
Don’t stack your Log on my Log

Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan Sundararaman
SanDisk Corporation

Abstract

Log-structured applications and file systems have been
used to achieve high write throughput by sequentializ-
ing writes. Flash-based storage systems, due to flash
memory’s out-of-place update characteristic, have also
relied on log-structured approaches. Our work investi-
gates the impacts to performance and endurance in flash
when multiple layers of log-structured applications and
file systems are layered on top of a log-structured flash
device. We show that multiple log layers affects se-
quentiality and increases write pressure to flash devices
through randomization of workloads, unaligned segment
sizes, and uncoordinated multi-log garbage collection.
All of these effects can combine to negate the intended
positive affects of using a log. In this paper we character-
ize the interactions between multiple levels of indepen-
dent logs, identify issues that must be considered, and
describe design choices to mitigate negative behaviors in
multi-log configurations.

1 Introduction

Flash-based devices are frequently used for
performance-sensitive applications ranging from
databases to key-value stores to persistent messaging. In
many of these environments, applications began by using
flash as a fast disk and then made optimizations to better
match the unique characteristics of flash. Since flash
devices are known for asymmetric write performance
and garbage collection (GC), a frequent application
design pattern is to write in a log structure to optimize
for flash devices. Recent examples include twitter
fatcache [1], NILFS [11], F2FS [6], and SILT [12].

The log-structured write pattern has been adopted by
both user-space applications and file systems. Such

c©2014 SanDisk Corporation. All rights reserved.
INFLOW’14, October 5, Broomfield, CO, USA.

software runs atop the SSD’s log-structured or data-
remapping layer - the Flash Translation Layer (FTL).
Therefore, it is possible that two or more log-structured
I/O patterns may become stacked on flash media. For ex-
ample, it is possible to have an application like fatcache
write a sequential stream atop a log-structured file system
like F2FS, which in turn operates over a log-structured
FTL on physical flash media.

While log-structured applications, file systems and log
stacking is not new [5], log stacking on flash deserves
special attention. First, since flash devices contain a
remapping log-like FTL, any log-structured application
run atop a flash device creates a stacked log scenario,
making such scenarios now more common. Second, flash
devices have limited endurance and any additional writes
caused by multiple log layers can impact device lifetime.
Third, each layer’s log-remapping engine frequently re-
serves some capacity for GC and only exposes part of
its usable capacity to the upper layer. Thus a large frac-
tion of, the still relatively expensive, flash media can be
consumed as reserve capacity by multiple logs stacked
atop it. Fourth, the high performance of flash devices
implies that log “aging”, or the need for GC to defrag-
ment the log, occurs quickly, frequently, and incoher-
ently amongst all the logs involved. This combined inco-
herent GC behavior, across multiple log layers, critically
impacts overall performance and endurance.

We focus on Log on Log - the issues that arise when
two or more log layers are stacked on each other. At first
glance, we observe that multiple layers of software per-
forming the same function, i.e. data remapping and GC,
seems redundant and suboptimal. In a multi-layer log
configuration, there are further issues. Each log structure
is unaware of the objectives and algorithms of those be-
low or above it. Since each log operates independently
towards its own objectives, it is possible that its perfor-
mance or efficiency goals can be undone by the other log
layers. In addition, increased metadata, conflicting and
incoherent GC strategies, and fragmentation of work-

1



loads, all result in increased write pressure, which greatly
impacts flash device performance and endurance. This
can also result in a great performance reduction of the
overall application using these multiple log layers.

This paper makes the following contributions:

1. We outline the architectural issues that can arise
when one or more logs are stacked atop an FTL.

2. We demonstrate the impacts of these issues on flash
devices using a combination of two techniques.
First, we gather empirical results of workloads on
log-structured software running atop a commer-
cially available flash device. We then assess the
issues in depth using a purpose-built log-on-log
event driven simulator. We measure the impact of
multiple uncoordinated log activities and demon-
strate that, multi-layer log configurations introduce
higher write pressures (up to 33%) from log meta-
data maintenance, and increased GC activities (up
to 32%) due to decoupled cleaning.

3. We propose some optimizations to mitigate the
issues found with multi-layer log configurations.
We propose optimal sizing of log segment sizes
amongst layers and coordination of GC interactions.
In addition, we discuss approaches to collapsing
logs through new interface semantics.

