
Erasure Coding & Read/Write Separation in Flash Storage

Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn, Scott Brandt
University of California, Santa Cruz

{skourtis, optas, jayhawk, carlosm, scott}@cs.ucsc.edu

Abstract

We want to create a scalable flash storage system that
provides read/write separation and uses erasure coding
to provide reliability without the storage cost of replica-
tion. Flash on Rails [19] is a system for enabling consis-
tent performance in flash storage by physically separat-
ing reads from writes through redundancy. In principle,
Rails supports erasure codes. However, it has only been
evaluated using replication in small arrays, so it is cur-
rently uncertain how it would scale with erasure coding.

In this work we consider the applicability of era-
sure coding in Rails, in a new system called eRails.
We consider the effects of computation due to encod-
ing/decoding on the raw performance, as well as its effect
on performance consistency. We demonstrate that up to a
certain number of drives the performance remains unaf-
fected while the computation cost remains modest. After
that point, the computational cost grows quickly due to
coding itself making further scaling inefficient. To sup-
port an arbitrary number of drives we present a design
allowing us to scale eRails by constructing overlapping
erasure coding groups that preserve read/write separa-
tion. Finally, through benchmarks we demonstrate that
eRails achieves read/write separation and consistent read
performance under read/write workloads.

1 Introduction

Flash memory and solid-state drives in particular, have
become a standard component in enterprise storage,
where they are commonly used as a large cache, and
in some cases as primary storage. Solid-state drives
provide a good balance between cost and performance,
and in that respect may be placed between DRAM and
hard-drives. However, as demonstrated in previous work
[4, 5, 12, 13, 19], the performance of SSDs is workload
dependent and can be inconsistent. In particular, their
performance can degrade due to writes leading to high

read latencies in read/write workloads. Furthermore, this
effect is amplified in SSD arrays, where the latency of
a read request takes the maximum over the latencies of
multiple drives. It follows that clients may experience
high read latencies due to writes at an increasing rate as
the array size grows.

To eliminate the performance variance of reads due to
writes, Flash on Rails [19] was proposed as a system
for enabling consistent performance in flash storage by
physically separating reads from writes through redun-
dancy. Rails supports replication and erasure coding, and
has already been evaluated under replication. Although
replication can be used as a redundancy method to elim-
inate read variance, in general it is not a cost-effective or
performant approach for scaling an array of drives. That
is mainly due to the storage space overhead and the write
throughput being equal to at most a single drive inde-
pendently of the array size. Instead, erasure coding is
more space-efficient, and provides higher write through-
put since objects are not replicated across all drives.

In this paper we focus on the applicability of erasure
coding on Rails, through a new system called eRails. In
particular, we explore the computational cost of erasure
coding, its effect on the throughput observed by clients,
and the scalability of eRails. Following the Rails design,
we maintain a set of k dedicated readers and m dedicated
writers. To perform a read, we read k data chunks out of
which we reconstruct the original data through decoding.
Note that decoding entails computational cost, which has
to be low enough to prevent computation from becoming
the bottleneck. We find that using commodity hardware,
the computational cost grows rapidly in the array size but
has no observable effect by the client for medium-sized
arrays. Finally, to construct large-scale arrays efficiently,
we create overlapping logical redundancy groups, rep-
resented as hypergraphs. Those hypergraphs allow us
to generate relatively small groups that maintain a low
coding cost due to their bounded size while enabling
read/write separation.

2 Overview

The contribution of this paper is a design allowing us to
efficiently scale Rails to an arbitrary number of drives
when using erasure codes. To that end, we study the ap-
plicability of erasure coding in read/write separation with
respect to its computational cost. We present our results
in three parts. In Section 4, we present an analysis of the
achievable throughput using Rails and erasure coding.
We find that the maximum write throughput is attained
when the number of readers equals the number of writers
(k = m). Increasing the number of writers further de-
creases the write throughput due to the higher amount of
redundancy required to maintain read/write separation.
In Section 5, we look into the computational overhead
of erasure codes (without using SSDs) in the context of
read/write separation. In particular, we focus on the case
where half the drives are unavailable (k =m), because the
“unavailable” drives in Rails are those performing writes.
We find that when k = m the erasure coding overhead de-
creases quickly in k, however, the decoding throughput
is still high enough in comparison to that of an SSD for
multiple values of k.

