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Abstract

Virtual Guard (Vguard) is a track-based static mapping
translation layer for shingled magnetic recording (SMR)
drives. Data is written in-place by caching data from the next
track in the shingling direction, allowing direct overwrite
of sectors in the target track. This enables Vguard to take
advantage of track-level locality, nearly eliminating cleaning
for many workloads. We compare performance of Vguard
to an available drive-managed SMR drive analyzed and
modeled in previous research. Vguard reduces the 99.9%
latency by 15× for real-world traces, and maximum latency
by 32% for synthetic random write workloads.

1 Introduction and Related Work

Shingled Magnetic Recording (SMR) offers the opportunity
for significant increases in disk drive density without radical
changes in drive design and manufacturing. This comes
at a cost—when writing track T , data on another track (i.e.
track T+1) may be lost. This limitation may be addressed
on the host, using new SCSI and SATA extensions; however
many SMR drives sold today are drive-managed SMR
(DM-SMR) devices, using an internal translation layer for
plug-compatibility with non-SMR disks.

A number of shingling translation layer (STL) mecha-
nisms have been proposed to date [6, 9, 5, 2, 8]; however
based on measurements of shipping drives, the dominant
ones may be termed E-Region STLs, where writes are
made to an exception region (or persistent cache), and later
migrated to a permanent location elsewhere on disk. In a
common variant [1] the drive is divided into bands separated
by unused tracks or guard tracks, allowing a band to be
completely overwritten by the cleaning process without
damage to “downstream” tracks, and LBAs are statically
mapped to “home locations” in these bands.

With one exception, STLs proposed to date have used

LBA mapping, leaving details of the disk geometry to lower
layers of drive firmware. In contrast, He and Du [3, 4]
have proposed two mechanisms for track mapping STLs,
where translation is performed after mapping an LBA to
a track/head/sector location. Their first work describes a
number of track mappings which allow efficient writes to
low-numbered tracks in cases where the high-numbered
tracks have yet to be written; more recently SMaRT [4] is
more general, using dynamic mapping of tracks. SMaRT
is highly sensitive to utilization, with a large (64 MB) map
which requires 100s of milliseconds to persist to disk and
must be held in DRAM, and with poor performance at
90% utilization or above1. Finally, SMaRT does not handle
differences in track size due to varying track length, adaptive
formatting [7], or slip sparing [11].

We propose Virtual Guard (Vguard), a novel track-mapped
STL. Before modifying track T , Vguard migrates track T+1
to cache, allowing multiple in-place modifications to track
T . It maps each track to a static home location, eliminating
most track size issues. The persistent cache is comprised
of large, outer-diameter tracks, allowing most cached tracks
to occupy a single cache track along with a small metadata
header. On-disk overhead is modest, consisting of a small
(<0.5%) persistent cache and a single guard track per band,
and RAM overhead is almost negligible.

We present the design of Vguard, as well as simulation
results showing significant performance improvements
over traditional E-region STLs while imposing the same or
lower disk space and DRAM overheads. Vguard is seen to
take advantage of strong spatial locality in these workloads,
avoiding cleaning in all cases except synthetic traces.

1The cost to increase RAM from 128MB to 256 MB to accommodate
this table ($0.70) is large compared to an estimated 10% profit margin on
drives which may sell wholesale at $50; a loss of 10% capacity is also likely
to be economically unfeasible.



2 Virtual Guard

Virtual Guard is a track-mapped STL, where LBAs are
mapped to a track number, which is then mapped to a
physical track location. A small region at the outer diameter
is reserved as a persistent cache; the remainder of the drive
is divided into bands separated by empty (guard) tracks, and
the LBA space of the drive is mapped onto these non-cache
tracks. Unlike most STLs (e.g. E-Region) which direct
writes to the persistent cache, Vguard copies the next track
(in the shingling direction) into the persistent cache, forming
a “virtual guard” which allows the target track to be modified
in place without data corruption.

2.1 In-Place Writes

Given a host write to LBA X, Vguard calculates the track
and band number (TX ,BX), and then checks if (a) TX is the
last track in band BX or (b) track TX+1 is already cached.

If neither is the case, then Vguard reads the content of
TX+1 and writes it to the next free track in persistent cache
(Twf ). Track TX may now be modified in place2 without
risk to data in track TX+1. Assuming the persistent cache is
also shingled, Vguard uses the same approach when writing
to tracks in cache—if the following track is valid then it is
copied to the next free track in cache, and then writes are
performed in-place.

Figure 1 demonstrates examples of different write
scenarios in Vguard.

2.2 Map Persistence

Vguard maintains an exception map, indicating which tracks
have been relocated into cache and where. Due to the
relatively small size of the persistent cache and the large
granularity (one track) of the mapping, this map is extremely
small in comparison to the ∼60 MB reported in SMaRT[4]
or the ∼1 MB map seen in commercial E-region-based
devices [12]. In particular, if NMTE is the number of entries
in the mapping table and Ntr and Ntrc are size of the drive
and the persistent cache, respectively, in units of tracks, the
mapping table size would be roughly:

MapSize=NMTE × (log(Ntr)+ log(Ntrc)) (1)

For a 5 TB drive with 24 GB of persistent cache and
∼4×106 tracks (see Skylight [1]), the mapping table size
would be roughly 30K. The map is small enough that a full
copy can be appended to each track in persistent cache with
minor overhead. (Note that on occasion this, or other track

2The number of times it may be safely overwritten may be limited due
to upstream track interference, but is �1.