This paper argues that the increasingly common prac-
tice of using log-structured writing to flash is fraught
with complexities and opportunities for unpredictable
behavior. We outline ways to both understand and miti-
gate the effects of log stacking, and discuss alternatives
to stacked logs over flash.

2 Background

Log-structured data persistence has been employed in
storage systems [4], file systems [16], databases [20] and
other applications. Some stores are strictly log structured
and allow no update-in-place operations, while other
stores are more write-anywhere in nature [5] and allow
hole plugging. All such stores allow new writes to be di-
rected to free space in the device, and all contain some
form of GC (frequently called cleaning) to compact and
reuse invalidated physical space. Substantial research
has been done on optimizing log-structured stores, par-
ticularly for GC [2, 17, 21]. In this paper, we use the term
“log-structuring” generally to mean stores with dynamic
remapping of writes and GC. Specific configurations of
such stores are defined and explored in detail in Sections
3 and 4.

Prior to the arrival of flash, a key motivation for log-
structured stores was to accelerate write performance

while allowing random reads to be serviced from DRAM
cache. Log-appends provide additional advantages, such
as enabling snapshots, enabling transactional updates,
and eliminating the small write performance problem
when used in RAID 5 configurations [5, 14].

Flash creates a new motivation for log structuring.
Flash can only be erased in the unit of erase blocks
which are typically much larger than the write unit (e.g.
512 write pages per erase block). As such, all new
writes must be directed to (freshly erased) blocks. Erased
blocks are made available to satisfy new writes through
GC. One or more erase blocks are garbage-collected to-
gether, making them conceptually similar to cleaned seg-
ments in a log-structured file system. Since flash has a
limited number of program/erase cycles, flash GC has to
balance the efficiency of cleaning with erase block wear
leveling to meet reliability requirements. Flash has addi-
tional requirements, such as read disturb handling, which
require rewrites to maintain data integrity. As such, while
some of the factors that drive flash GC are similar to
those driving cleaning in higher level log stores, others
are flash media specific.

Recently some efforts have been directed towards the
reduction of the cost of journaling of journals (similar to
a log-stacking model) between the application and file
system layer [10, 18]. This work observed, as we do,
the general inefficiency of having redundant work done
in multiple log layers. Our work is complementary to
these efforts in that we aim to understand the behavior of
a more generalized multi-log stacking model and its im-
pact on flash, focusing on write amplification, GC over-
head and overall performance.

3 Approach

We start by outlining several different models of log
stacking that can commonly occur with flash devices. We
then define a number of architectural aspects of logging,
GC and write amplification which we then use in the sub-
sequent sections to analyze log-on-log interactions.

3.1 Log Stacking Models

Figure 1 outlines some of the log stacking configurations
that can occur when log-structured applications meet
log-structured file systems and/or flash devices. Fig-
ure 1a represents a single log-structured application (or
file system) residing on a single FTL-based SSD. This
is the most basic example of a log-on-log configuration.
Some form of this configuration occurs every time a log-
structured application runs on an SSD. The illustration
demonstrates the potential complexities that can occur
even in a simple log-on-log scenario. In this example,
the upper level log has three data types (data, metadata,

2



and garbage collection) that are being written to three
sequential streams. The underlying lower level log has
two sequential streams. Figure 1b outlines a configura-
tion where a log-based application/filesystem and a non-
log based application share one FTL. This configuration
can commonly occur when an SSD is divided into two
partitions and one partition is used by a log-structured
filesystem while the other is used by an application with
a very different access pattern. Other configurations of
multiple log layers include Figure 1c, where two or more
log-structured applications share an FTL, and Figure 1d,
where a log-structured application (such as a key-value
store), resides on top of another log-structured software
module (such as a file system) which itself is on top of
an FTL.

Figure 1: Log-on-log structured approaches can be used
in all levels of the storage stack.

3.2 Append Streams

Log stacking is further complicated as each log-
structured application can have multiple streams over a
single internal address space. Figure 1a shows an exam-
ple of multiple sequential streams within each log layer.
We call each such stream an Append Stream writing to
the Append Point. An append stream is a sequential
stream of writing and subsequent GC, similar to that used
in [8]. We assume that all writes of an append stream oc-
cur at the head (the Append Point) for that stream, and
that reads can occur from anywhere within the stream.
In addition, GC can read from any part of the stream
and write subsets of the data to the append point. While
some log-structured architectures are strictly single ap-
pend stream, implying that all writes, incoming, clean-
ing, metadata, are driven to the same append point, oth-
ers have multiple streams. F2FS [6], for example, has
six logical append streams, twitter fatcache has one, and
SILT has several. Similarly, the FTL within a flash de-
vice may have one or more append streams depending on

the design.

