions (New York, NY, USA, 2005), OOPSLA ’05, ACM, pp. 97–
116.

[12] GÖRG, C., AND WEISSGERBER, P. Error detection by refac-
toring reconstruction. In Proceedings of the 2005 international
workshop on Mining software repositories (New York, NY, USA,
2005), MSR ’05, ACM, pp. 1–5.

[13] GRAVES, T. L., KARR, A. F., MARRON, J. S., AND SIY, H.
Predicting fault incidence using software change history. IEEE
Trans. Softw. Eng. 26, 7 (2000), 653–661.

[14] HECKMAN, S., AND WILLIAMS, L. On establishing a bench-
mark for evaluating static analysis alert prioritization and clas-
sification techniques. In Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and
measurement (New York, NY, USA, 2008), ESEM ’08, ACM,
pp. 41–50.

[15] HECKMAN, S., AND WILLIAMS, L. A model building process
for identifying actionable static analysis alerts. In Proceedings
of the 2009 International Conference on Software Testing Verifi-
cation and Validation (Washington, DC, USA, 2009), ICST ’09,
IEEE Computer Society, pp. 161–170.

[16] HETTMANSPERGER, T. P., AND MCKEAN, J. W. Robust non-
parametric statistical methods. Kendall’s Library of Statistics,
1998.

[17] HINDLE, A., AND GERMAN, D. M. SCQL: a formal model and
a query language for source control repositories. In Proceedings
of the 2005 international workshop on Mining software reposito-
ries (New York, NY, USA, 2005), MSR ’05, ACM, pp. 1–5.

[18] HOVEMEYER, D., AND PUGH, W. Finding bugs is easy. SIG-
PLAN Not. 39, 12 (Dec. 2004), 92–106.

[19] HOVEMEYER, D., AND PUGH, W. Finding more null pointer
bugs, but not too many. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering (New York, NY, USA, 2007), PASTE ’07,
ACM, pp. 9–14.

[20] KAGDI, H., COLLARD, M. L., AND MALETIC, J. I. A survey
and taxonomy of approaches for mining software repositories in
the context of software evolution. J. Softw. Maint. Evol. 19, 2
(Mar. 2007), 77–131.

[21] KEROMYTIS, A. D. Buffer overflow attacks. In Encyclopedia of
Cryptography and Security (2nd Ed.). 2011, pp. 174–177.

[22] KIM, M., CAI, D., AND KIM, S. An empirical investigation
into the role of api-level refactorings during software evolution.
In Proceedings of the 33rd International Conference on Soft-
ware Engineering (New York, NY, USA, 2011), ICSE ’11, ACM,
pp. 151–160.

[23] KIM, S., AND ERNST, M. D. Which warnings should i fix
first? In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT sympo-
sium on The foundations of software engineering (New York, NY,
USA, 2007), ESEC-FSE ’07, ACM, pp. 45–54.

[24] KIM, S., PAN, K., AND WHITEHEAD, JR., E. J. Micro pattern
evolution. In Proceedings of the 2006 international workshop on
Mining software repositories (New York, NY, USA, 2006), MSR
’06, ACM, pp. 40–46.

[25] LANYUE LU, ANDREA C. ARPACI-DUSSEAU, REMZI H.
ARPACI-DUSSEAU, SHAN LU. A Study of Linux File System
Evolution. In Proceedings of the 11th Conference on File and
Storage Technologies (FAST ’13) (San Jose, California, February
2013).

[26] LEHMAN, M. M., RAMIL, J. F., WERNICK, P. D., PERRY,
D. E., AND TURSKI, W. M. Metrics and laws of software evo-
lution - the nineties view. In Proceedings of the 4th International
Symposium on Software Metrics (Washington, DC, USA, 1997),
METRICS ’97, IEEE Computer Society, pp. 20–.

[27] MASSACCI, F., NEUHAUS, S., AND NGUYEN, V. H. After-life
vulnerabilities: a study on firefox evolution, its vulnerabilities,
and fixes. In Proceedings of the Third international conference
on Engineering secure software and systems (Berlin, Heidelberg,
2011), ESSoS’11, Springer-Verlag, pp. 195–208.

[28] NAGAPPAN, N., BALL, T., AND ZELLER, A. Mining met-
rics to predict component failures. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering (New
York, NY, USA, 2006), ACM, pp. 452–461.

[29] NUSSBAUM, L., AND ZACCHIROLI, S. The ultimate debian
database: Consolidating bazaar metadata for quality assurance
and data mining. In Proceedings of the 2010 international work-
shop on Mining software repositories (2010), MSR ’10, pp. 52–
61.

