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In a democracy, it is essential that voters cast their votes independently and freely, without any improper influence. Particularly,
mechanisms must be put into place that prevent—or at least severely impede—the coercion of voters. One possible counter-
measure to coercion is revoting: after casting a vote under coercion, the voter can re-cast and overwrite her choice. However,
revoting is only meaningful as a strategy to evade coercion if the adversary cannot infer whether the voter has modified her
choice—revoting needs to be deniable, while still being publicly verifiable. We define the notions of correctness, verifiability,
and deniability for a tallying protocol which allows for revoting. We also present a protocol realizing these notions. To the best
of our knowledge, our solution is the first to achieve both deniability and public verifiability without asking information about
the voter’s previously-cast ballots for revoting. A seemingly competitive line of work, started by the well-known work of Juels,
Catalano, and Jakobsson, uses fake credentials as a strategy to evade coercion: the voter presents to the adversary a fake secret
for voting. In this work, we extend Juels et al.’s work to achieve deniable revoting. Their solution also allows for revoting,
however not deniably. Our solution supports fake credentials as an opt-in property, providing the advantages of both worlds.

1. INTRODUCTION
Free elections are the backbone of a democracy. In traditional elections, voters fill out their ballot in
a voting booth to ensure the privacy of the vote. Because traditional presence elections are tedious,
there is a significant interest in carrying out elections over the Internet. It seems impossible to give the
same privacy guarantee that a voting booth does in an online setting. Further, advances in consumer
electronics even call the privacy of the voting booth into question. To sell their vote, voters can easily
record their choice with their smartphone [Post 2010; Benaloh 2013].

To mitigate these problems, several solutions have been developed to make elections resistant
against such attacks. Fake credentials [Juels et al. 2005] and revoting [Post 2010; Volkamer and
Grimm 2006] are two of these. While fake credentials successfully disable the adversary from
obtaining a voter’s credential by coercion, they are contradictory to a meaningful response whether
the ballot has been cast successfully. Revoting, on the other hand, allows for a meaningful response.

The idea behind revoting is that, if a voter is allowed to overwrite her vote arbitrarily many times,
she effectively cannot be coerced. We stress, however, that this proposed revoting must be perfectly
deniable—no party, including all servers, must be able to tell whether a coerced voter has evaded
coercion by revoting.

As a side-effect, deniable revoting is applicable to elections which allow the voter to change her
mind after casting a legit vote. An example for this is delegated voting [Green-Armytage 2014; Miller
1969], in which the voter can delegate her vote to a so-called proxy, who then votes in her stead. She
can later overwrite this delegation with a new delegation or by casting a vote by herself.

We investigate deniable revoting as a strategy for evading coercion. We build upon the well-known
work of Juels, Catalano, and Jakobsson [Juels et al. 2010]. Specifically, we adapt their definitions of
correctness and coercion-resistance to include revoting and its deniability. While their construction
enables voters to re-cast their vote, their security model does not account for revoting as a strategy
to evade coercion. Indeed, their construction allows the adversary to observe whether a ballot is
superseded. We present a tallying protocol which allows voters to deniably re-cast their votes, thus
making revoting a viable strategy to evade coercion. The macrostructure of our protocol is the same
as that of Juels et al., hence it is compatible with fake voter credentials. To facilitate a simpler
exposition, we do not investigate the possibility of offering both evasion strategies simultaneously.

Existing protocols that allow revoting either do not achieve both deniability and public verifiability
at the same time, or require the voter to remember some information about previous votes [Kutyłowski
and Zagórski 2007]. To the best of our knowledge, we are the first to propose a publicly verifiable
method for enabling deniable revoting without requiring the voter to save state between votes.
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There is one caveat to the revoting approach. If a coercer observes the voter’s behavior until after
the polls close, the voter cannot re-cast her vote and thus revoting does not work as a strategy for
evading coercion. This caveat applies to the strategy in general and thus cannot be remedied by
any protocol. For this reason, our adversarial model does not allow the adversary to observe the
voter’s behavior indefinitely—he must give up his control before the polls close. On the other hand, a
coerced voter does not employ any evasion strategy during adversarial observation—she submits to
the adversary’s instructions completely.

1.1. Our Contribution
We investigate revoting as a strategy for evading coercion. To this end, we extend the well-established
notions of correctness, verifiability, and coercion-resistance by Juels, Catalano, and Jakobsson [Juels
et al. 2010] to take deniable revoting into account. Juels et al.’s approach also allows voters to re-cast
their vote, but not as a strategy for evading coercion. In fact, an adversary can learn whether a specific
ballot cast under coercion is superseded by a more recent one. Our work improves upon the method
of Juels et al. of eliminating duplicates such that no adversary can tell how often (and when) a
particular voter casts her vote. We present a method for counting votes which ensures the deniability
of revotes, and prove the correctness of our protocol as well as the deniability of revoting. This work
seeks to serve as a proof of concept and does not claim to provide an efficient solution.

1.1.1. Juels, Catalano, and Jakobsson’s Approach. Let us briefly recap the approach of Juels,
Catalano, and Jakobsson. To cast a vote, voters post their ballot on a public bulletin board, together
with proofs of knowledge of their credential and the validity of their choice. After the voting phase,
the tallying authority computes the tally in five steps:

(1) Check proofs: The tallying authority checks all proofs associated with the ballots and discards
ballots with invalid proofs.

(2) Remove duplicate ballots: At most one ballot per credential is kept. To identify duplicate ballots,
plaintext equivalency tests (PETs) are employed on the encrypted voter credentials. For a pair of
ballots with identical voter credentials, a pre-determined policy decides which ballot is kept.

(3) Shuffle: The remaining ballots are shuffled.
(4) Check credentials: The tallying authority discards ballots with invalid voter credentials.
(5) Tally: All remaining valid ballots are decrypted and counted.

This solution uses fake credentials as a strategy to evade coercion. Revoting is supported in the
sense that double votes are handled. However, voters cannot plausibly deny having revoted—this is
not the aim of the construction. Imagine an adversary forcing a voter to cast a certain ballot in his
presence. Since the ballots are only shuffled (Step (3)) after duplicates have been removed (Step (2)),
the adversary can easily monitor if his observed ballot is deleted. This way, he can deduce that the
coerced voter has later cast a ballot with the same credential. This does not impose a problem in
Juels et al.’s approach—the observed ballot was cast with a fake credential, and does not need to
be superseded to evade coercion. To employ revoting as a strategy for evading coercion however,
the sorting process must ensure its deniability. A first step is to shuffle the list of ballots before
removing duplicates. This conceals the chronological order of ballots, however. For two ballots cast
with the same credential, it cannot be determined anymore which one was cast more recently. We
devised a method of an “encrypted labeling” which allows voters to privately re-cast their ballot,
while preserving enough information about the chronological order of ballots.

1.2. Achieving Deniable Revoting
In this section we sketch the challenges of deniable revoting, and how to overcome them, in more
detail. For revoting to be suitable as a strategy for evading coercion, the voter must be able to deniably
do so. Intuitively, we say a voter can deniably re-cast her vote if no adversary can, by his observations,
tell whether she did. At the same time, we still require the tally to be computed correctly. In particular,
at any time during the voting period, for each participating voter who has already cast a vote, there
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is exactly one valid ballot (i.e. one ballot which counts as long as it is not superseded), so a re-cast
ballot must invalidate this one ballot with matching voter credentials, and become the new valid
ballot corresponding to this credential. These requirements impose several privacy challenges on the
tallying process.

More concretely, the deniability requirement of the revoting process implies that the adversary
must not be able to figure out how often a certain voter has re-cast her ballot. Further, he must not
even infer which of the voters did revote at all. Also, if he can tell whether any particular ballot is
part of the final tally, revoting is not deniable. Nevertheless, to maintain the universal verifiability of
the tally, the correctness of each tallying step must be transparent. To give an intuition for the subtle
challenges of authenticating re-castable ballots, we describe two exemplary attacks.

For the first example recap the attack described in the former section. There, the adversary is
forcing the voter to cast a ballot in his presence. He can then observe the ballot appearing on the
bulleting board right after. If this particular ballot is deleted or marked as invalid in the tallying
process, he can deduce that his coercion attempt was not successful. As mentioned above, we employ
encrypted labelling and re-encryption mixes after the casting phase to solve this problem.