3.3 Write Amplification

As each log layer remaps and garbage collects its data, it
generates its own write amplification (WA). The incom-
ing data seen by each log layer includes the amplified
writes generated by the log layers above. In this paper,
we compute and refer to each log layer’s WA separately.
Each layer’s WA is computed as: the ratio of outgoing
writes from that layer, to the incoming writes of that
layer. We shall make clear below which log level’s WA
we are dealing with at the moment. The total combined
write amplification (TCWA) is computed as the product
of all of the involved write amplification factors.

3.4 Evaluation Methodology

Armed with the above concepts, we explore a number of
different log-on-log behaviors. We conduct two classes
of experiments.

1. We use F2FS as an example of a flash-optimized log
structured file system with multiple append streams.
We run experiments with F2FS on top of a commer-
cially available SSD.

2. We developed and used a log-on-log simulator that
implements a two level log-on-log structure with up
to two independent append streams at each layer.
With the simulator, we measure and analyze in de-
tail the WA generated by different log-on-log inter-
actions. The simulator is independent of hardware
and operating system configurations so that it could
be abstracted as any two-layer log system.

4 Scenarios and Results

In this section, we analyze simple and frequently de-
ployed log on log scenarios and demonstrate some of the
issues that arise. We characterize their impact on write
pressure, endurance and capacity efficiency.

4.1 Metadata Footprint

The first topic we examine is metadata footprint. At a
cursory glance, log stacking is expected to increase meta-
data footprint, since each log layer will need to add its
own metadata for the incoming data to track layout and
persist indirection maps.

The amount of metadata added by a log structured
store depends heavily on the design of the store and
the number of append streams within the store. To un-
derstand the potential metadata overhead of log stack-
ing and multiple streams, we perform experiments on

3



Figure 2: Metadata foot print increases as more append
streams are used on file system.

F2FS. F2FS is designed to support up to 6 append
streams, making it possible for the file system to identify
hot/warm/cold data and separate them to different seg-
ments. We measured the total file system write bytes is-
sued to the device under different workloads while vary-
ing the number of F2FS append points. We configured
F2FS to have 2 and 6 append streams. With 2 append
points, F2FS separates user data and metadata, while 6
append points further differentiate each type of data as
hot/warm/cold. The workloads were generated using the
FIO benchmark tool with various combinations of work-
load configurations - 1k vs. 4k I/O size, buffered vs. di-
rect I/O, and random vs. sequential writes. As is shown
in Figure 2, with an application workload that writes a
total of 8GiB, the file system generally writes more data
to the device when the number of append points is in-
creased (e.g. 2 to 6 append points). For example, the
first column set shows the total number of file system
writes issued to the device from an 8GiB random write
workload with buffered IO and a 1k IO size. The file
system amplifies the original writes due to file metadata
and log metadata. Since the workload is the same for
2 and 6 append streams, we assume file metadata used
to maintain file status remains the same. Thus, the in-
creased writes from 2 to 6 streams are the consequence
of the additional logs’ metadata. Our experiment shows
that the File System Write Amplification (FSWA) varies
based on the number of file system append points, and
increases from 1.5 to 2.0 (up to 33% for seq-4k-direct)
when growing from 2 to 6 append points. While this
is only one example, it does suggest that the number of
append streams can be a factor in the WA generated by
a log-structured store. FSWA is the amplification of the
application workload by the filesystem. It is not the same
as TCWA as it is the amplification of that amplification
by the device.

4.2 Fragmentation

A key goal of log-structured systems is sequentializ-
ing writes. However, if the FTL is shared by two log-
structured applications (or even a single application with
multiple append streams), the incoming data into the
FTL is likely to look random or disjoint. Additionally,

GC in the upper layer can further complicate the traffic
stream seen by the lower layer.

(a) Data is written sequentially to the lower log.

(b) Deleting one fsysseg spread across two devseg.

