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Abstract
In large scale data centers, controlling tail latencies of
IO requests keeps storage performance bounded and
predictable, which is critical for infrastructure resource
planning. This work provides a transparent mechanism
for applications to pass prioritized IO commands to stor-
age devices. As a consequence, we observe much shorter
tail latencies for prioritized IO while impacting non-
prioritized IO in a reasonable manner. We also provide a
detailed description of the changes we made to the Linux
Kernel that enable applications to pass IO priorities to a
storage device. Our results show that passing priorities to
the storage device is capable of decreasing tail latencies
by a factor of 10x while decreasing IOPS minimally.

1 Introduction
Hard disk drives (HDD) have been a part of the computer
storage hierarchy since the 1950s. Although alternative
technologies (such as flash) have been introduced, HDDs
are still relevant to this day due to their capacity, per-
formance, and cost properties, which place them firmly
between tape and flash. HDD technology improvements
have pushed the devices to greater densities, but the fact
remains that the HDD is a mechanical device with lim-
ited opportunities for request parallelism. This has led to
a decrease in the performance to capacity ratio of HDDs,
measured in IOPS/TB, due to the fact that capacity has
increased while IOPS have remained nearly flat.

In order to increase the IOPS from a single actuator
arm that controls HDD heads, modern hard disk drives
employ device level queues that are managed by drive
firmware schedulers. These schedulers leverage drive in-
ternal information, such as magnetic head position, to
determine the IO request that should be served next. Al-
though these sophisticated schedulers are able to improve
the throughput of a set of requests, this comes at a cost of
increased tail latencies. Furthermore, a mechanism that
would preserve the IO order between the drive and the
hostside IO queues is currently non-existent. As a con-

sequence, host-drive IO re-scheduling is a common oc-
currence, i.e. IO requests ordering established at the host
side experience reordering once the requests reach the
drive. A common effect caused by re-scheduling are un-
predictable and long IO latencies. At the same time, with
the rise in cloud based storage, and the fact that HDDs
are the central element of this storage, HDD tail latency
has become a critical performance factor [7].

To limit the worst case latency for performance-
critical IO requests, two main approaches have been con-
sidered in production environments: (i) prioritizing the
“real-time” over the “background” IO requests, and (ii)
limiting the number of IO requests issued to a storage de-
vice. Although the first option appears to be a reasonable
approach it is rarely used in production settings due to the
host’s inability to communicate the priority information
to a storage device. Consequently any high priority IO
request is likely to get rescheduled by the device sched-
uler, and possibly experience high delays. Currently, lim-
iting the number of issued IO requests is the default op-
tion in many data centers. Submitting a low number of
IOs to a storage device limits the effects of the device IO
scheduler and reduces IO tail latencies. Unfortunately,
the low number of outstanding IOs also prevents users
from reaching the highest possible IO throughput.

In this work we provide a path of communication be-
tween a user application and a storage device that al-
lows device-level IO request prioritization. Passing the
application-level priorities to a storage device scheduler
minimizes IO re-scheduling. Additionally this reduces
the tail latency of performance-critical IOs without throt-
tling IO requests and disabling the device scheduler.
The communication path now includes user applications,
Linux block schedulers, and the drive scheduler on the
other end. It is important to note that our work leverages
existing IO prioritization APIs without any changes and
our implementation has been merged into the 4.10 series
kernel [4]. The rest of this paper includes a discussion of
the host and drive level queue interactions as well as a set



of results that stress the effectiveness of bridging the host
and HDD schedulers. Although our work was motivated
by HDDs, our solution is relevant to applications leverag-
ing storage devices that employ internal queueing, such
as solid-state drives and future storage-class memories.

2 Host-Device Queue Interaction
Adding support for priority being passed to storage de-
vices is a critical tuning knob when devices queue com-
mands internally. The SATA, SCSI, and NVMe stor-
age standards have support for queued commands and
the storage device is allowed to reorder or delay these
queued commands based on the device internal informa-
tion that is not visible to the host. Typically HDD sched-
ulers have favored throughput over latency, which is no
longer prudent for cloud storage systems.