While Step (2) in Juels et al.’s construction (see Section 1.1.1) does hide the identity of voters
with duplicate ballots, it leaks information about the number of removed duplicates per credential.
Consider the following attack, which is similar to the “1009 attack” described by Warren Smith [Smith
2005]: The adversary forces the voter to vote, in his presence, a number of times no other voter is
likely to vote, e.g. exactly 1009 times. During the tallying phase he then verifies that the tallying
authority indeed identifies 1009 duplicate ballots for some credential. This becomes fatal in the
absence of fake credentials1: the adversary can be sure that the coerced voter did not revote after
casting her vote in the adversary’s presence. Consequently, a tally which supports deniable revoting
must even hide the number of revotes any voter has cast. We achieve this by anonymously checking
ballots two-by-two for matching voter credentials, to avoid grouping ballots with the same credential.

As we detailed above, the ballots on the bulletin board must be shuffled before discarding super-
seded ballots. Because the chronological order of ballots is not retained in the shuffling process,
we “memorize” the information whether a ballot was superseded with an encrypted label: Before
shuffling, for each ballot we calculate an encrypted value oi which is computed in a verifiable way
by comparing voter credentials pki/pk j between the current ballot bi and each more recent ballot b j.
The ballots themselves are not shuffled until oi is computed for all ballots. Only then we shuffle the
encrypted choice together with the oi tag.

12 = 81 · 53 · 87 · 48 mod N
↓ ↓ ↓ ↓

1 = 1 · 1 · 1 · 1 mod N
(a) Ballot is not superseded. No factor equals 1.

25 = 81 · 53 · 1 · 48 mod N
↓ ↓ ↓ ↓

139 = 1 · 1 · 139 · 1 mod N
(b) Ballot is superseded once. One factor equals 1.

Fig. 1: One cannot tell from a product if one of the factors was = 1. To exploit the homomorphic
property of the encryption, we swap the encryption of an arbitrary number with an encryption of a 1
and vice versa. Now one can tell from the product whether one of the factors was �= 1.

We briefly sketch our construction. To make the duplicate test private, we mark each ballot with
the encrypted information oi whether there is another ballot that supersedes it. We compute oi by
comparing each ballot with each subsequent ballot. To do so in a publicly verifiable and private
manner, we run an encrypted plaintext equivalency test (EPET) on the credentials. An EPET receives
two ciphertexts as input, and outputs an encryption of a 1 if the contained plaintexts are equal, and
the encryption of an arbitrary number otherwise. We compare ballot i with each subsequent ballot

1As Smith described, this attack is fatal for fake credentials, too: if the adversary can infer that a heap with 1009 ballots is
discarded because of an invalid credential, the adversary knows the credential presented to him was a fake one.
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by comparing its voter credential Enc(pki) to the credentials Enc(pki+1), Enc(pki+2), etc. using an
EPET.

A ballot is superseded if and only if its voter credential is equal to that of at least one newer ballot.
We seek to exploit the homomorphic property of the encryption to aggregate the comparison results
without revealing the result of any single comparison. A single EPET result is the encryption of
a 1 iff the voter credentials of the ballots match. Thus, our goal is to determine for a number of
EPET results whether at least one of them encrypts a 1. We cannot exploit the homomorphy directly,
since a factor of 1 does not change the product (see Figure 1). As a remedy, we “convert” the values:
We swap an encryption of a 1 with an encryption of an arbitrary number and vice versa. Now the
product oi tells us whether at least one factor is not equal to 1—if so, oi �= Enc(1) and the ballot is
superseded, otherwise oi = Enc(1) and the ballot is counted. We stress that the content of oi is hidden
by the encryption. Before checking oi to potentially remove a ballot, the ballot’s connection to its
appearance on the bulletin board on the time of casting is broken by shuffling and re-encryption.

Our protocol results in a list of ballots containing the newest, valid, encrypted choice of each
voter, and security is proven up to this point. From there, ballots can be tallied in an arbitrary way,
using standard techniques like decryption mixes or homomorphic tallying, depending on the form of
the choice. Security in combination with our protocol is then given by the security of the tallying
procedure. As a consequence, our protocol supports arbitrary election formats, including single
transferable vote (STV) or write-in candidates. However, our security definitions do not take into
account information which is leaked by the tally result itself, which is possibly published in the form
of decrypted votes. Information leaks like names of write-in candidates or a preference order can
impede a voter’s privacy. This problem is shared by any voting scheme which publishes the tally
result or decrypted ballots, and needs to be accounted for separately by the tallying procedure.

1.3. Authentication for Coercion-Resistant Voting Schemes
All voting schemes use some method to authenticate voters. Even in elections where everybody
is eligible to vote, authentication is necessary to make sure that of each voter only one vote is
counted. Voter authentication can—in principle—follow any of three paradigms: authentication using
something you know, something you have, or something you are. There are two properties of the
authentication mechanism which are of grave importance for any voting scheme, regardless of the
paradigm used: First, the adversary must not be able to impersonate the voter (e.g., by learning her
secret key). Second, the adversary must not be able to prevent the voter from authenticating (e.g.,
by stealing her authentication token). We call an authentication inalienable when both properties
hold. They are necessary conditions for the incoercibility of the voter. After a ballot is cast however,
authentication and thus its inalienability lose their relevance. In an election which offers revoting,
ballots are only ultimately cast when the polls close. Hence, any voting scheme that offers revoting
requires the inalienability of the authentication until the polls have closed.

Revoting Versus Fake Credentials. Fake credentials and revoting are complementing strategies.
While handing out fake credentials protects the confidentiality of the voter’s true credentials, re-
casting ballots “undoes” an adversary’s coercion attempts. If the adversary cannot learn whether the
voter has re-cast her ballot, revoting is a valid strategy for evading coercion (see Section 1.2).

A voting scheme can only support fake credentials if it does not provide any feedback on whether
the voter authenticated successfully. Consequently, the voter does not learn whether her ballot was
cast correctly. As Juels et al.’s construction uses fake credentials as a countermeasure against coercion,
it has this property. Since our construction is an extension of theirs, their strategy for producing
fake keys also works for our scheme. On the other hand, to give feedback about the success of
authentication, one can publish the list of all registered voters and their public keys before the voting
period—eliminating fake credentials as a strategy for evading coercion.

The fake credential strategy is an effective means to make the authentication inalienable, thus
helping to achieve coercion-resistance. For the strategy to work however, the adversary must not
take total control over the voter’s actions, even if only temporarily. On the other hand, the revoting
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strategy requires an inalienable authentication, but achieves a form of coercion-resistance that is
robust even against temporary-but-perfect corruption.

1.4. Organization of this Paper
After discussing related work in Section 1.5, we introduce preliminaries and our assumptions in
Section 2. In Section 3, we adapt the security notions of Juels et al. [Juels et al. 2010] to model
deniable revoting. We present our voting scheme and prove its security in Section 4.

1.5. Related Work
The importance, advantages and challenges of revoting were discussed by Volkamer and Grimm
[Volkamer and Grimm 2006], as well as by Post [Post 2010], though no solution for deniable revoting
was given. Several internet voting schemes allow for revoting, not necessarily only as a defense
against coercion. Neither of the voting schemes known to us uses a revoting strategy which is
both deniable and publicly verifiable, while not requiring the voter to save state between votes. For
example, in Kutyłowski and Zagórski’s scheme [Kutyłowski and Zagórski 2007], in order to revoke
her vote, the voter must reproduce the random challenge from the casting protocol. They further
do not provide a formal proof of coercion-resistance for their scheme. In a similar vein, Spycher et
al. [Spycher et al. 2010] propose a hybrid voting system where the voter can overrule her online vote
in person. To this end, she must produce a re-encryption of the ballot formerly posted.

The election of the university president of the Université Catholique de Louvain in 2008 was
conducted using an adapted version of Helios [Adida et al. 2009]. Because of the election’s low
risk of coercion attempts, revoting was supported mostly for convenience. Newer ballots of a voter
substituted her older ballots on the bulletin board, so revoting was not deniable. The voting scheme
designed for the 2011 local government elections of Norway [Gjøsteen 2010] supports non-deniable
revoting. Verification is done by auditors, who can see the number of votes of the same voter. The
Riigikogu Election Act demands the possibility of revoting for the Estonian election [Riigikogu
2002], but to the best of our knowledge, no deniable solution is offered [Maaten 2004].