[30] OZMENT, A., AND SCHECHTER, S. E. Milk or wine: does soft-
ware security improve with age? In Proceedings of the 15th con-
ference on USENIX Security Symposium - Volume 15 (Berkeley,
CA, USA, 2006), USENIX-SS’06, USENIX Association.

[31] RATZINGER, J., SIGMUND, T., AND GALL, H. C. On the rela-
tion of refactorings and software defect prediction. In Proceed-
ings of the 2008 international working conference on Mining soft-
ware repositories (New York, NY, USA, 2008), MSR ’08, ACM,
pp. 35–38.

[32] RAY, D., AND LIGATTI, J. Defining code-injection attacks. In
Proceedings of the 39th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages (New York, NY,
USA, 2012), POPL ’12, ACM, pp. 179–190.

46

USENIX Association LASER 2013 • Learning from Authoritative Security Experiment Result 47

[33] SHAHRIAR, H., AND ZULKERNINE, M. Mitigating program se-
curity vulnerabilities: Approaches and challenges. ACM Comput.
Surv. 44, 3 (June 2012), 11:1–11:46.

[34] SHAHZAD, M., SHAFIQ, M. Z., AND LIU, A. X. A large scale
exploratory analysis of software vulnerability life cycles. In Pro-
ceedings of the 2012 International Conference on Software En-
gineering (Piscataway, NJ, USA, 2012), ICSE 2012, IEEE Press,
pp. 771–781.

[35] SHEN, V. Y., YU, T.-J., THEBAUT, S. M., AND PAULSEN,
L. R. Identifying error-prone software an empirical study. IEEE
Trans. Softw. Eng. 11, 4 (Apr. 1985), 317–324.

[36] SPACCO, J., HOVEMEYER, D., AND PUGH, W. Tracking defect
warnings across versions. In Proceedings of the 2006 interna-
tional workshop on Mining software repositories (New York, NY,
USA, 2006), MSR ’06, ACM, pp. 133–136.

[37] STAMAT, M. L., AND HUMPHRIES, J. W. Training �= education:
putting secure software engineering back in the classroom. In
Proceedings of the 14th Western Canadian Conference on Com-
puting Education (New York, NY, USA, 2009), WCCCE ’09,
ACM, pp. 116–123.

[38] TELANG, R., AND WATTAL, S. Impact of software vulnerabil-
ity announcements on the market value of software vendors - an
empirical investigation. In Workshop on the Economics of Infor-
mation Security (2007), p. 677427.

[39] TEVIS, J.-E. J., AND HAMILTON, J. A. Methods for the preven-
tion, detection and removal of software security vulnerabilities.
In Proceedings of the 42nd annual Southeast regional conference
(New York, NY, USA, 2004), ACM-SE 42, ACM, pp. 197–202.

[40] WEISSGERBER, P., AND DIEHL, S. Are refactorings less error-
prone than other changes? In Proceedings of the 2006 interna-
tional workshop on Mining software repositories (New York, NY,
USA, 2006), MSR ’06, ACM, pp. 112–118.

[41] ZAMAN, S., ADAMS, B., AND HASSAN, A. E. Security versus
performance bugs: a case study on firefox. In Proceedings of the
8th Working Conference on Mining Software Repositories (New
York, NY, USA, 2011), MSR ’11, ACM, pp. 93–102.

[42] ZIMMERMANN, T., NAGAPPAN, N., AND ZELLER, A. Predict-
ing bugs from history. In Software Evolution. 2008, pp. 69–88.

Notes
1http://findbugs.sourceforge.net/
2http://mvnrepository.com/
3http://www.mozilla.org/projects/security/

known-vulnerabilities.html
4http://findbugs.sourceforge.net/bugDescriptions.

html
5http://cwe.mitre.org/top25/index.html
6Our data and code are available online at: https://github.

com/bkarak/evol_security_publication_2012

47

48 LASER 2013 • Learning from Authoritative Security Experiment Results USENIX Association

Ta
bl

e
6:

B
ug

pe
rs

is
te

nc
e

co
m

pa
ri

so
n.

Se
cu

ri
ty

H
ig

h
(0
.0

4,
p
=

0.
97

2.
72

,2
.3

6
24

3,
35

04
8)

2.
22

,p
<

0.
05

2.
72

, 2
.1

2
24

3,
49

04
3

(−
0.

51
, p

=
0.

61
2.

72
,2

.5
0

24
3,

12
90

5)

2.
77

,p
<

0.
01

2.
72

, 2
.1

1
24

3,
49

32
4

(1
.0

2,
p
=

0.
31

2.
72

,2
.4

8
24

3,
10

22
7)

(−
1.

19
, p

=
0.

23
2.

72
,2

.7
4

24
3,

10
71

8)

(−
1.

00
, p

=
0.

32
2.