In Section 6 we first look into the read throughput
achieved with and without decoding. We find that the
read throughput achieved is the same as without decod-
ing up to (and including) six reading drives. Following
that result, we present a design that allows us to increase
the number of drives proportionally to the computational
cost by overlapping multiple logical drive arrays while
maintaining read/write separation. Finally, in Section 7
we evaluate eRails with respect to read/write separation
and the total read throughput it achieves. We find that
employing erasure codes has no negative effect on the
performance consistency as soon as the size of a single
array, i.e., without grouping, does not become too large,
e.g., more than ten drives.

2.1 System details

For our experiments we used a single node with an Asus
P6T motherboard, an Intel Core i7 CPU at 2.67MHz
(with 4 cores), and 12GB of DRAM. Because the SATA
throughput of our motherboard could only reach about
800MB/s in total, we used three PCIe to SATA cards
to allow every drive to operate at a bandwidth of about
250MB/s. Reads and writes are performed using direct
I/O to bypass the OS cache and we use Kernel AIO to
asynchronously dispatch requests to the raw devices.

We added erasure coding support to Rails by inte-
grating the Jerasure [14] open-source library with SIMD
support enabled [15]. Moreover, we decided to use the
Reed-Solomon Vandermonde method because its decod-
ing performance with SIMD support appears higher than

SSD 1

Read mode

Writes from

previous period

WritesReads

Cache

SSD 2

Write mode

Writes of

current period

Figure 1: The basic design for read/write separation us-
ing replication and two solid-state drives.

that of other codes in the same library. Finally, for all our
experiments that required an SSD, we used the Intel 510
model. Similar results are expected for different models
[19]. In what follows, we provide the background re-
quired for the rest of the paper on read/write separation
and erasure coding.

3 Background

3.1 Read/Write Separation

To solve the problem of high latency under read/write
workloads one may physically separate reads from writes
as described in Rails [19, 18]. In this paper, we apply era-
sure coding to Rails and demonstrate its performance as
well as the incurred computational cost while maintain-
ing read/write separation. In what follows, we briefly de-
scribe how Rails separates reads from writes when using
two drives, and afterwards its more space-efficient gener-
alization for multiple drives, which we use for the rest of
the paper. Details of how Rails operates and other con-
cerns are covered in the original paper [19] and are not
discussed here. Finally, Figures 1 and 2 are include from
Flash on Rails [19] for the convenience of the reader.

3.1.1 Basic 2-drive design

The basic approach performs read/write separation using
two SSDs and a cache in a single node. By dedicating
one SSD to reads, one to writes, and periodically switch-
ing their roles, each drive is effectively presented with
a read-only workload even if the system receives both
reads and writes. This allows the system to achieve op-
timal read performance. More specifically, at any point
in time each drive is either reading or writing. Every T
seconds, where T is a large enough time period, e.g., 10
seconds, the drives switch roles. The new write drive
performs the writes of the previous period and incoming

2

W W WW

Readers

W WWW

R R R

Frame i

Frame i+1

R

Readers

R R R R

Figure 2: The reading window moves along the drives.

writes, while the new reader drive serves reads (Figure
1). At any point in time the union of the cache with the
first drive is equal to the union of the cache with the sec-
ond drive.