As described in more detail above, the work of Juels et al. [Juels et al. 2005] supports revoting in
principle, but since their work concentrates on fake voting credentials as a strategy to evade coercion,
no deniable revoting strategy is proposed. Fake voting credentials are an important alternative
approach for achieving coercion-resistance. After the work of Juels et al. [Juels et al. 2005] and its
implementation Civitas [Myers et al. 2008], two password-based voting schemes, Selections [Clark
and Hengartner 2011a; 2011b] and Cobra [Essex et al. 2012], were published. They use panic
passwords as fake credentials, which can easily be created by a human. Selections is proven secure
in an adapted version of the model introduced by Juels et al. [Juels et al. 2010]. Verifiable revoting
is possible in both Selections and Cobra, but the number of votes cast with the same credential,
or the fact that a certain ballot has been overwritten, is not hidden. Efficiency improvements of
Juels et al.’s voting scheme [Juels et al. 2010] were proposed by Arajo et al. [Araújo et al. 2010],
using another form of fake credential, and by Smith [Smith 2005], who introduced a faster removal
procedure of duplicate ballots. Revoting is supported, but not deniable. The fake credential approach
overcomes the problem of being coerced shortly before the end of the voting phase. However, the
voter gets no sound confirmation upon vote casting. Especially human memory based systems like
panic passwords pose the problem of accidentally using a fake credential without noticing.

By introducing the caveat coercitor [Grewal et al. 2013], Grewal et al. relaxed the requirement of
coercion-resistance to coercion-evidence: a voter can be coerced, but the coercion is detectable. Their
work addresses the problem of silent coercion, where the voter loses her credential to the adversary
without noticing. With their approach, changing one’s mind and overwriting a legit ballot is not
possible (it would be recognized as a coercion attempt). Our work, in contrast, does not investigate
the problem of silent coercion.

Various definitions of coercion-resistance and verifiability of e-voting schemes exist in the lit-
erature, see for example [Moran and Naor 2006; Delaune et al. 2009; Küsters et al. 2012; Unruh
and Müller-Quade 2010; Canetti and Gennaro 1996] for an incomplete list. Several of them are
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also applicable to our voting scheme. However, because our work aims to extend the work of Juels
et al. [Juels et al. 2010], we stay close to their model for better comparability.

2. MODEL AND ASSUMPTIONS
2.1. Preliminaries and Notation
We give an overview of the notation we use in the definitions and in our protocol.

Our protocol is divided into five phases: A setup phase, a registration phase, a publication phase,
the voting phase, and finally a tallying phase. We describe the phases in detail in Section 4.3. The
tallying authority gets a key pair (PKT , SKT ) during the setup phase. The secret key SKT is shared
among the servers which make up the tallying authority. In the registration phase a registrar R creates
a public key secret key pair (pki, ski) for each voter.

Let bi denote a ballot which is published on a bulletin board BB , where i ∈ {1, . . . ,n}, let L[i]
denote the ith entry of a list L, and let tsi denote the point in time when bi has been published.
The ballot represents the voter’s choice βi ∈ C = {c1, . . . ,cnC}. We describe the ballot in detail in
Section 4.3. Overall nV voters participate in the election. Let nA denote the number of voters which
are completely controlled by the adversary A . Considering the adversary tries to coerce exactly one
voter, there are nU = nV −nA −1 voters which add noise to the tally X. The noise (choices of these
voters) are defined by the distribution DnU ,nC which we describe in Section 3.

We use different functions of building blocks like encryption Enc(x), decryption Dec(c), verifiable
shuffles Shuffle(L), (encrypted) plaintext equivalence tests (E)PET, and more. We describe them in
Section 4.1 and Section 4.2.

In the experiments Expcorr
ES,A , Expver

ES,A , Exprevoting-c-resist
ES,A ,H , Exprevoting-c-resist-ideal

ES,A ,H we use security
parameters k1 for the registration, k2 for the voting function, and k3 for the tallying process.

2.2. Attack Model
The adversary may corrupt a minority of the servers forming the tallying authority. He may also
corrupt a number of voters and act in their place. Then, the adversary selects one (uncorrupted) voter
he tries to coerce. In contrast to the model of Juels et al., we allow the coercion to be perfect—the
coerced voter does exactly as told by the adversary. The adversary does not learn the voter’s secret
key, however. (See Section 2.3 for details on this assumption.)

Further, we require all adversarial control of the coerced voter, including direct observation, to
end before the polls close. More concretely, we enable the coerced voter to re-cast her vote in secret.
Intuitively, if the adversary cannot infer whether the coerced voter has re-cast her vote after his
coercion attempt, we say the scheme offers deniable revoting. Clearly, revoting offers no protection
against adversaries who observe or control the voter until after polls have closed.

2.3. Assumptions
We rely on various assumptions for our construction.

— Voter List. We assume an accepted voter list, i.e., there is a general agreement on who is allowed
to vote.

— Bulletin Board. As is common for electronic voting schemes, we assume a publicly accessible
append-only bulletin board. Anyone can read and append to the bulletin board, but no party can
remove data from it.

— Authentic Timestamps. To ensure the correct order of votes, we rely on correct timestamps.
Without loss of generality, we further assume that timestamps are unique.

— Anonymous Channel for Voters. To cast a vote, voters post their ballot to the bulletin board during
the casting phase. For the votes to remain anonymous, we assume an anonymous channel the
voters have access to. As stated by Juels et al. [Juels et al. 2010], anonymous channels can be
realized with mix-nets (see Section 4.1.1).

— Inalienable Secret Credentials. In our construction, with each voter we associate a secret that she
uses to authenticate her vote. The secret is used as a signature key for ensuring the integrity of
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the ballot. Also, the corresponding public key is contained on the ballot in encrypted form. In a
practical realization of our scheme, one would have to take special precautions to guarantee that
the adversary can neither learn the secret credential nor deny the voter access to it. Realizing this
assumption is outside the scope of this work. However, we point out that the assumption can be
argued for: The election secret could be stored on a tamper-proof device that also serves a different
function (e.g. a federal identity card), such that the voter cannot reasonably be without it. Voters
would have reservations against handing out such a device (see also Section 1.3).

3. SECURITY NOTIONS
To model voter behavior when one is allowed to re-cast one’s vote, we define DnU ,nC to be a
distribution over all vectors over all (bounded) series of all candidates, including abstentions and
invalid votes. Let φ denote the null ballot (abstention) and λ an invalid ballot. Then DnU ,nC is
a distribution over vectors ((β1) j ,(β2) j , . . . ,(βnU ) j),βi ∈ (C∪{φ,λ}). For technical reasons, the
length of the vote series is bound by a constant, lest the length of the voter’s choices exceeds the
runtime of all machines involved. In practice, one can imagine this bound to be the number of
nanoseconds between the start of the voting period and its end, for example.

Further, we define the number of uncertain votes, i.e. votes cast by voters not un-
der adversarial control or coercion, as nU := nV − nA − 1. Let ← denote the assign-
ment operation, and ⇐ the append operation. For any experiment Expx

A , where x ∈
{corr,ver,revoting-c-resist,revoting-c-resist-ideal}, we define the adversary’s success probability as
Succx

A(k1,k2,k3,nV ,nC) := Pr[Expx
A(k1,k2,k3,nV ,nC) = 1]. All algorithms are implicitly assumed

to be PPT, i.e., run in probabilistic polynomial time for some fixed polynomial. A function f (k) is
negligible in parameter k if for all positive integers c there is an lc such that f (k)< k−c for all k > lc.

3.1. Correctness
Our notion of correctness follows that of Juels et al. We model voters not as posting one ballot, but a
series of ballots. The adversary may corrupt a number of voters and vote in their place. We call a
tally correct when, regardless of the behavior of corrupted parties, the last ballot, and only the last
ballot, of each voter is counted.

See Figure 2 for Experiment Expcorr
ES,A . A voting protocol is correct if Succcorr

ES,A(k1,k2,k3,nV ,nC)
is negligible in k1,k2,k3 for any adversary A .