Figure 3: Fragmented logs.
Even when each log layer has exactly one append

stream, complexities exist that can cause the underlying
device to see non-sequential traffic. One such complex-
ity is segment size mismatch - where the upper and lower
logs both do GC, but at different segment boundaries and
sizes. Figure 3 illustrates this issue with an example of
two logs, each with one append stream but GC-ing at dif-
ferent segment sizes. Data from one upper log segment
is spread across two segments in the lower log. When
GC occurs in the upper log stream, a deleted upper log
segment (fsysseg 2 in the example) results in partial in-
validation of two lower log segments. Reclaiming space
in the lower log now requires GC of two devseg, and
results in higher WA in the lower log (see Section 4.5 for
more detailed discussion on segment cleaning).

(a) upper/lower log capac-
ity ratio 90%

(b) upper/lower log capacity
ratio 70%

Figure 4: TPC-E: overall system WA (TCWA) varying
log capacity ratio and segment size ratio.

When each log has a single append stream, this is-
sue can be mitigated to some extent by matching seg-
ment sizes between upper and lower logs. We measured
the impact of different upper/lower log segment size ra-
tios using our log-on-log simulator. Figure 4 depicts one
such result for a TPCE-like workload trace. For each
line of a fixed upper log segment size in Figure 4, there
is a dramatic change of slope when lower log segment
size exceeds upper log segment size. This is because
the reuse of upper segments (seen asinvalidation by the
lower log) cannot cover the entire lower log segment, and
causes data fragmentation on the lower layer. As both
layers GC becomes active, a large portion of valid data in

4



each lower segment is copied forward resulting in higher
lower log WA and hence higher TCWA.

This result further demonstrates that optimal segment
sizes for log-structured GC that held true for standalone
logs may not hold true for the whole system if it has a
log-on-log scenario. A segment is the smallest unit for
GC processing. In a standalone log, generally smaller
segment sizes provide improved flexibility on GC victim
selection and hence achieves lower WA. This is not true
for a log-on-log configuration.

The above example illustrates the fragmentation and
cleaning overheads that can result from two single stream
logs being stacked atop one another. If each log were
to have multiple append streams, the situation worsens
since segments in the lower log are far more likely to
have inter-mixed content from many upper log segments.
It is also not clear that segment size matching can over-
come the issues since data intermixing will still occur.

4.3 Aggregate Reserve Capacities

Since GC re-arranges data, many GCs rely upon some
fraction of the underlying capacity to be reserved. When
logs are stacked, each log layer’s capacity reserve eats
into the capacity available for user data. The behavior
of a log-on-log configuration also depends on the capac-
ity used (and reserved) by the GC at each level. Fig-
ure 4(b) shows the same log configuration but with more
reserve capacity in the upper log. The turning slope in
Figure 4(b) is at a larger lower segment size. This gives
the upper log more flexibility on tuning its segment size
to achieve lower FSWA. On the other hand, if each log’s
reserve capacity ratio is low, the lower log has more spare
capacity exposed to the upper log, then device GC is trig-
gered less actively.

Our analysis of log-structured applications like NILFS
and F2FS, as well as FTLs, has shown that each log has
its own metadata which is invisible to the higher level
logs. Due to this metadata, a segment contains metadata
inter-mixed with data from upper logs. Hence cleaning
of segments at one log layer doesn’t preclude the need to
clean the segments at another layer. As our simulation is
conducted with no other traffic nor log metadata, the real
log-on-log system will be more complex and introduce
higher degree of log fragmentation, making the impact
of size ratio between two layers harder to predict.

4.4 Multiple Append Streams/Points

Fragmentation and associated complexity only increases
if upper layers have more than one append stream. Mul-
tiple append points are useful, for example, to separate
hot and cold data during GC, or to separate data with dif-
ferent characteristics. As shown in Figure 5, if a lower

(a) With fewer append points, data invalidations are more aggregated
in lower log.

(b) Increasing upper append ponts tends to distribute invalida-
tion across more lower segments, resulting in higher fragmenta-
tion and higher WA.

Figure 5: The higher the ratio of upper to lowers logs,
the higher the degree of data fragmentation.

level log does not support multiple append points, data
from multiple higher level append streams will become
inter-mixed at the lower layer.

If a log-structured store supports advanced capabili-
ties such as separating data of different update frequen-
cies to reduce GC overhead, each log can be expected
to show different activeness according to its data char-
acteristics. For example, a file system metadata log can
be smaller and more active than a data log, if the user
workload involves many file creates and deletes. While
the original workload remains the same, separating data
to multiple append points tends to make the invalidation
further distributed across segments in a lower log append
stream. The distributed invalidity and different validity
views limit the flexibility for GC selection [22]. As the
number of upper log append points increases, the ran-
domness in the invalidity at the lower log layer increases
thus further limiting GC selection.