3.1.2 Generalization

The above design can be generalized to N drives, either
through replication or erasure coding. In both cases, the
drives are placed on a ring. On this ring consider a slid-
ing window, whose size depends on the desired data re-
dundancy. For example, using replication, the window
size is allowed to be anywhere between 1 and N drives.
Using erasure codes, the window size is bounded from
below (Section 4), but can grow up to N. The window
moves along the ring one location at a time at a con-
stant speed, transitioning between successive locations
“instantaneously” (Figure 2). Drives inside the sliding
window do not perform any writes, hence bringing read-
latency to read-only levels. Instead, while inside the win-
dow, each drive stores all write requests received in mem-
ory (local cache/DRAM) and optionally to a log, and
while outside the window it empties all information in
memory to drive, i.e., it performs the actual writes.

3.2 Erasure coding and separation

Erasure codes allow us to trade performance for fault-
tolerance without the space overhead of replication.
Given N drives, we denote by m the number of failures
supported by the system. Each object O stored occupies
q|O| space, for some q > 1. The q|O| bits used to rep-
resent O are distributed (evenly) among the N drives in
such a way that O can be reconstituted from any set of
N/q drives.

As mentioned earlier, in the context of Rails k denotes
the number of readers and m = N−k the number of writ-
ers. In eRails there are as many writers as the maximum
number of tolerable failures. More precisely, the num-
ber of writers is bounded by m, since at least k drives
are required to read an object (by reconstructing it). For
example, when N = 6, k = 3 and m = 3, an object O

Figure 3: The achievable write throughput of eRails
peaks when the number of readers equals the number of
writers, i.e., when k = m.

of 3MB would be obfuscated to 6MB (q = 2) and each
drive would store 1MB. In the same example, we can tol-
erate up to three “failures” since reading O requires any
N/q = 3 drives. Note that if we limit the read drives to
k, each read entails computation due to decoding. In the
context of Rails, using erasure coding allows us to reduce
the storage penalty of replication and enable a higher
write throughput in arrays of more than two drives. In
what follows, we provide an analysis of the achievable
write throughput of eRails and note that setting k = m
maximizes the achievable write throughput. Finally, for
the purposes of this paper, we assume there are no true
drive failures. In the case of a true failure, we may start
mixing reads and writes on a subset of the devices or plan
ahead by having a set of spare drives.

4 Achievable throughput

We now look into the achievable throughput under
read/write separation and erasure codes. Let m and k be
the number of drives writing and reading, respectively.
The sustainable system write throughput grows in the
number of write drives, until k = m. We now explain
that relation. Let q > 1 be the obfuscation factor de-
fined as q = (k+m)/k. Since a drive is in write mode
for m time units, each writer is in read mode for k time
units. Let W be the amount of writes to be supported by
the system. Due to the obfuscation effect, internally the
system needs to support qW amount of writes. Hence,
each writer is given qW/(k +m) amount of writes per
time unit for a total of qW . Since each drive has m time
units to perform qW amount of writes, we require that
qW ≤ mw, or W ≤ kmw/(k+m). Setting N = k+m, we
get W ≤ (N −m)kw/N, concluding that the maximum

3

write throughput is attained when k = m, i.e., when we
have as many read as write drives.

Figure 3 shows the achievable write throughput when
N = 10, against m. From the same figure we see that the
maximum throughput is attained when k = m = 5 and
is equal to 1/4 of the maximum possible (if there were
no reads). If a higher write throughput is required, mix-
ing reads and writes on some drives may be an option.
Other practical approaches for throughput improvement
may be possible but not studied here. In what follows we
study the encoding/decoding performance when k = m,
irrespectively of the storage device.

5 Erasure coding overhead

The sliding window (Section 3.1.2) contains k drives all
of which serve reads. To read an object O out of those k
drives it is required to perform decoding, i.e., computa-
tion. It follows that eRails must perform a decoding op-
eration for every read request, so the computational cost
has to be small enough to not become a bottleneck. In
other words, the decoding (and encoding) processes must
be able to keep up with the drives performance or eRails
will reduce the total storage throughput. Note that in this
work, we assume that reconstruction is always required
to avoid occasional periods with higher throughput when
systematic codes are used.