Experiment Expcorr
ES,A (k1, k2, k3, nV , nC)

1 {(ski, pki) ← register(SKR , i, k1)}nV
i=1;

2 V ← A({pki}nV
i1 ,“choose controlled voter set”);

3 {βi, j}i�∈V ← A(“choose votes from uncontrolled voters”);
4 BB ⇐ {vote(ski,PKT ,BB ,nC,βi,0,k2)}i�∈V ;
5 (X,P) ← tally(SKT ,BB,nC,{pki}nV

i1 ,k3);
6 BB ⇐ A(“cast ballots”,BB)
7 (X′,P′) ← tally(SKT ,BB,nC,{pki}nV

i1 ,k3);
8 if verify(PKT ,BB,nC,X′,P′) = 1 and ({βi,0 �⊂ 〈X′〉 or |〈X′〉|− |〈X〉|> |V |) then

output 1;
else

output 0;

Fig. 2: Experiment Expcorr
ES,A . A tallying scheme is correct if the last, and only the last, vote of

legitimate voters is counted.
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3.2. Verifiability
We adopt Juels et al.’s notion of verifiability. See Figure 3 for Experiment Expver

ES,A . A voting protocol
is verifiable if Succver

ES,A(k1,k2,k3,nV ,nC) is negligible in k1,k2,k3 for any adversary A .

Experiment Expver
ES,A (k1, k2, k3, nV , nC)

1 {(ski, pki) ← register(SKR , i, k1)}nV
i=1;

2 (BB ,X,P) ← A(SKT ,{(ski, pki)}nV
i=1,“forge election”);

3 (X′,P′) ← tally(SKT ,BB ,nC,{pki}nV
i1 ,k3);

4 if X �= X′ and verify(PKT ,BB ,nC,X,P) = 1 then
output 1;

else
output 0;

Fig. 3: Experiment Expver
ES,A . A tallying scheme is verifiable if A is not able to state a wrong tally

with a correct proof.

3.3. Deniability of Revoting
Similarly to how Juels, Catalano, and Jakobsson model coercion-resistance, we model the deniability
of revoting as two experiments following the “real-world-ideal-world” paradigm: Even in a “flawless”
voting scheme some information leaks—the total number of cast ballots, the tally, and possibly even
who participated in the vote. When measuring the advantage of the adversary, we seek to factor out
“unavoidable” leaks of information. To this end we define an ideal experiment (Exprevoting-c-resist-ideal

ES,A ,H )

that captures all such leaks. The real experiment (Exprevoting-c-resist
ES,A ,H ) captures the concrete voting

protocol. We then examine the difference of the probability of success of an adversary in the ideal
world versus an adversary in the real protocol.

In the “real world” experiment, an election is carried out as specified by the protocol. The adversary
can corrupt and thus completely control a set of voters. We model this by handing the secret keys of
corrupted voters to the adversary. Uncorrupted voters cast their ballots according to the distribution
DnU ,nC . Further, the adversary may select one (uncorrupted) voter as his coercive target. As in the
original definition by Juels et al., an extension to a simultaneous coercion of more than one voter
is straightforward. The voter does not carry out an evasion strategy in our experiment, i.e. the
adversary receives the coerced voter’s secret key and may cast votes in the voter’s stead. (Note
that we actually assume the adversary cannot learn the coerced voter’s secret key in reality (see
Section 2.3). We model time-limited, perfect coercion by giving the adversary access to the secret
key, and not accepting further output later.) Then, a bit b is flipped. If b = 0, the coerced voter evades
coercion by revoting. If b = 1, the voter submits to the coercion, i.e., does nothing. After all votes are
cast, a tally and corresponding proofs are computed and handed to the adversary. The adversary then
guesses b. See Figure 4 for Experiment Exprevoting-c-resist

ES,A ,H .
In the ideal experiment, we make use of a function ideal-tally, which represents an ideal

tallying process. Its working depends on the challenge bit b. If b = 0 (voter evades coercion) it counts
the coercive target voter’s vote. Otherwise (voter submits to coercion) it counts the adversary’s choice
for the coercive target voter’s vote. Further, the ideal adversary is not supplied with the contents of
the bulletin board, but only its length l, as well as the election result X. If the coercive target voter
evades coercion, the reported length of the bulletin board is increased by the length of one ballot.
(Note that the overall number of revotes can always be inferred if the number of cast ballots and the
number of counted ballots is visible.) See Figure 5 for Experiment Exprevoting-c-resist-ideal

ES,A ,H .
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Experiment Exprevoting-c-resist
ES,A ,H (k1, k2, k3, nV , nA, nC)

1 V ← A(voter names,“control voters”);
2 {(ski, pki) ← register(SKR , i,k1)}nV

i=1;
3 ( j,β) ← A({ski}i∈V ,“set target voter and vote”);
4 if |V | �= nA or j �∈ {1,2, . . . ,nv}−V or β �∈ {1,2, . . . ,nC}∪ /0 then

output 0;
5 BB ⇐ vote({ski}i�∈V , PKT , nC, DnU ,nC , k2);
6 BB ⇐ A(sk j, BB, “cast ballots”);
7 b ∈U {0,1};
8 if b = 0 then

BB ⇐ vote({sk j}, PKT , nC, DnU ,nC ,k2);
9 (X,P) ← tally(SKT , BB, nC, {pki}nV

i1 ,k3);
10 b′ ← A(X, P, BB, “guess b”);
11 if b′ = b then

output 1;
else

output 0;

Fig. 4: Experiment Exprevoting-c-resist
ES,A ,H . This experiment describes the possibilities of an adversary A

in the “real world”, including the tally result.

Experiment Exprevoting-c-resist-ideal
ES,A ′,H (k1, k2, k3, nV , nA, nC)

1 V ← A ′(voter names, “control voters”);
2 {(ski, pki) ← register(SKR , i, k1)}nV

i=1;
3 ( j,β) ← A ′(“set target voter and vote”);
4 if |V | �= nA or j �∈ {1,2, . . . ,nv}−V or β �∈ {1,2, . . . ,nC}∪ /0 then

output 0;
5 b ∈U {0,1};
6 BB ⇐ vote({ski}i�∈V , PKT , nC, DnU ,nC , k2);
7 BB ⇐ A ′(sk j, |BB|, “cast ballots”);
8 l ⇐ |BB |;
9 if b = 0 then

l ⇐ |l|+1;
10 (X,P) ← ideal-tally(SKT , BB , nC, {pki}nV

i1 , k3, b);
11 b′ ← A ′(X, l, “guess b”);
12 if b′ = b then

output 1;
else

output 0;

Fig. 5: Experiment Exprevoting-c-resist-ideal
ES,A ′,H . This experiments describes the possibilities of an adversary

A ′, based on the tally result. The success of A ′ normalizes the success of A .

We define the advantage of the adversary A as Advrevoting
A (k1,k2,k3,nV ,nA,nC) :=

Succrevoting-c-resist
ES,A ,H (k1,k2,k3,nV ,nA,nC)−Succrevoting-c-resist-ideal

ES,A ,H (k1,k2,k3,nV ,nA,nC).

A voting scheme features deniable revoting if Advrevoting
A is negligible in k1,k2,k3 for any adversary.
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4. A COERCION-RESISTANT VOTING PROTOCOL WITH DENIABLE REVOTING
In this section, we first introduce several building blocks used in our protocol. We then describe our
construction and prove its security according to the definitions introduced in the previous section.

4.1. Black-box Ideal Functionalities
We use several primitives as blackboxes and assume the existence of an efficient realization. Though
we suggest efficient instantiations where possible, we focus on our general approach for achieving
deniable revoting. We see our work as a proof of concept.

4.1.1. Verifiable Secret Shuffle. A verifiable shuffle computes a function Shuffle(C) �→ (C′,P),
which gets as input a list C := [c1, . . . ,cn] of randomizable ciphertexts. Its output consists of a
list C′ := [c′π(1), . . . ,c

′
π(n)], where π is a random permutation and c′π(i) is a re-encryption of ci for

i = 1, . . . ,n, and a proof P of correctness of the shuffle.
We assume our shuffles are secret and verifiable: secrecy implies it is infeasible to link an input

ciphertext ci to its corresponding output ciphertext c′π(i) better than guessing, and verifiability requires
a proof P that C is indeed a permutation (with re-encryption) of C′.

We further assume our shuffles are distributable among several servers, and speak of a mix-net if a
shuffle is distributed. Examples for verifiable secret shuffles and mix-nets are [Neff 2001; Sako and
Kilian 1995; Groth 2002; Khazaei et al. 2012; Abe and Hoshino 2001; Golle et al. 2004].