If m upper logs are stacking onn lower logs, the ratio
of (m/n) can indicate the degree of data fragmentation on
device. The higher the ratio is, the more likely that a sin-
gle lower log append stream may contain data from more
different upper logs. With different log activities, such as
update, invalidation, and GC frequencies, the lower log
will suffer from high fragmentation, and hence higher
WA over time. If upper logs have a diverse range of ac-
tiveness, for example, some applications may be more
active than others during a certain period of time, or some
logs are much smaller than others, it increases the degree
of data fragmentation as seen by the lower logs and re-
sults in high device GC overhead.

4.5 Layered Garbage Collection

Each log has its own GC or cleaning process which op-
erates independently. We now examine the combined ef-
fects of such layered independent GC. By design, logs
work in isolation (i.e., manage their free space them-
selves) and are unaware of other logs above or under-

5



(a) Initial status. (b) Upper log deletes blocks be-
fore device GC starts.

(c) Upper log GC starts after de-
vice GC finishes.

Figure 6: Decoupled segment cleaning without TRIM

(a) Initial status. (b) TRIM by upper log. (c) Device GC starts cleaning.

Figure 7: Decoupled segment cleaning with TRIM.

neath. In addition to the obvious inefficiencies of the
same kinds of work being redundantly done in multiple
layers, layered GC has several other problems.

4.5.1 Need for Layered TRIMs

The first issue that arises is the need for TRIM. Without
TRIM, data presumed to be valid at the lower layer need
not be valid at the upper layer. Invalidations at the upper
logs need not trickle down to the lower log, as a result,
lower logs operate with outdated validity information. In
this scenario the lower-log layer will perform segment
cleaning operations that move data that is invalid at the
upper log but valid in the lower log. As such an increase
in write pressure is incurred from moving data that is
invalid from the upper layers perspective.

The need for TRIM is well known [15]. However,
TRIM is still only commonly implemented between the
device and driver software or between file system and de-
vice. All layers of logs need the ability to communicate
an equivalent of TRIM to their lower layers. Such ca-
pabilities are now starting to become available through
new APIs and extensions of existing POSIX calls for
user space apps [3, 19] and are needed to make log-on-
log configurations effective for user-level log-structured
applications.

4.5.2 Uncoordinated Garbage Collection

The second issue that arises is lack of timing coordi-
nation between GCs. Each log layer performs segment
cleaning while being agnostic of the activities in the other
log layers. Consider the case where the segment cleaner
of the lower log append stream(s) runs ahead of the seg-
ment cleaners of the upper log append stream(s) . In this

situation, the lower log could clean a segment that con-
tains one or more segments from the upper log. After the
lower log cleaning is done, the segment cleaner(s) of the
upper log will move the data and rewrite the segments
in the lower log again, causing avoidable writes and im-
pacting endurance.

A high degree of data fragmentation due to differ-
ent log characteristics and activities (discussed in Sec-
tion 4.2) increases device GC pressure and WA, and
garbage collection on both layers further fragments the
data layouts. While a file system makes an effort to write,
overwrite, and invalidate its segments sequentially, holes
could be made at the layer with larger segment size due
to the unmatched segment size or page size as well as the
timing issue for both layers’ GC. Without TRIM, Fig-
ure 6(c), when the file system GC invokes after device
GC has copied block 2, 4 and 6, the overwrite operation
sent to the device will invalidate those blocks, and causes
fragmentation on the media. As a result, when device
GC wakes up again, valid data (Block 7 in this case) will
be copied forward. This further increases the WA due
to the mixed placement of valid data and invalid data.
Even with TRIM, Figure 7, the fragmentation problem
still exists. When the file system TRIMs the entire seg-
ment (Figure 7(b)), the underlying device segments only
invalidates a portion of them. Moreover, if the file system
GC happens after device GC, those valid blocks will be
copied at least twice. In addition, the device GC process
usually involves several stages including segment scan,
victim segment selection, and valid data re-read and re-
write. In order to not block incoming requests in a high
performance system, this process is multi-threaded and
the system alternates its activity with the handling of new
IO requests. As such data written by the GC will be inter-
mixed with new write operations, it thusly increases the

6



degree of fragmentation.