5.1 Throughput and overhead
In this section we study the computational cost of decod-
ing with a focus on a large number of “failures”. Based
on the throughput analysis from Section 4 we know that
the maximum achievable throughput is reached when
k = m. In that case, half the drives are considered un-
available for reading (instead they are writing) while the
array size becomes 2k. In what follows we consider the
case where k = m and experimentally demonstrate the
computational cost for various values of k.

First, we consider a single thread performing decod-
ing operations over multiple values of k. From Figure
4a we observe that the decoding throughput quickly de-
creases in k until about k = 4, after which the decrease
slows down. Note that for small values of k, e.g., k = 3,
the throughput is at least 2GB/s for most request sizes.
Given that k = m we have q = 2, so to saturate 2GB/s
worth of decoding we require a total read throughput of
4GB/s from the drives. Assuming each drive achieves a
maximum read throughput of 512MB/s, we would need
to have k = 8 readers to saturate a single processor (if
the decoding cost remained the same). Therefore, when
k = 3 we consume 3/8 of that computational power.
Given that we used a single core, the cost for small k
values appears modest compared to the computational

3 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

k

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Decoding throughput [k = m, k chunks unavailable]

32KB

64KB

128KB

256KB

512KB

(a) Decoding throughput. (256KB)

3 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

k

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Encoding throughput [k = m, k chunks unavailable]

32KB

64KB

128KB

256KB

512KB

(b) Encoding throughput. (256KB)

Figure 4: Encoding/decoding throughput against k, for
various request sizes using a single thread. The through-
put drops quickly in k. (256KB)

power of modern commodity systems. Figure 4b shows
the encoding performance, which has a similar trend to
decoding.

To improve the coding throughput we may use mul-
tiple threads for decoding (and encoding). Figure 5a
shows that the decoding throughput scales up to the num-
ber of threads, depending on the value of k. In particu-
lar, the larger the k, the sooner the throughput flattens.
Since our machine has four cores (and hyper threading),
the increase in throughput after four threads is small, and
the throughput flattens out soon. The above suggests that
the decoding throughputs scales well, but not particularly
well (not linearly) in the number of cores, potentially
leaving space for improvement. The encoding through-
put as shown in Figure 5b is similar to decoding, with the
difference that it takes lower values for k ≤ 4.

4

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

#Threads

T
h
ro

u
g
h
p
u
t
(M

B
/s

)
Decoding throughput [k = m, k chunks unavailable]

k = 2

k = 4

k = 6

k = 8

k = 10

k = 20

(a) Decoding throughput.

1 2 3 4 5 6 7 8 9 10

1000

2000

3000

4000

5000

6000

7000

8000

#Threads

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Encoding throughput [k = m, k chunks unavailable]

k = 2

k = 4

k = 6

k = 8

k = 10

k = 20

(b) Encoding throughput.

Figure 5: Encoding/decoding throughput for various values of k in the number of threads. (256KB)

Although adding more threads improves the total
decoding throughput, the cost is disproportional to k
for non-small k values. For example, the decoding
throughput when k = 4 is around 1600MB/s, whereas
the throughput when k = 12 is around 600MB/s. If
we had three arrays of k = 4, and therefore required
three times the computation, we would achieve up to
3×1600 = 4800MB/s, instead of 3×600 = 1800MB/s.
Ignoring any potential benefits of a large array, this ex-
ample demonstrates that building many smaller arrays
appears more efficient in terms of the computational cost.

6 Scaling and computational cost

6.1 Throughput after decoding

In the previous section we saw that the computational
cost of coding increases in k, i.e., as we add read and
write drives. Here we look into the effect of that com-
putational overhead to the actual read throughput. (The
write overhead is similar.) Figure 6 shows the read
throughput of 128KB requests (using actual drives) as
we increase k, with and without decoding to illustrate the
computational overhead. As expected, there is a point
where adding more devices, i.e., increasing k, leads to
lower rather than equal or higher read throughput. In
our experiments that point is at k = 9. In addition, for
k > 6, the throughput increase slows down and becomes
lower than that without decoding. Note that even with-
out decoding, the read throughput flattens out soon af-
ter k = 9 showing that decoding is not adding signifi-
cant overhead unless k becomes large. Of course, the
smaller the requests the higher the CPU utilization be-
comes, irrespectively of the coding cost. From the above