4.1.2. EUF-CMA Secure Digital Signatures. In our voting scheme, voters use unforgeable signa-
tures for proving their eligibility. A signature scheme (KeyGen,Sign,Verify) is called existentially
unforgeable against adaptive chosen message attacks (EUF-CMA) [Goldwasser et al. 1988], if
Pr[(vk,sk)← KeyGen(1k),(σ,m)← AOSign(.) (vk) : Verify(vk,σ,m) = 1] is negligible in security pa-
rameter k, where OSign(.) is a signature oracle which on input of a message mi ouputs a valid signature
σi = Sign(sk,mi) with Verify(vk,σi,mi) = 1, and m has never been queried to OSign(.). We require
our signatures to allow for an efficient zero-knowledge proof of signature knowledge.

4.1.3. Non-Interactive Zero-Knowledge Proofs (of Knowledge). We make use of Non-Interactive
Zero-Knowledge Proofs (NIZK) and non-Interactive Zero-Knowledge Proofs of Knowledge
(NIZKPoK) in our construction. NIZK and NIZKPoK exist for arbitrary NP statements. Correct de-
cryption can be proven by using the Chaum-Pedersen-Protocol [Chaum and Pedersen 1993] as a proof
of logarithm equivalence. Logarithm knowledge can be proven with the Schorr-protocol [Schnorr
1991]. A proof of signature knowledge was introduced by Camenisch et al. [Camenisch and Stadler
1997]. Structure-preserving signatures [Abe et al. 2010] with Groth-Sahai proofs [Groth and Sahai
2008] are an alternative that does not rely on a random oracle.

4.2. Building Blocks
4.2.1. Modified Elgamal Encryption (m-Elgamal). M-Elgamal is a modification of the Elgamal

encryption scheme [Elgamal 1985], used by Juels et al. [Juels et al. 2010]. Given a multiplicative
cyclic group G of prime order p in which the decisional Diffie-Hellman problem is hard, and
generators g1,g2 ∈ G, for key generation choose random x1,x2 ∈ Zp, and output secret key (x1,x2)
and public key y := gx1

1 gx2
2 . To encrypt a message m with public key y, choose r ∈ Zp at random, and

output the ciphertext c = Enc(m,y) := (gr
1,g

r
2,y

rm). To decrypt a ciphertext c = (A,B,C) with secret
key (x1,x2), compute m = Dec(c,(x1,x2)) := A−x1B−x2C. To simplify notation, we write Enc(m)
or Dec(c) if the keys are clear from context. Decryption can be distributed using the construction
of Cramer et al. [Cramer et al. 1997]. Ciphertexts created with m-Elgamal are multiplicatively
homomorphic and randomizable by multiplying with an encryption of 1. A proof of encryption
of a certain plaintext can be achieved by publication of the encryption randomness followed by
randomization. Correct decryption can be proven with the Chaum-Pedersen-protocol [Chaum and
Pedersen 1993].

https://www.usenix.org/jets/issues/0302


36

USENIX Journal of Election Technology and Systems (JETS)

Volume 3, Number 2 • August 2015

www.usenix.org/jets/issues/0302

4.2.2. Plaintext Equality Test. Plaintext equality tests (PET) were introduced by Juels et al. [Jakobs-
son and Juels 2000; Juels et al. 2010]. They decide whether two ciphertexts contain the same plaintext.
We denote this by a function Pet(c1,c2, t) �→ (b,Π) which gets as input two ciphertexts c1 and c2 and
a decryption trapdoor t. Its output is a bit b with b = 1 if c1 and c2 contain the same plaintext, and
b = 0 otherwise, as well as a proof Π of correctness. In our protocol, we perform computations on
encrypted PET results. We define encrypted plaintext equality tests (EPETs) denoted by a function
Epet(c1,c2) �→ (c,Πc) which outputs an encryption of 1 if c1 and c2 contain the same plaintext, and
an encryption of a random number, if the plaintexts are different, as well as a proof Πc of correctness.
EPETs can be computed without a trapdoor. We require PETs to be distributable.

(Encrypted) Plaintext Equality Test for Homomorphic Encryption. Juels et al. [Jakobsson and
Juels 2000] introduced a plaintext equality test for Elgamal encryption. We generalize their result to a
PET for multiplicatively homomorphic encryption which can also be used as an EPET. Instantiating
it with Elgamal or m-Elgamal allows a distributed execution of the PET.

Let Enc denote a multiplicatively homomorphic encryption function, i.e., Enc(m1) ·Enc(m2) =
Enc(m1 ·m2), and Dec its decryption function. We can perform a PET on two ciphertexts c1 =
Enc(m1) and c2 = Enc(m2) for plaintexts m1 and m2 as follows:

Algorithm Epet(c1,c2): On input of two ciphertexts c1 and c2, choose r at random and compute
cdi f f := (c1/c2)

r with a NIZKPoK Πc of an r such that cdi f f = (c1/c2)
r, for example by using the

Chaum-Pedersen-protocol [Chaum and Pedersen 1993]. Exploiting the homomorphic property of the
encryption, we have cdi f f = (c1/c2)

r = Enc((m1/m2)
r) = 1r = 1 if m1 = m2 (or r ≡ 0 mod Ord(G),

see below). By outputting cdi f f and the proof Πc, this scheme can be used as an EPET.
Algorithm Pet(c1,c2, t): To make a PET out of the EPET, first compute (cdi f f ,Πc) := Epet(c1,c2),

then decrypt cdi f f using decryption key t, with a proof Πd of correct decryption. Output 1 if
Dec(cdi f f ) = 1, and 0 otherwise, as well as the proof Π := (Πc,Πd). If m1 �= m2, cdi f f is a random
number because of the mask r, and can be revealed in order to prove correctness of the result. Also,
if it is not clear from the form of cdi f f that r �= 0 mod Ord(G), r can be opened if Dec(cdi f f ) = 1.

4.3. Our Construction
We divide elections into five phases: setup, registration, setup publication, voting, and tallying.

(1) Setup. The tellers create a joint public encryption key PKT and a shared secret decryption key
skT for threshold decryption for the homomorphic encryption scheme m-Elgamal introduced in
Section 4.2.1. Let Enc(.) denote its encryption function.

(2) Registration. Each voter Vj obtains their credential for voting, i.e., a key pair (pk j,sk j) for
an EUF-CMA secure signature scheme (see Section 4.1.2). We assume that an efficient non-
interactive zero-knowledge proof of knowledge of a signature exists for this signature scheme.
The public verification key obtained here also acts as identification of the voter. For each voter, an
entry (ID,Enc(pk j)) is stored in a List L0, where ID encodes the voter’s name. The encryption
Enc(pk j) is computed using the teller’s public key PKT .

(3) Setup publication. A candidate-slate C = (c1, . . . ,cl) is published on the public bulletin board. It
contains the electable candidates c1, . . . ,cl . The list L0 is published and serves as a list of eligible
voters and their encrypted public verification keys. The public key PKT of the tellers is published
as well.

(4) Voting. Voters create ballots and submit them to the bulletin board. A ballot bi is a three-tuple as
explained below. Encrypted parts are encryptions under the public key of the tellers:

bi = (Enc(βi),Enc(pki), tsi), NIZKPoK

Here, Enc(βi) is an encryption of the choice βi ∈ C . We assume this for the simplicity of our
description. To support arbitrary choices like single transferable vote (STV), we can alternatively
let the choice be a function of the candidate slate and the voter’s intention. Furthermore, Enc(pki)
is an encryption of the voter’s public key pki, and tsi is a timestamp (see Section 2.3) created
right before the ballot is cast. The timestamp is not encrypted. In addition to the ballot itself,
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the voter submits a non-interactive zero-knowledge proof of knowledge NIZKPoK to prove
that the ballot has been cast with her consent. The NIZKPoK proves knowledge of a signature
of (Enc(βi),Enc(pki), tsi) w.r.t. the public key encrypted in the ballot. (Directly attaching the
signature itself would reveal how many votes a single voter has cast.) Stated more formally, the
voter proves knowledge of a signature σi with

verify(σi,(Enc(βi),Enc(pki), tsi), pk′i) = 1 ∧ pk′i = pki.

(5) Tallying. Before the ballots can be tallied, all superseded ballots have to be sorted out. This pro-
cedure is described in detail in the next section. After all ballots with invalid proofs of signature
knowledge, all superseded ballots, and all ballots with invalid credentials have been omitted, the
remaining ballots can be tallied with standard techniques, for example by a decryption mix.