4.5.3 Conflicting Optimizations

As the above sections show, optimizations such as mul-
tiple append points, which can be quite desirable in a
single log store, generate complexities and unpredictable
behavior in a log-on-log scenario. For example, segment
cleaning based on hot and cold segments in an upper
log need not hold true at a lower log. even if the lower
log has multiple append streams. Reasons include in-
terspersed data from segments across (and within) logs,
segment cleaning at an upper log layer translating to data
being misclassified as “hot” data in the lower log layer,
and segment cleaning at an lower log moving “cold” data
from the upper log (which could have been invalidated).

random log F2FS FTL erase GC data GC

dist # Upper log Lower log cnt GB WA

W GB W GB

zipf:0.8 2 120.55 221.02 370 98.28 1.82

zipf:0.8 6 121.08 267.88 473 144.58 2.19

zipf:1.1 2 122.05 222.78 374 98.52 1.81

zipf:1.1 6 122.53 277.10 493 152.35 2.24

uniform 2 96.32 137.94 188 39.96 1.41

uniform 6 96.42 141.25 195 43.15 1.45

Table 1: Device WA varies with different number of up-
per layer append points.

4.5.4 Experimental results

To examine the potential impacts of uncoordinated seg-
ment cleaning, we measured the FTL GC overhead with
2 and 6 upper logs using F2FS on an SSD. Under the
same workload of 60GB random writes, 4k IO size and
direct IO, the file system with 6 logs writes slightly more
data to the device than 2 logs (Column 3 - fsys W GB in
Table 1). However, the 6-log case suffers from a much
higher WA. Different distributions of hot and cold data,
the reduced size of invalidated extents, and uncoordi-
nated GC increases fragmentation in the 6-log configu-
ration, and results in much higher device GC and WA
than in the 2-log case. In the 6-log case, the increased
log metadata also contributes to more device writes and
higher GC. However in this experiment, we can subtract
the metadata effect by assuming such increased writes
are amplified by the same scale as other writes in the de-
vice layer. Thus, the much higher WA and erase counts
with 6 logs are mostly caused by the effect of differ-
ent data activities distributed across logs and decoupled
cleaning.

4.6 Discussion

Through our exploration of log-on-log effects, we have
made a few key observations. First, the issues:

(a) There are many redundant operations and inherent
inefficiencies when logs are stacked atop each other.
These include redundant GC at each layer as well
as possibly redundant data reorganization (such as
into hot and cold) at each layer. Left untuned, these
effects can be counterproductive, resulting in higher
WA and reduced device lifetime.

(b) TRIM is critical to pass intelligence across log lay-
ers. While TRIM is now supported by many FTLs,
TRIM implementations in user space are only start-
ing to emerge.

(c) Even with the optimizations in (b) and (c), it may
still be necessary to coordinate GC across log layers
to reduce overall WA. more efficient

(d) The situation is further complicated by the poten-
tial existence of multiple append points within each
log layer. While in some software (such as F2FS)
the number of append points and their focus is doc-
umented, most SSDs do not advertise the number
of append points. As such, arbitrary layering com-
binations are possible in real systems, where logs
with m append points can be placed on logs with n
append points where: (1) m< n; (2) m = n; and (3)
m > n.

(e) Finally, we have noted that optimizing each log
structured module in a vacuum can lead to sub-
optimal behavior at the system level when logs
are stacked. In particular, common algorithms for
hot/cold separation and segment size choice, which
seem optimal for a single log are often suboptimal
for log-on-log configurations.

That said, there are often good reasons for log struc-
tures to exist at the application and file level, since they
provide additional functionality like snapshots and trans-
action rollback. Given this, it may not be possible to
collapse logs entirely. Our studies also uncovered a num-
ber of ways that log-on-log structures can be optimized,
namely by Log Aware Coordination between layers:

• We have shown that log and segment size impact
the log-on-log systems. When TCWA is determined
by the combination of both layers’ WAs, the deci-
sion on each layer’s segment size is not stand-alone.
Generally, if the upper/lower size capacity ratio is
lower, it is beneficial to choose a smaller upper seg-
ment size for reduced FSWA and TCWA. When the
log sizes are close to each other, making upper seg-
ment greater than or equal to the lower segment size
can achieve reduced device WA and TCWA.