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

k

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Read throughput without/with decoding [k=m, k drives unavailable]

Without decoding

With decoding

Figure 6: Read throughput using k + m drives with k
varying. (k = m; 128 KB)

we conclude that growing an array by simply increasing
k requires a disproportional increase in computational
power, otherwise the array throughput drops consider-
ably. For example, from Figure 6 we see that when k = 3
the read throughput is 820MB/s. For k = 9, we achieve
1,780MB/s, instead of 3×820 = 2460MB/s. The above
is a consequence of the decoding throughput decreasing
quickly in k (until around k = 10) as shown in Figure 4a,
and the fact that CPU resources are limited.

6.2 Scaling through grouping
In the previous sections, we saw that scaling the read
throughput in k requires a disproportional increase of
computational power. Instead, we would want for the

5

r

b

g b

r g

g

Group 1

Group 2

Group 3

Group 4

Figure 7: A hypergraph with four (partially) overlapping
hyperedges (redundancy groups), each containing three
vertices (drives).

decoding (and encoding) throughput to grow proportion-
ally to the number of drives, so that the read throughput
grows in the same manner. A naive approach to achieve
scalability is to use multiple disjoint arrays with small k.
However, that could potentially lead to suboptimal load-
balancing depending on the data placement, because cer-
tain drives or arrays could contain highly-accessible ob-
jects and others rarely accessible objects. Moreover,
spreading each object over all arrays as in RAID-0 could
result in suboptimal performance if the objects are not
large enough, and can limit scalability.

In what follows we propose an approach for scaling
the above naive system. In particular, in the new system
the computational cost increases proportionally to the to-
tal achievable throughput while maintaining read/write
separation. Our approach is based on the ideas of
CRUSH [22], which maps objects to storage devices ac-
cording to a pseudo-random function. In particular, we
create logical arrays, or redundancy groups, and spread
objects according to a pseudo-random function. The dif-
ference from CRUSH is that each redundancy group is
constructed in a way that enables read/write separation.
Still, the group construction remains highly flexible, in
the sense that the number of valid redundancy groups
that can be constructed remains high. In what follows we
describe how we can construct such redundancy groups.

6.2.1 Data placement

To perform read/write separation and maintain availabil-
ity we need to create redundancy groups and arrange data
appropriately. In particular, every object should be acces-
sible for reading at any point in time. Moreover, even if

W R

R

R

W

W

Physical
drives

Pi = drives of

color Ci

Figure 8: To construct valid redundancy groups of size
six, drives are partitioned into six sets. Each group is
then constructed by selecting a single drive per set.

a drive is part of more than a single redundancy group,
its role (reader or writer) has to be the same in every
group. To keep our design simple we make two obser-
vations. First, in practice, reads are served by a fixed
number of nodes inside each group - just one under repli-
cation and k with erasure codes. (Clients requiring higher
performance typically stripe their objects across groups.)
Therefore, we concentrate on groups with a fixed num-
ber of readers. Second, a data center typically uses a
limited number of redundancy configurations (e.g., 2- or
3-replication and limited erasure coding configurations).
Hence, we require that there is no overlap between re-
dundancy groups of different size or functionality. We
note that neither of these two restrictions are necessary
for our scheme. We focus on them because they are
largely realistic and greatly simplify exposition.