4.4. Sorting Out Superseded Ballots
In this section, we describe how to mark all superseded ballots. A ballot is superseded when a
more recent ballot of the same voter—that is, a ballot with a newer timestamp and matching voter
credential—is posted to the bulletin board. Our method protects the privacy of the voter and is also
publicly verifiable.

In four steps, the tallying authority computes a shuffled list of all valid ballots without their
timestamps. They will be re-encrypted and in a random order. The resulting list will only contain the
last votes cast by eligible voters. W.l.o.g. we assume all submitted choices are valid.

(1) Encrypted Tests Whether Two Ballots Are From The Same Voter The procedure starts off
with a list of all “well-formed” ballots on the bulletin board, i.e. all ballots with a valid NIZKPoK
as described above. After it has been checked, the NIZKPoK is omitted in further steps. The list
is sorted according to the timestamp in ascending order. For each ballot bi, the tallying authority
tests if the encrypted public key pki of bi matches the public key pk j of any newer ballot b j (see
Section 4.4.1): for each ballot b j (i < j < n), the tallying authority performs distributed EPETs
to obtain (di, j,Πi, j) := Epet(Enc(pki),Enc(pk j)). The encrypted differences di, j and the proofs
Πi, j of correctness of the EPET-result are published. (di, j = Enc(1) iff pki = pk j.)

(2) Marking Ballots As Superseded The tallying authority performs a verifiable conversion on all
computed differences. If di, j is an encryption of 1, replace it by an encryption of a random number.
Else, replace it with an encryption of 1. Differences are detached from their corresponding ballots
before conversion, and later sorted back. The details of this step are described in Section 4.4.2.
For each ballot, the tallying authority aggregates all converted d′

i, j by multiplying them, exploiting
the homomorphic property of the encryption: oi := ∏ j d′

i, j
(3) Omit Superseded Ballots The tallying authority jointly compares oi with Enc(1) for each ballot

bi. It omits all ballots bi with Epet(oi,Enc(1)) �= 1 from future computations. (Those are the
ballots that have been superseded by a more recent one of the same voter.) The last ballot is
never superseded.

(4) Omit Ballots With Invalid Credentials Before tallying, the tallying authority checks the voter
credentials by verifying that each Enc(pki) has a corresponding entry in the published list of the
encrypted public keys of eligible voters. Similarly to the technique of Juels et al. [Juels et al.
2010], the tallying authority shuffles the encrypted public keys of the list L0, and performs a PET
with the encrypted public key of each ballot.

We now describe the four steps in detail.

4.4.1. Encrypted Tests Whether Two Ballots Are From The Same Voter. In the first step of the
process, for each pair of ballots (bi,b j) with j > i, the tallying authority applies EPETs (see Sec-
tion 4.2.2) to the encrypted public keys of the voter. While, technically, this step can be performed
during the tally phase, we propose to directly perform it during the casting phase:

When a ballot bi = ((Enc(βi),Enc(pki), tsi) is cast, the tallying authority checks its NIZKPoK
and discards the ballot if the proof is invalid, i.e. the ballot is marked as invalid and not considered
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in further computations, but remains on the bulletin board for public verification. Otherwise, the
tallying authority jointly runs an EPET on the encrypted public key of bi and those of all already cast
ballots b j, to obtain values (di, j,Πi, j) = Epet(Enc(pki),Enc(pk j)). All encrypted differences di, j are
stored alongside b j as indicated in Figure 6, defining a list L with entries L[i] = (bi,(di,i+1, . . . ,di,n)).

After the casting phase, if n well-formed ballots have been cast, bi has n− i associated differences.

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

pkA/pkB
pkA/pkC

pkA/pkA
pkA/pkD

pkB/pkC
pkB/pkA

pkB/pkD

pkC/pkA
pkC/pkD

pkA/pkD
Ciphertext

Plaintext

Fig. 6: Encrypted Plaintext Equality Tests (EPETs) are performed for each pair of ballots (bi,b j) with
j > i by the tallying authority: If pki = pk j the result is an encrypted 1, otherwise it is an encrypted
random value. We denote an encrypted value by a box with a dark background and an unencrypted
value by a box with a lighter background. In this example, the third fraction in the first row (pkA/pkA)

r

divides identical credentials, hence ballot 4 supersedes ballot 1.

4.4.2. Marking Ballots as Superseded. Before computing the supersede mark oi for each ballot,
the differences di, j computed during the voting phase are converted as indicated by the mapping

Enc(x) �→
{
Enc(r) if x = 1
Enc(1) if x �= 1

The value r can be any fixed value other than 1 (2, for example) or a number drawn at random.
To compute the mapping, the tallying authority creates a shuffled and randomized list of all

encrypted differences. To this end, each entry di, j is associated an encrypted tag Enc(tsi) (see
Figure 7).

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

81 53 1 48

46 418 28

49 9

13

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

07:08 81 07:08 53 07:08 1 07:08 48

09:13 46 09:13 418 09:13 28

12:25 49 12:25 9

13:37 13

Fig. 7: The fractions from the previous step are complemented by the encrypted timestamp from
the ballot, forming tuples (Enc(tsi),di, j). For the sake of clarity, we evaluated the fractions from
Figure 6 to exemplary values. The superseded first ballot thus has a “1” associated with it.

The list of all tuples (Enc(tsi),di, j) is then re-randomized and reordered, using a verifiable secret
shuffle. After shuffling, the differences are converted (see Figure 8). To convert di, j to d′

i, j we perform
a multi-party computation that involves a “coordinator” and the voting authority. In this step, the
authority’s task is to decrypt each di, j it receives from the coordinator and return either an encryption
of a 1 or of another (random or fixed) number, according to the map above. The task of the coordinator
is to send fake differences or real ones to the authority. He has to make sure that the authority does
not learn which conversion is real. Therefore, each element is randomized before and after each
conversion by the coordinator. The randomized version of the output of each “real” conversion is
fed to the authority to be converted a second time and get a fake difference. The second conversion
is necessary to hide how many of the di, j contain a 1. All (real and fake) differences are sent to the
authority in random order. The coordinator and the authority must not collude.
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07:08 81

07:08 53

07:08 1

07:08 48

09:13 46

07:08 1

07:08 53

09:13 46

07:08 81

07:08 48

07:08 139

07:08 1

09:13 1

07:08 1

07:08 1

09:13 1

07:08 1

07:08 1

07:08 139

07:08 1
...

...
...

...
...

...
...

...

Mix
1 �→ r
r �→ 1

Mix
&

Decrypt

Fig. 8: Converting di, j to d′
i, j: if Dec(di, j) = 1 replace di, j by Enc(r) (r �= 1) and by Enc(1) else. The

special “superseded” value 1 has been converted to an arbitrary number, while all other values are
mapped to 1.

Irrespective of how the entries di, j are converted to d′
i, j, their correctness can easily be proven:

either Pet(di, j ·d′
i, j, di, j) = 1 or Pet(di, j ·d′

i, j, d′
i, j) = 1, never both. To prove the correctness of the

inversion without revealing the values, we use a verifiable shuffle on (di, j, d′
i, j) to obtain (a,b).

We then check whether Pet(a ·b, a) = 1 or Pet(a ·b, b) = 1 (exclusively). See Appendix A for a
compact description of the procedure.

After a second shuffling step, the tags are decrypted, and the encrypted, converted differences are
sorted back to their ballot of origin (see step one in Figure 9). All steps can be verified by the public.
Then the tallying authority computes the homomorphic product over all the associated marks of each
ballot (see step two in Figure 9): for each i compute

oi :=
n

∏
j=min(i+1,n)

d′
i, j.

Observe that if ∏d′
i, j contains only encryptions of 1, it is itself an encryption of a 1, whereas if it

has a factor �= 1, it is itself an encryption of a number �= 1 with overwhelming probability.

09:13 1

07:08 1

07:08 1

07:08 139

07:08 1

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

1 1 139 1

1 1 1

1 1

1

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

139

1

11

1

...
...

Fig. 9: The encrypted, converted differences are sorted back to their ballot of origin. Afterwards oi
is computed as the homomorphic product over all the associated marks of ballot bi. Note that we
arranged the d′

i, j values in the same order as their preimages. In a practical realization of our scheme
this would only coincidentally be the case. Ballots now have an encrypted “tag” that tells whether
they are superseded by a more recent ballot.