7



• Data is moved multiple times due to different views
of invalidation across logs. While both layers GC
are working actively, coordinating them to avoid un-
necessary data moves becomes critical. With sup-
port from TRIM, each log is able to keep the same
view of data validity. In addition, if lower log can
postpone its GC process while upper GC is active,
by the time lower GC starts, more data will be in-
validated, which reduces device WA.

The work in [8] argues for a better awareness of stream-
ing behavior from applications to flash FTLs, forming
another possible way to improve stacked log behavior if
it cannot be eliminated.

5 Collapsing logs

We have discussed the interactions between multiple lev-
els of independent logs and several practical scenarios
which arise in today’s deployed systems, as well as sev-
eral ways to optimize multiple log layers if they must ex-
ist. In this section, we describe briefly alternative direc-
tions for such systems to collapse the log layers entirely
and remove redundant behavior.

Redundant log layers exist in today’s systems partly
because the block device semantics are not rich enough
to expose the characteristics of the underlying log lay-
ers. Several attempts have been made to overcome this
through richer interfaces. As is shown in the left part of
Figure 8, each layer of log offers similar functionalities
which is isolated by the block layer. By breaking the
block interface, redundant behavior could be eliminated.
Same capabilities could be either kept in file system layer
with a lightweight flash device design, or vice versa, as
is shown in the right part of Figure 8.

Figure 8: Log-less flash-aware system design.

Sparse Addressing and Transactional Semantics
NVMFS (formerly called DirectFS) is an extension of
the ideas which leverage the underlying FTL log struc-
ture via four primitives [7]. A sparse address space repre-
sented by the FTL enables NVMFS to eliminate its own
mappings of<file, offset> to physical block. Rather,

directFS maps each file to a small number of virtual ex-
tents, and relies upon the FTL to allocate physical blocks
to these virtual addresses as blocks are consumed. In
place of a journal, NVMFS uses two primitives, atomic
writes and persistent TRIMs [15] provided by the under-
lying FTL. The atomic writes are executed entirely or not
at all, and persistent TRIMs (also atomic) provide trans-
actional deletes of virtual address ranges. By using these
in combination as a group of transactional updates and
deletes, NVMFS can move from a transactionally con-
sistent state to transactionally consistent state withoutan
independent journal. Finally, directFS uses statistics ex-
ported by the FTL on allocated block counts to maintain
accurate counts of physical space consumption, which
limits updates of superblocks when files are extended.

Object-based storage.Another alternative is to break
the fixed-size block interface via direct specification of
objects or extents that can then be managed by the lower
level log layer (and for example can be exported by an
FTL). The use of object-based file system [9] or object-
based FTL [13] leverages the underlying flash translation
layer to manipulate objects placement which is transpar-
ent to the upper layer. Meanwhile, object-based file sys-
tem only manages name resolution, thus no log or other
complicated device-dependent mechanism is needed in
the upper layer. This provides portability and compati-
bility design to various types of devices. Meanwhile, ad-
vanced features can be embedded into object-based de-
vice through a rich object interface.

6 Conclusion

In this paper we demonstrated the impact of stacking
one or more layers of logs on top of a log-structured
flash device. Through our simulation and empirical re-
sults, we show that the increased write pressure and de-
stroyed sequentiality due to unaligned segment sizes, un-
predictable workloads, and uncoordinated log activities
such as garbage collection negates many of the positive
affects of using a log. While applications and file sys-
tems will continue to use log-structure for their own per-
formance and reliability purposes, we propose some op-
timizations to mitigate the issues found, e.g., log segment
size adjustment amongst layers and coordination of GC
interactions. We plan to further explore alternatives to
collapsing logs for flash in future work.

7 Acknowledgements

We thank the anonymous reviewers for helping us refine
this paper. We also thank our colleagues in the Advanced
Development Group at SanDisk Corporation and Prof.
Scott Brandt at UC Santa Cruz for their feedback.

8



References

[1] FatCache. https://github.com/twitter/fatcache.

[2] Trevor Blackwell, Jeffrey Harris, and Margo
Seltzer. Heuristic cleaning algorithms in log-
structured file systems. InProceedings of the
USENIX 1995 Technical Conference Proceedings,
TCON’95, pages 23–23, Berkeley, CA, USA, 1995.
USENIX Association.