72
,2

.6
5

24
3,

23
59

8)

(−
0.

33
, p

=
0.

74
2.

72
,2

.8
5

24
3,

26
86

)

Se
cu

ri
ty

L
ow

20
.2

7,
p
�

0.
05

2.
36

, 2
.1

2
35

04
8,

49
04

3

−3
.5

9,
p
�

0.
05

2.
36

, 2
.5

0
35

04
8,

12
90

5

25
.1

7,
p
�

0.
05

2.
36

, 2
.1

1
35

04
8,

49
32

4

5.
59

,p
�

0.
05

2.
36

, 2
.4

8
35

04
8,

10
22

7

−7
.5

5,
p
�

0.
05

2.
36

, 2
.7

4
35

04
8,

10
71

8

−8
.1

9,
p
�

0.
05

2.
36

, 2
.6

5
35

04
8,

23
59

8

(−
1.

39
, p

=
0.

17
2.

36
,2

.8
5

35
04

8,
26

86
)

St
yl

e

−1
7.

96
,

p
�

0.
05

2.
12

, 2
.5

0
49

04
3,

12
90

5

5.
66

,p
�

0.
05

2.
12

, 2
.1

1
49

04
3,

49
32

4

−6
.8

4,
p
�

0.
05

2.
12

, 2
.4

8
49

04
3,

10
22

7

−2
0.

61
,

p
�

0.
05

2.
12

, 2
.7

4
49

04
3,

10
71

8

−2
6.

18
,

p
�

0.
05

2.
12

, 2
.6

5
49

04
3,

23
59

8

−8
.3

0,
p
�

0.
05

2.
12

, 2
.8

5
49

04
3,

26
86

C
or

re
ct

ne
ss

21
.3

8,
p
�

0.
05

2.
50

, 2
.1

1
12

90
5,

49
32

4

7.
44

,p
�

0.
05

2.
50

, 2
.4

8
12

90
5,

10
22

7

−3
.5

7,
p
�

0.
05

2.
50

, 2
.7

4
12

90
5,

10
71

8

−2
.9

1,
p
<

0.
01

2.
50

, 2
.6

5
12

90
5,

23
59

8

(0
.4

0,
p
=

0.
69

2.
50

,2
.8

5
12

90
5,

26
86

)

B
ad

Pr
ac

tic
e

−1
0.

02
,

p
�

0.
05

2.
11

, 2
.4

8
49

32
4,

10
22

7

−2
3.

63
,

p
�

0.
05

2.
11

, 2
.7

4
49

32
4,

10
71

8

−3
0.

32
,

p
�

0.
05

2.
11

, 2
.6

5
49

32
4,

23
59

8

−9
.9

8,
p
�

0.
05

2.
11

, 2
.8

5
49

32
4,

26
86

M
T

C
or

re
ct

ne
ss

−1
0.

17
,

p
�

0.
05

2.
48

, 2
.7

4
10

22
7,

10
71

8

−1
0.

83
,

p
�

0.
05

2.
48

, 2
.6

5
10

22
7,

23
59

8

−4
.0

3,
p
�

0.
05

2.
48

, 2
.8

5
10

22
7,

26
86

i1
8n

(1
.2

9,
p
=

0.
20

2.
74

,2
.6

5
10

71
8,

23
59

8)

2.
46

,p
<

0.
05

2.
74

, 2
.8

5
10

71
8,

26
86

Pe
rf

or
m

an
ce

(1
.9

2,
p
=

0.
05

2.
65

,2
.8

5
23

59
8,

26
86

)

Se
cu

ri
ty

L
ow

St
yl

e

C
or

re
ct

ne
ss

B
ad

Pr
ac

tic
e

M
T

C
or

re
ct

ne
ss

i1
8n

Pe
rf

or
m

an
ce

E
xp

er
im

en
ta

l
T

he
m

at
ri

x
pr

es
en

ts
pa

ir
w

is
e

M
an

n-
W

hi
tn

ey
U

te
st

re
su

lts
be

tw
ee

n
th

e
di

ff
er

en
tb

ug
ca

te
go

ri
es

.E
ac

h
ce

ll
co

nt
ai

ns
th

e
te

st
re

su
lt

(t
he

va
lu

e
of

U
),

th
e

p-
va

lu
e,

th
e

av
er

ag
e

fo
re

ac
h

ca
te

go
ry

an
d

th
e

sa
m

pl
e

si
ze

fo
re

ac
h

ca
te

go
ry

.C
el

ls
in

br
ac

ke
ts

sh
ow

pa
ir

s
w

he
re

no
st

at
is

tic
al

ly
si

gn
ifi

ca
nt

di
ff

er
en

ce
w

as
fo

un
d.

48