4.4.3. Omit Superseded Ballots. Before any further processing, particularly before checking
if oi = Enc(1), all ballots are weeded and shuffled. Only the encrypted choice of the voter, his
encrypted public key, and the mark oi are kept. Therefore, the tallying authority forms a list LW
with entries LW [i] := (b′i,oi), where b′i := (Enc(βi),Enc(pki)) if bi = (Enc(βi),Enc(pki), tsi). The
tallying authority computes and publishes (L′

W ,Π) := Shuffle(LW) and then jointly compares oi with
Enc(1) in L′

W using a PET, and publishes all proofs. Only ballots bi with oi = Enc(1) and the last
ballot are kept, the others are marked as discarded.

4.4.4. Omit Ballots With Invalid Credentials. Finally, the validity of the public keys is checked.
Note that, at this point, only one ballot per credential remains. Equally to the method of Juels et al.,
the tallying authority shuffles the encrypted public keys of L0 and performs a joint PET with the
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encrypted public key of each ballot. Ballots with valid public keys are retained. The encrypted choices
of the retained ballots can then be mixed and opened for tallying.

4.5. Proving the Security of our Scheme
In this section, we prove deniability of revoting in our protocol. Correctness and verifiability are
addressed in Appendix B and C, respectively.

To prove the deniability of revoting, we give a reduction of the privacy of our scheme to the
Decisional Diffie-Hellman (DDH) problem. More concretely, given any (successful) adversary A
against Exprevoting-c-resist

ES,A ,H , we construct a simulator S which is, with non-negligible probability, able
to decide for a given quadruple (g,ga,gb,gc) whether c = ab in the cyclic group G = 〈g〉. As in the
definition, we consider only one coerced voter. An extension to the case of multiple coerced voters
is straightforward—we just have accordingly many parallel instances of the DDH problem. Our
proof is similar to that of Juels et al. [Juels et al. 2005]. We give a reduction from any adversary that
uses the published ballots to break the incoercibility of the scheme to an adversary against the DDH
assumption. To this end, we simulate the execution of experiment Exprevoting-c-resist

ES,A ,H .
The DDH experiment Expddh

G secretly draws a bit d, if d = 1 sets gc = gab, and to a random
element gc ∈ G otherwise. Given a DDH challenge (g,ga,gb,gc), S deducts two public keys. In the
setup publication phase, S sends the first one to the adversary, while it uses the second one during
the rest of the protocol. S deducts the following two m-Elgamal public keys:

(g1 := g, g2 := ga, yg := gx1
1 gx2

2 = gx1gax2) and

(h1 := gb, h2 := gc, yh := hx1
1 hx2

2 = gbx1gcx2).

Recall that, to encrypt m using the Modified Elgamal Encryption (see Section 4.2.1) using pub-
lic key (g1,g2,y), one chooses a random r and outputs (gr

1,g
r
2,y

rm). When c = ab (d = 1 in the
surrounding experiment), for any m there are r,r′ such that (gr′

1 ,g
r′
2 ,y

r′
g m) = (hr

1,h
r
2,y

r
hm). (r′ = br,

concretely.) Therefore, ciphertexts created using the above public keys have the same distribution.
When, on the other hand, c �= ab (d = 0), m is perfectly hidden in the encryption. A message m,

encrypted with the second public key and decrypted with the first (given to A), yields:

(hr
1 = gbr = gbr

1 ,hr
2 = gcr = g(c/a)r

2 ,

yr
hm = grbx1grcx2m = grbx1gabrx2g(c−ab)rx2m = ybr

g g(c−ab)rx2m)

In Exprevoting-c-resist
ES,A ,H the choices of the voters as well as their public keys are perfectly hidden in the

m-Elgamal Encryption when d = 0. In this case the adversary’s capabilities are reduced to those in
experiment Exprevoting-c-resist-ideal

ES,A ,H . To justify this assertion, we must show how the adversary’s input

can be faked in the d = 0 case with only the information from Exprevoting-c-resist-ideal
ES,A ,H available. It is

then obvious that the adversary cannot gain any additional advantage from the simulated tallying
process.

In the ideal experiment Exprevoting-c-resist-ideal
ES,A ,H the adversary learns the total number of cast ballots

and the number of valid ballots. The individual m-Elgamal encryptions the simulator outputs to the
adversary hide the plaintext perfectly when d = 0. In this case, they are not distinguishable from any
random group element and thus can be faked by random output. We must also be able to fake the
quantity and structure of the data the adversary learns during the simulation. These can be determined
from the difference of cast and valid ballots, and vice versa.

We state the simulation of Exprevoting-c-resist
ES,A ,H and argue that its perfect. The simulator S receives a

W ∈ DnU ,nC and a challenge (g,ga,gb,gc) with c = ab if the random bit d = 1 or c �= ab if d = 0.
Setup. The simulator S chooses the secret key SKT := (x1,x2), uniformly and at random. S also
calculates the public key PKT := (gx1 ,gx2 ,h = (gx1

1 gx2
2 )) mod p and sets C = {ci}nC

i=1.
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Registration. S simulates the registrar R : S generates the voter credentials: {(pki,ski)}nV
i=1

Setup publication. S publishes the public key of the tally PKT , the set of candidates C, and
L0 = {“voter’s name i”, Enc(pki)}nV

i=1.
Adversarial corruption. The adversary A selects nA voters to corrupt. Let V denote the group
of corrupted voters. He also selects a voter j for coercion. He determines the choices β for the
corrupted and the coerced voters. The simulation is terminated if the selection is invalid.
Coin flip. The bit b is chosen uniformly at random: b ∈U {0, 1}
Honest voter simulation. For each honest voter, the simulator creates the ballots with the proofs:

A0 := {(Enc(βi),Enc(pki), tsi), NIZKPoK}

= {bi := ((hri
1 ,h

ri
2 ,h

rix1
1 hrix2

2 c j),(h
ki
1 ,h

ki
2 ,h

kix1
1 hkix2

2 pki), ts),NIZKPoK}n
i=1

Thereby all ri and ki are chosen at random in Zq. The choices are determined in W. For creating
the proofs the simulator S uses the voter’s secret keys.
Adversarial ballot posting. The adversary calculates the ballots for each voter v ∈ V and the
voter j in the same way. We call the set of these ballots B0. A posts B0.
Tallying simulation. S simulates a honest tallying authority, whereby it uses the secret key SKT
from the setup step. Since the correctness of every step from each authority can be verified, any
modification from an adversary can be ignored.

Proof checking. The proof of each ballot in A0 and B0 is checked. Let E1 be all ballots with
valid proofs.
Creating di, j . The simulator S creates the di, j by performing the necessary EPETs. S also
creates the proofs honestly.
Converting di, j . S performs the protocol honestly and provides the proofs. During this
process, it uses the secret key SKT to decrypt the EPETs.
Creating oi. S accumulates the di, j as scheduled.
Creating final ballot list. For each ballot in E1 create a cut list as described in the protocol.
S creates a shuffle and the according proofs. Denote the result as E2. S creates list of tuples,
using the secret key: E3 := {(Enc(βi),Enc(pki))} : Pet(oi,Enc(1)) = 1
Checking Voter Credentials. S shuffles the second components of L0 into a new list L1: Let
L′

0 be the list of all encrypted public keys in L0. L1 := Shuffle(L′0). For each ballot in E3, S
performs PETs with the second part of each entry. S uses the secret key for decryption. Let
E4 denote the list of all encrypted choices from the ballots with a according item in L1.

Choice decryption. The decryption of the valid choices (E4) is done by S with the secret key.
Adversarial guess. The adversary outputs a guess bit b′. S itself returns d′ := (b′ ?

= b) as his
guess bit, i.e. whether the adversary correctly guessed b.

Since the simulator executes the protocol as specified, for d = 1 the simulation is indistinguishable
to A from a real protocol. Let V denote the view of the adversary. Thus, we have

Pr[S = 1 | d = 1] = Pr[Exprevoting-c-resist
ES,A ,H (V ) = 1] = Succrevoting-c-resist

ES,A ,H (V ).

On the other hand, as we argued above, the adversary in the simulation does not have any advantage
to the adversary in Exprevoting-c-resist-ideal

ES,A ,H (V ) if d = 0. Thus,

Pr[S = 1 | d = 0] = Pr[Exprevoting-c-resist-ideal
ES,A ,H (V ) = 1] = Succrevoting-c-resist-ideal

ES,A ,H (V ).