[3] Dhananjoy Das. NVM-Compression: flash enabled
compression. Percona Live MySQL Conference
and Expo, 2014.

[4] Wiebren de Jonge, M. Frans Kaashoek, and Wil-
son C. Hsieh. The logical disk: a new approach
to improving file systems. InProceedings of the
fourteenth ACM symposium on Operating systems
principles, 1993.

[5] Dave Hitz, James Lau, and Michael Malcolm. File
system design for an NFS file server appliance. In
Proceedings of the USENIX Winter 1994 Techni-
cal Conference on USENIX Winter 1994 Technical
Conference, WTEC’94.

[6] Kim Jaegeuk. F2FS:flash-friendly file system.
http://en.wikipedia.org/wiki/F2FS.

[7] William K. Josephson, Lars A. Bongo, Kai Li, and
David Flynn. DFS: A file system for virtualized
flash storage. Trans. Storage, pages 14:1–14:25,
2010.

[8] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng,
and Sangyeun Cho. The multi-streamed solid-
state drive. In6th USENIX Workshop on Hot Top-
ics in Storage and File Systems (HotStorage 14),
Philadelphia, PA, June 2014. USENIX Association.

[9] Yangwook Kang, Jingpei Yang, and Ethan L.
Miller. Object-based SCM: An efficient interface
for storage class memories. InProceedings of the
27th IEEE Conference on Mass Storage Systems
and Technologies (MSST 2011), May 2011.

[10] Wook-Hee Kim, Beomseok Nam, Dongil Park,
and Youjip Won. Resolving journaling of jour-
nal anomaly in android i/o: Multi-version b-
tree with lazy split. InProceedings of the 12th
USENIX Conference on File and Storage Tech-
nologies, FAST’14, pages 273–285, Berkeley, CA,
USA, 2014. USENIX Association.

[11] Ryusuke Konishi, Yoshiji Amagai, Koji Sato,
Hisashi Hifumi, Seiji Kihara, and Satoshi Moriai.
The linux implementation of a log-structured file

system. SIGOPS Oper. Syst. Rev., 40(3):102–107,
July 2006.

[12] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. SILT: a memory-efficient,
high-performance key-value store. InProceedings
of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, 2011.

[13] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extend-
ing the lifetime of flash-based storage through re-
ducing write amplification from file systems. In
Proceedings of the 11th Conference on File and
Storage Systems (FAST 2013), February 2013.

[14] Ian Murdock and John H. Hartman. Swarm: a log-
structured storage system for linux. InProceedings
of the annual conference on USENIX Annual Tech-
nical Conference, ATEC ’00, pages 28–28, Berke-
ley, CA, USA, 2000. USENIX Association.

[15] David Nellans, Michael Zappe, Jens Axboe, and
David Flynn. PTRIM + EXISTS: Exposing new
FTL primitives to applications. In2nd Annual Non-
Volatile Memories Workshop, 2011.

[16] Mendel Rosenblum. The design and implementa-
tion of a log-structured file system. Technical re-
port, Berkeley, CA, USA, 1992.

[17] Stephen M. Rumble, Ankita Kejriwal, and John
Ousterhout. Log-structured memory for dram-
based storage. InProceedings of the 12th USENIX
Conference on File and Storage Technologies
(FAST 14), pages 1–16, Santa Clara, CA, 2014.
USENIX.

[18] Kai Shen, Stan Park, and Meng Zhu. Journal-
ing of journal is (almost) free. InProceedings of
the 12th USENIX Conference on File and Storage
Technologies, FAST’14, pages 287–293, Berkeley,
CA, USA, 2014. USENIX Association.

[19] Nisha Talagala. OpenNVM: From standards to
solutions - software optimizations for non-volatile
memory. Percona Live MySQL Conference and
Expo, 2014.

[20] TokuTek. Tokudb. http://www.tokutek.com/.

[21] Jun Wang and Yiming Hu. Wolf–a novel reorder-
ing write buffer to boost the performance of log-
structured file system. InProceedings of the 1st
USENIX Conference on File and Storage Tech-
nologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.

9



[22] Jingpei Yang, Ned Plasson, Greg Gillis, and Nisha
Talagala. HEC: Improving endurance of high per-
formance flash-based cache devices. InProceed-
ings of the 6th International Systems and Storage
Conference, SYSTOR ’13, pages 10:1–10:11, New
York, NY, USA, 2013. ACM.

10