Tχ-1 Tχ Tχ+1 GuardTν Map
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(c)                                              (d)

Figure 1: (a) Write in-place on TX+1 (the last track in its
band with the guard track in front); (b) Write in-place on
TX−1 after caching TX ; (c) Write in-place on cached track
TX where it is located right before the log head in persistent
cache; (d) Write on track TX after relocating it to the write
frontier in cache (as there was a valid track (Tυ) in front of
it in its previous location).

size differences, will make it necessary to allocate two cache
tracks; however this will be rare.)

2.3 Cleaning

The cleaning process moves tracks from the persistent cache
back to their home locations. Vguard does not perform back-
ground cleaning, but rather triggers cleaning when either:

1. the number of free tracks in the mapping table drops
below a threshold α, or

2. the distance between the oldest track in persistent cache
and the write frontier (including any invalidated tracks)
exceeds a second threshold β .

In a single cleaning episode Vguard will clean two bands,
for each band repeating the following process: pick the first
two tracks in the tail of the log, and then clean all tracks
from cache with home locations in the same band as either
of the two tracks. The specific cleaning steps are:

1. Pick the track at the tail of the log, with home location
in band B.

2. Read all other tracks in cache with home locations in
band B.

3. Read band B.
4. Merge data for band B in memory and write to the

scratch pad, a reserved section of persistent cache; this
prevents data loss if power fails while overwriting the



data band.
5. Overwrite band B with the merged data.

Vguard also adds the following two optimizations to the
cleaning process:

1) If the first N tracks are not in cache, they can be
skipped by the cleaning process (both the read-data-band-
copy-to-scratch and the overwrite-data-band parts). This
reduces the worst-case cleaning overhead (when only one
track is in cache) by 50% on average. The same optimization
is used in DM-SMR drives on the market [1].

2) If multiple tracks from the same band are cached,
Vguard may choose to perform a partial cleaning of the band.
Rather than re-writing to the end of the band, rewriting stops
at track T−1, where track T is in cache when cleaning starts.

To reduce the buffer memory required and duration
for which host I/Os are stalled, a band may be cleaned in
multiple stages, with each stage reading, persisting, and then
re-writing a single buffer of data; read (and sometimes write)
operations are interleaved between stages. Vguard uses a
cleaning buffer size of 15 MB, roughly the same that seen
in commercial DM-STL drives analyzed to date [12, 1].

Although E-region-based STLs typically perform
background cleaning, this would be counter-productive for
Vguard. By moving tracks into cache and introducing virtual
guard tracks, Vguard allows repeated writes to write-hot
locations without the need to copy data; cleaning would
eliminate those spaces and require additional data movement
before the hot locations could be written to again.

3 Evaluation

Vguard is implemented as extensions to an existing and
accurate Python simulator for DM-SMR devices [12]. We
compare Vguard with the simulated performance of the
Seagate 5 TB drive (“DM-SMR”), using parameters and
drive settings shown in Table 1. No modification or scaling
of trace LBAs was performed; traces were replayed “flat out”
without delay between operations and with a queue depth
of 1, and the (simulated) write cache was disabled.

3.1 MSR Traces

Sixteen traces from the Microsoft Research trace set [10]
were simulated, representing a wide range of read/write
ratios and total trace size. In Figure 2 latency CDFs are
shown for both Vguard and DM-SMR, with Vguard latency
being seen to be dramatically lower. In some cases, e.g.
src2 0 and mds 0, the 99th percentile latency for Vguard
is significantly lower than the 10th percentile latency for
DM-SMR. Details of tail latency may be seen in Table 2.
95% latency for Vguard is seen to be roughly a single

Parameter Vguard DM-SMR
Size 5TB 5TB

Form factor 3.5” 3.5”
RPM 5980 5980

Track lengths 1.8-0.9MB 1.8-0.9MB
Mapping type Static Static

Band size 20 tracks 20 tracks
Cleaning granularity 2 Bands 2 Bands

Cache location Outer diameter Outer diameter
Cache size 13.8K Tracks (24GB) 13.8K Tracks (24GB)

Mapping table size ∼30KB ∼1.3MB
α 9194 22986
β 9194 22986

Write cache Disabled Disabled
Read ahead Disabled Disabled

Table 1: Simulated drive parameters for Vguard and
DM-SMR

rotation (∼10ms) for all traces tested, and maximum latency
is reduced from multiple seconds to ∼50ms in many cases3.