Consider an n-uniform hypergraph H, where vertices
represent physical drives (or storage nodes with a sin-
gle drive) and hyperedges represent redundancy groups
of size n. We want to be able to generate n-uniform hy-
pergraphs that allow us to perform read/write separation
and which provide good load-balancing. As an exam-
ple, consider the 3-uniform hypergraph with four hyper-
edges (redundancy groups) shown in Figure 7. From the
same figure each vertex is given a color (r:red, g:green
and b:blue). Assume that k = 2 and m = 1, and that the
red and green vertices start as reader drives while the blue
ones as writer drives. It can be observed that as soon as
the vertices switch roles every T seconds and they start
this process at the same time, this particular hypergraph
enables read/write separation. Note that in practice we
do not require perfect time synchronization since drives
only change roles after multiple seconds.

6

More generally, a class of n-uniform hypergraphs sat-
isfying read/write separation is illustrated in Figure 8 and
can be described as follows: Consider all N nodes in the
system. Partition the nodes into k sets Pi of equal size,
with each set corresponding to a color Ci. To form a
group we select exactly one node from each Pi. Gener-
ating multiple groups consists of repeating this process,
with the difference that to provide good load-balancing
by the end of the process each node will be selected an
equal number of times. To provide read/write separa-
tion, we initially pick a random subset CR of colors, with
size equal to the number of readers. The drives having
color in CR correspond to the initial readers. The sliding
window now shifts over the colors and initially contains
exactly CR. Any node having color that is inside the slid-
ing window performs reads, otherwise writes. We expect
the above class of hyper graphs to be large enough for
practical usage and leave open the possibility of creating
more classes. For example, the above may be extended
by noticing that the hyperedges do not have to be of the
same size as long as the ratio of the readers to writers
remains the same.

7 Evaluation: Read/write separation

We now provide an evaluation of eRails. The main point
of the evaluation is to show that under erasure codes we
can provide read/write separation as well as Rails does
under replication. We perform two sets of experiments.
In the first set we use six drives and let k = m = 3,
whereas in the second one we use ten drives and set
k = m = 5, so in both cases we use an equal number of
read and write drives. The workload consists two inde-
pendent streams, a read stream and a write stream, both
sending 128KB requests as fast as possible. We set the
system dispatch rate of the read stream to 0.75 and the
rate of write stream to 0.25. In other words, for every
write operation dispatched, three reads are dispatched.

Figure 9 demonstrates the case where k = 3. In partic-
ular, Figure 9a shows that, as expected, the performance
without Rails drops quickly for both reads and writes
(due to writes). On the other hand, with Rails (Figure
9b) the read performance remains high and almost vari-
ance free regardless of the write workload. The two (up-
ward) spikes in the read performance happen when the
sliding window moves. In that case, if there are remain-
ing reads for a drive that just became a writer, then those
are executed before writing starts. Therefore, the num-
ber of read drives and consequently the read throughput
are temporarily higher. The number of the remaining
reads is small and bounded, and in our experiments it
was set to 100. Note that with eRails we achieve about
6,400 reads/second (800MB/s), which is close to the read
throughput of 820MB/s achieved when only performing

0 20 40 60 80 100 120 140 160 180 200
0

350

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Time (seconds)

IO
P

S

IOPS (128KB, k = m = 3)

Random read

Random write

(a) Without eRails.

0 20 40 60 80 100 120 140 160 180 200
0

350

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (seconds)

IO
P

S

IOPS (128KB, k = m = 3)

Random read

Random write

Reads complete

(b) With eRails.

Figure 9: Without eRails the variance of writes “pol-
lutes” that of reads. Using eRails eliminates that vari-
ance. (k = m = 3; 128KB)

reads (Figure 6). Finally, in the above set of experiments,
the total number of requests was set to 500,000 and it
took 200 seconds for the workload to complete.

Increasing k from k = 3 to k = 5 gives similar results
(Figure 10). First, Figure 10a shows that without Rails
the read performance is low and inconsistent. With Rails,
Figure 10b illustrates that reads have high and consistent
performance. (The lower performance at the start is due
to read/write mixing before separation started). In par-
ticular, Rails achieves 10,400 reads/second (1300MB/s).
As was the case with k = 3, 1300MB/s is also close to
the read throughput of 1360MB/s achieved when only
performing reads (Figure 6). The difference in through-
put may be attributed to the additional CPU pressure due
to the write operations. The workload in the above two
experiments consists of 300,000 requests and it took be-

7

0 10 20 30 40 50 60 70 80 90 100
0

350

2,000

4,000

6,000

8,000

10,000

12,000

Time (seconds)

IO
P

S
IOPS (128KB, k = m = 5)

Random read

Random write

(a) Without eRails.