Concluding the argument, we have

AdvddhS = Pr[S = 1 | d = 1]−Pr[S = 1 | d = 0]

= Succrevoting-c-resist
ES,A ,H (V )−Succrevoting-c-resist-ideal

ES,A ,H (V )

= Advrevoting
A .

�
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Roberto Araújo, Sébastien Foulle, and Jacques Traoré. 2010. A Practical and Secure Coercion-Resistant Scheme for Internet
Voting. In Towards Trustworthy Elections, David Chaum, Markus Jakobsson, RonaldL. Rivest, PeterY.A. Ryan, Josh
Benaloh, Miroslaw Kutylowski, and Ben Adida (Eds.). Lecture Notes in Computer Science, Vol. 6000. Springer Berlin
Heidelberg, 330–342. DOI:http://dx.doi.org/10.1007/978-3-642-12980-3 20

Josh Benaloh. 2013. Rethinking Voter Coercion: The Realities Imposed by Technology. Presented as part of the USENIX
Journal of Election and Technology and Systems (JETS) (2013), 82–87.

Jan Camenisch and Markus Stadler. 1997. Efficient group signature schemes for large groups. In Advances in Cryptology
CRYPTO ’97, Jr. Kaliski, BurtonS. (Ed.). Lecture Notes in Computer Science, Vol. 1294. Springer Berlin Heidelberg,
410–424. DOI:http://dx.doi.org/10.1007/BFb0052252

Ran Canetti and Rosario Gennaro. 1996. Incoercible Multiparty Computation. Cryptology ePrint Archive, Report 1996/001.
(1996). http://eprint.iacr.org/.

David Chaum and Torben P. Pedersen. 1993. Wallet Databases with Observers. In Proceedings of the 12th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’92). Springer-Verlag, London, UK, UK, 89–105. http:
//dl.acm.org/citation.cfm?id=646757.705670

Jeremy Clark and Urs Hengartner. 2011a. Selections: Internet Voting with Over-the-Shoulder Coercion-Resistance. In
Financial Cryptography (Lecture Notes in Computer Science), George Danezis (Ed.), Vol. 7035. Springer, 47–61.

Jeremy Clark and Urs Hengartner. 2011b. Selections: Internet Voting with Over-the-Shoulder Coercion-Resistance. Cryptology
ePrint Archive, Report 2011/166. (2011). http://eprint.iacr.org/.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A Secure and Optimally Efficient Multi-Authority Election
Scheme. Springer-Verlag, 103–118.
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A. TAG CONVERSION
In Section 4.4 we informally describe how to create encrypted marks that tell which ballots have
been superseded. Here we define the procedure more formally. The procedure starts with the list of
all ballots and a corresponding list of differences next to each ballot and attaches an encrypted mark
to each ballot. The encrypted mark tells whether the ballot has been superseded.

We use subroutines like a secret verifiable shuffle (see Section 4.1.1). Since each of those subrou-
tines is verifiable, it produces a proof of correctness beside the actual result. Each proof contributes to
the over-all proof of correctness. In abuse of notation and for better readability, we do not explicitly
mention them.

Conversion Convert(L)
Input. A list L with (ballot,differences)-entries L[i] = (bi,(di,i+1, . . . ,di,n))

Output. A converted list L′ of ballots and differences, and a list P of proofs of correctness.
Algorithm. (Each operation which can not be recomputed by everyone outputs a proof of
correctness. For the sake of readability, we do not explicitly write the proof-output, but assume
it implicitly appended to the list P.)
(1) Initialize list L′ with L[i] := (bi, []) (the second entry will be filled later).

Initialize a look up table T S with an entry (i, tsi) for each ballot bi =(Enc(βi),Enc(pki), tsi)
(2) For each ballot bi prepare a tag Enc(tsi).
(3) ∀1 ≤ i ≤ n, min(i+1,n)≤ j ≤ n: Save (Enc(tsi),di, j, [], []) to a list D. The empty entries

will be filled later
(4) Shuffle D: D′ := Shuffle(D).
(5) For each di, j in D’

convert di, j to d′
i, j :=

{
Enc(r) if di, j = Enc(1)
Enc(1) else

where r �= 1

and store d′
i, j in D’ next to di, j: (Enc(tsi),di, j,d′

i, j, []).
(6) create the proof Π of correct conversion and store it in D’: (Enc(tsi),di, j,d′

i, j,Π).
The correctness of the conversion can be verified based on D’.

(7) Shuffle D′: D′′ := Shuffle(D′)
(8) For each (Enc(tsi),d′

i, j) ∈ D′′:
— Decrypt tag Enc(tsi) to tsi with proof of correct decryption
— look up entry (i, tsi) in T S
— append d′

i, j to the second entry of L′[i].
(9) For each ballot bi: multiply each element d′

i, j in the second entry of L’[i] and replace them
by the result

(10) Output (L′,P).

Fig. 10: Marking each ballot whether it has been superseded.

B. CORRECTNESS
Recall that a voting scheme is correct if the success probability of any adversary in Experiment
Expcorr

ES,A(k1,k2,k3,nV ,nC) (Figure 2) is negligible in max(k1,k2,k3). We show that our construction
is correct by an induction over the number of ballots n on the bulletin board in Step 8 of experiment
Expcorr

ES,A . The number n = nV + nA is comprised of nV , the number of ballots posted by honest
voters on the bulletin board (BB) in Step 4, and nA , the number of ballots posted on BB by the
adversary in Step 6. Per assumption, the bulletin board is append-only.

Fix n = 1 as the base case, i.e. either nA = 0 or nV = 0. If nA = 0, then X′ = X and P′ = P, and
the experiment outputs 0. On the other hand, if nV = 0, then we have to show that the adversary
can only cast a vote for a corrupted voter. (The adversary cannot overwrite an uncorrupted voter’s
vote, because there are none.) Ballots containing an invalid voter public key, i.e. a public key pk /∈ L0
are discarded in the tallying phase (see Section 4.4, Step 5). The probability that the adversary
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generates a public key pair (sk, pk) such that sk generates a valid signature for the ballot and pk ∈ L0
is negligible in the security parameter of the signature scheme. Thus, the experiment outputs 0 except
for a negligible probability. (We stress that “malformed” ballots without a correct proof of knowledge
of a signature on the ballot are discarded before the tallying phase of our protocol.)

Now assume there are n = nV + nA ballots on the bulletin board in Step 8 of Expcorr
ES,A and the

probability that the experiments outputs 1 is negligible in the security parameters for any adversary.
To transfer to the n+1-case, we distinguish two cases to post an additional ballot on BB .

— The additional ballot is cast in Step 4, i.e. by an uncontrolled voter. We have to show that it
supersedes the most recent ballot by the same voter. This is achieved by a pairwise comparison of
the public keys on the ballots (see Section 4.4).

— The additional ballot is cast in Step 6, i.e. by a controlled voter. We have to show that it does not
supersede a ballot by a different voter and itself is not already superseded. By the same argument
as above, only ballots that contain identical public keys are superseded during the tallying phase.
(For the adversary to post a ballot containing the public key of an uncontrolled voter, he would
have to forge the signature of the ballot and thus break the EUF-CMA security of the signature
scheme.) Because the newest ballot has the newest timestamp per assumption, it is not superseded
in this step.

This concludes the argument.

�

C. VERIFIABILITY
We argue the verifiability of our voting scheme informally. A process composed of several subroutines
is verifiable if each step is verifiable by itself. Our process is composed of a small set of verifiable
black-box functionalities and other verifiable buildings blocks. We describe them in Sections 4.1
and 4.2.

Each of these subroutines produces proofs of correctness along with its result. If either of these
proofs is invalid, Expver

ES,A outputs 0. All these proofs are published next to the result of the subroutine
on the bulletin board. The whole bulletin board with the input {bi}n

i=1, the final output X, all
subroutine proofs, and all interim results is the global proof P of correctness of the tally. We point
out that each interim result is published except for the secret keys and some randomness which is
necessary to protect the privacy of the voter. The input of each subroutine is also marked down on the
bulletin board. Sometimes the output from one routine has to be reshaped to match the input format
from another one. This reshaping is always deterministic.

Several operations like the reshaping or the computation of the product over all marks di, j of each
ballot bi can be recomputed by anyone. Therefore no explicit proof is necessary for these steps. All
operations which are not recomputable by the public are accompanied by proofs of correctness.

In conclusion, our tallying process is verifiable because intermediate values are public, and all
subroutines are publicly verifiable.
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