Due to spatial locality in the traces examined, the guard
track set fits completely within cache and Vguard is able
to perform an arbitrary number of writes in place (subject
to upstream interference limitations) without cleaning. In
contrast, DM-STL consumes space in both persistent cache
and the map with every write, entering cleaning for all of
the longer write-intensive traces. Figure 3 shows the Vguard
cache utilization for various MSR traces, showing both the
maximum number of active tracks and the total number of
tracks utilized, both as a percentage of total persistent cache
size. We see that none of these traces require more than 13%
of the 24 GB cache at any instance, and the total number of
tracks copied to cache (i.e. the log length) is never more than
38% of the cleaning threshold trigger (β).

3.2 CloudPhysics Traces

Additional experiments were performed on a more modern
set of traces courtesy of CloudPhysics [13], representing real
workloads on large volumes. In Table 3 we see the total num-
ber of writes and the volume capacity for each tested trace.
In Figure 4 we see the results of these runs; again Vguard is
able to handle the entire trace without entering cleaning.

In fact, analysis of the number of unique tracks modified
in each of the 100+ CloudPhysics traces, seen in Figure 5,
shows that none of these traces have a write footprint large
enough to force Vguard cleaning, even with a small 24 GB
persistent cache.

3In fact, the 100ms+ maximum latencies seen for rsrch 0 and stg 0 in
Table 2 are mostly due to very large (e.g. 6 MB) read operations.
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Figure 2: Latency CDFs for MSR traces on Vguard vs DM-SMR

3.3 Random Writes

To evaluate Vguard’s cleaning performance, we generate
4 synthetic traces with 100K random writes spanned over
500GB, 1TB, 2TB, and 4TB address spaces and run
them on Vguard and DM-SMR. Latency CDFs for these
experiments are shown in Figure 6. Vguard shows moderate
improvements of about 30% in 99th percentile and maximum
latency, while 90th percentile latency improves drastically
for the smaller-footprint trace (500 GB) but is slightly
worse than DM-SMR for the other cases. The similarity of
results between Vguard and DM-STL for the larger traces
is expected, as in each case each write forces one band to be

cleaned, with only modest differences in overhead between
the two STLs. (Note also that random write performance is
thus limited by band size—larger band sizes with lower space
overhead will result in poorer random write performance.)

4 Conclusion

Vguard represents a novel approach to shingling translation
layers, using persistent cache space for non-written tracks
while performing writes in-place. As a result, consumption
of cache space is not a function of the volume of data written,
but rather of the pattern of LBAs which are written to,



95% 99% 99.5% 99.9% Max
Trace Vguard DM-SMR Vguard DM-SMR Vguard DM-SMR Vguard DM-SMR Vguard DM-SMR
hm 0 10.08 24.78 10.4 95.01 10.97 97.58 21.57 324.78 53.03 7,234.81
hm 1 10.1 24.78 10.4 56.55 10.4 64.06 20.13 74.62 50.60 592.04

mds 0 10.08 24.78 10.4 95.01 10.4 95.81 30.12 324.78 50.52 1,789.66
proj 0 10.4 24.78 18.7 95.01 20.43 99.78 21.56 324.78 52.29 4,341.17
proj 3 10.38 24.78 10.4 24.78 20.11 30.5 30.38 102.35 53.88 1,573.94

rsrch 0 10.08 28.79 10.31 96.24 10.68 105.24 30.92 324.78 117.81 1,657.22
rsrch 1 10.14 24.78 31.78 24.78 37 41.18 39.46 324.78 62.52 324.78
rsrch 2 10.08 24.78 10.08 31.59 10.1 81.64 30.79 324.78 47.83 4,082.31
src1 2 10.38 24.78 10.4 85.64 20.09 95.63 20.43 324.78 50.62 2,400.70
src2 0 10.08 24.78 10.18 95.09 10.4 98.77 30.21 324.78 60.59 3,428.12
src2 1 10.4 20.18 20.43 24.78 20.43 24.78 20.44 29.72 58.85 332.20
stg 0 10.11 24.78 10.40 95.08 14.89 97.47 30.12 324.78 123.92 1754.54
usr 0 10.16 26.96 10.4 85.3 20.18 95.36 24.85 324.78 158.74 2,396.69

wdev 0 10.08 24.78 10.23 95.01 10.49 97.19 30.14 324.78 56.56 1,710.40
wdev 1 10.08 24.78 10.08 24.78 10.38 24.78 38.04 324.78 39.25 324.78
wdev 2 10.1 24.78 10.19 24.78 11.51 95.01 33.21 324.78 49.32 1,628.12

Table 2: Latency percentiles for MSR traces on Vguard and DM-SMR in milliseconds
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Figure 3: Vguard cache utilization by traces (all MSR traces)
Trace Number of writes Drive Size
w27 3,182,636 1.95TB
w29 2,707,559 1.95TB
w53 4,162,497 1.5TB
w54 8,648,118 3.6TB

Table 3: Characteristics of tested CloudPhysics traces
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Figure 4: Latency CDFs for CloudPhysics traces on Vguard

without regard to the number of times they are overwritten.
In many real-world cases the guard track set is seen to fit
comfortably within a rather small persistent cache, potentially
offering near-conventional-drive levels of performance as all
writes may be performed in-place. Further work is needed
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to compare Vguard with conventional drive performance,
as well as to validate performance on real hardware.
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