0 10 20 30 40 50 60 70 80 90 100
0

350

2,000

4,000

6,000

8,000

10,000

12,000

Time (seconds)

IO
P

S

IOPS (128KB, k = m = 5)

Random read

Random write

Reads complete

(b) With eRails.

Figure 10: Using eRails to physically separate reads
from writes leads to a stable and high read performance.
(k = m = 5; 128KB)

tween 80 and 100 seconds to complete, with the variance
being due to the write performance inconsistency. In
both experiments, the write performance is clearly low,
however, that is due to the drives themselves. Improving
the write throughput is a possibility in eRails due to the
batch writing, for example, through its integration with a
log-structured block store. However, that is left as future
work.

8 Related Work

A large part of research on flash and SSDs focuses on
the properties of the devices themselves and improve-
ments that can be performed internally [1, 3, 7]. Work
using flash in storage systems often treats flash as a cache
[2, 11, 16]. For example, Nitro [11] optimizes for lower

capacity through deduplication and compression while
Janus [2] provisions flash caches on top of hard-drives.
Our work is applicable to flash in general, whether it is
treated as a cache or primary storage. In another direc-
tion, SFS [12] presents a filesystem designed to improve
write performance by turning random writes to sequen-
tial ones.

An advantage of erasure coding over replication is the
increase of reliability without additional storage space
[21]. Erasure coding is used today in large-scale stor-
age systems such as Windows Azure [9], and for big data
in Hadoop HDFS [17]. However, research on flash and
erasure coding appears limited.

Work on erasure coding performance includes improv-
ing degraded reads [10] (with an emphasis on few fail-
ures). Using Intel SIMD instructions has been shown
to improve coding performance [15], and is something
we take advantage of in this work by using the Jera-
sure library [14]. Moreover, employing GPUs appears
as another direction for improving the performance of
degraded reads [6, 8]. Finally, with the performance im-
provements in erasure coding and computational power
of commodity machines, we expect eRails to be applica-
ble in real storage systems.that use erasure coding.

9 Conclusion

Flash on Rails [19] is a system for enabling consistent
performance in flash storage by physically separating
reads from writes through redundancy. In this paper, we
presented eRails, a system built on top of Flash on Rails
that employs erasure coding as its redundancy method.To
provide read/write separation, eRails reads only from a
specific subset of drives at a time and performs a de-
coding operation for each read request. Through ex-
periments of up to ten drives, we demonstrated that
eRails enables predictable performance for reads under
read/write workloads without reducing the raw through-
put. Moreover, we presented a design enabling eRails to
support an arbitrary number of drives by creating small
overlapping erasure coding groups of drives to limit the
computational cost of encoding and decoding. For fu-
ture work, we plan to implement and evaluate eRails at a
larger scale by taking advantage of the hypergraph con-
struction presented in this paper. We expect that to lead
us to the peta-scale distributed flash-only storage system,
as proposed in [20].

References
[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,

J. D., MANASSE, M., AND PANIGRAHY, R. Design tradeoffs
for SSD performance. In USENIX ATC’08 (2008).

[2] ALBRECHT, C., MERCHANT, A., ET AL. Janus: Optimal flash
provisioning for cloud storage workloads. In ATC ’13 (2013).

8

[3] BOBOILA, S., AND DESNOYERS, P. Write endurance in flash
drives: measurements and analysis. In USENIX FAST’10 (2010).

[4] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understanding
intrinsic characteristics and system implications of flash memory
based solid state drives. In SIGMETRICS ’09 (2009), ACM.

[5] CHEN, F., LEE, R., AND ZHANG, X. Essential roles of exploit-
ing internal parallelism of flash memory based solid state drives
in high-speed data processing. In HPCA ’11 (2011), IEEE.

[6] CURRY, M. L. A Highly Reliable Gpu-based Raid System. PhD
thesis, University of Alabama at Birmingham, Birmingham, AL,
USA, 2010. AAI3434991.

[7] DESNOYERS, P. Analytic modeling of SSD write performance.
In SYSTOR ’12 (2012), ACM.

[8] GHARAIBEH, A., AL-KISWANY, S., GOPALAKRISHNAN, S.,
AND RIPEANU, M. A gpu accelerated storage system. In Pro-
ceedings of the 19th ACM International Symposium on High Per-
formance Distributed Computing (New York, NY, USA, 2010),
HPDC ’10, ACM, pp. 167–178.

[9] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER, B.,
GOPALAN, P., LI, J., AND YEKHANIN, S. Erasure coding in
windows azure storage. In USENIX ATC’12 (2012).

[10] KHAN, O., BURNS, R., PLANK, J., PIERCE, W., AND HUANG,
C. Rethinking erasure codes for cloud file systems: minimizing
I/O for recovery and degraded reads. In USENIX FAST’12 (2012).

[11] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE,
S., AND WALLACE, G. Nitro: A capacity-optimized ssd cache
for primary storage. In USENIX ATC’14 (Philadelphia, PA, June
2014), USENIX Association, pp. 501–512.

[12] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y. I.
SFS: Random write considered harmful in solid state drives. In
USENIX FAST’12 (2012), pp. 12–12.

[13] PARK, S., AND SHEN, K. FIOS: a fair, efficient flash I/O sched-
uler. In USENIX FAST’12 (2012).

[14] PLANK, J. S., AND GREENAN, K. M. Jerasure: A library in C
facilitating erasure coding for storage applications – version 2.0.
Tech. Rep. UT-EECS-14-721, University of Tennessee, January
2014.

[15] PLANK, J. S., GREENAN, K. M., AND MILLER, E. L. Scream-
ing fast galois field arithmetic using Intel SIMD instructions. In
USENIX FAST’13 (2013).

[16] QIN, D., BROWN, A. D., AND GOEL, A. Reliable writeback for
client-side flash caches. In USENIX ATC’14 (Philadelphia, PA,
June 2014), USENIX Association, pp. 451–462.

[17] SATHIAMOORTHY, M., ASTERIS, M., PAPAILIOPOULOS, D.,
DIMAKIS, A. G., ET AL. XORing elephants: novel erasure codes
for big data. In PVLDB’13 (2013), VLDB Endowment.

[18] SKOURTIS, D., ACHLIOPTAS, D., MALTZAHN, C., AND
BRANDT, S. High performance & low latency in solid-state
drives through redundancy. In Proceedings of the 1st Work-
shop on Interactions of NVM/FLASH with Operating Systems and
Workloads (2013), INFLOW ’13, ACM.

[19] SKOURTIS, D., ACHLIOPTAS, D., WATKINS, N., MALTZAHN,
C., AND BRANDT, S. Flash on rails: Consistent flash perfor-
mance through redundancy. In USENIX ATC’14 (Philadelphia,
PA, June 2014), USENIX Association.

[20] SKOURTIS, D., WATKINS, N., ACHLIOPTAS, D., MALTZAHN,
C., AND BRANDT, S. Latency minimization in SSD clusters for
free. Tech. Rep. UCSC-SOE-13-10, UC Santa Cruz, June 2013.

[21] WEATHERSPOON, H., AND KUBIATOWICZ, J. Erasure coding
vs. replication: A quantitative comparison. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems
(London, UK, UK, 2002), IPTPS ’01, Springer-Verlag, pp. 328–
338.

[22] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND
MALTZAHN, C. CRUSH: controlled, scalable, decentralized
placement of replicated data. In SC ’06 (2006), ACM.

9