To demonstrate the performance impacts of device
schedulers, we show the inversely proportional relation-
ship of HDD throughput to IO request tail latencies by
varying the number of IO requests in the device queue.
It is important to understand this relationship because it
is the main motivation for increasing the control over
the HDD scheduler. We focus on small, random read
IO commands because these commands are latency sen-
sitive and not cacheable (writes are frequently buffered,
caching avoids the storage device, large IOs have high
latencies). Figure 1a captures a set of experiments where
the fio tool [1] issues 4KiB random read requests to an
HGST Ultrastar HE8 drive. The number of outstanding
requests ranges from 1-32 and performance is measured
in terms of throughput and 99.99 percentile latency. To
ensure the IO requests are not served from a cache, we
run fio with the DIRECT IO option. Presented results
clearly show an increase in drive throughput that corre-
lates with the number of outstanding requests, i.e. the
throughput nearly doubles as the number of outstanding
requests grows from 1-32. Figure 1a also demonstrates
that the increase in IOPS comes at a cost to the tail la-
tency the application experiences. The tail latency in-
creases from under 100ms to over a second which is a
degradation of nearly 10x. With cloud storage providers
pinpointing tail latency as a key metric [2, 3], we are in
strong need of mechanisms that allow controlling the tail
latency of individual applications.

The IO schedulers in the kernel storage stack were
designed to control the latency and performance char-
acteristics of user applications. There are three com-
mon schedulers in the Linux Kernel, CFQ, Deadline and
NOOP, and only CFQ is capable of handling IO priori-
ties. The main idea behind introducing prioritization in
the host scheduler is to control the IO duration and avoid
high latencies for performance critical IOs (presented in
Figure 1a). In our next set of experiments we examine
the effects of the CFQ prioritization on the IO request la-

tency and total number of IOPS. We simultaneously run
two types of workload on a single HDD: (i) background
workload, always with 32 outstanding requests, and (ii)
foreground workload with varying number of outstand-
ing requests from 1-32. The foreground workload we
run either with or without prioritization.

Figure 1b shows that CFQ achieves some level of fair-
ness between the foreground and background workloads
when priority is not used. The scheduler has the nice
property that it does not starve the foreground workload
in case of a low issue depth, and at the same time the
background work is still able to achieve nearly half of the
available IOPS. One thing to note is that the total IOPS
is noticeably lower than the IOPS demonstrated in Fig-
ure 1a. In addition the CFQ scheduler does not increase
foreground performance as the issue depth increases,
but the background workload performance does degrade
with the increased workload from the foreground. This
is an unusual result because one would expect the fore-
ground performance to increase with a decrease in IOPS
for the background work. In addition, the foreground and
background latencies increase with increased foreground
workload. While the experiments reveal IOPS perfor-
mance problems with CFQ in certain cases, the overall
conclusion is that CFQ does a nice job of keeping a rel-
atively low tail latency for foreground work. CFQ pro-
vides reasonable isolation between the foreground and
background process.

In the case when IO priority is set on the foreground
work, Figure 1b presents somewhat unintuitive behav-
ior. Foreground work has a lower total IOPs and much
higher latencies, when we indicate that the foreground
work is high priority. In addition the background work-
load starts to see much higher IOPs. At low foreground
queue depths we observe priority inversion. Once the
queue depth of the foreground requests starts to rise to 8
requests and beyond, we see that the background work
nearly stops completely and the foreground work has
much better tail latencies.

In conclusion, host-level schedulers that implement
priority awareness aren’t very intuitive in their behavior
with mixed workloads. In addition host level schedulers
implementing priority leverage idling to provide isola-
tion between priority classes, but this has the negative ef-
fect of lowering drive throughput. Due to re-scheduling
that occurs within the drive, the host scheduler cannot
make any guarantees about performance when a request
is dispatched to a drive queue. To combat this problem,
the schedulers idle to guarantee that all outstanding pri-
oritized commands are finished in a predictable manner.
It is our belief that our work is complementary to host-
schedulers leveraging priority. We believe there is now
an opportunity to revisit host-schedulers to take advan-
tage of the benefits of device level priorities.



0 5 10 15 20 25 30
QD

80

100

120

140

160

IO
Ps

0

250

500

750

1000

1250

1500

1750

p9
9.

99
 L

at
en

cy
(m

s)

(a) IOPs and Latency vs QD Plot
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Figure 1: Current Behaviors of HDD and Schedulers The two graphs demonstrate the performance impact of increasing QD
as well as how host and device schedulers can produce unexpected behavior. In all our figures IOPS are represented as solid lines
and dashed lines indicate tail latency. The legend is a tuple of [Scheduler.Work.Priority On.Drive Priority], where work is F for
foreground, B for background, Priority On is P, and drive priority is D. Figure 1a shows the relationship that drive queue depth
has on application performance. Figure 1b demonstrates that prioritized commands and schedulers sometimes produce unexpected
results.

3 Implementation in The Linux Kernel

This section describes the prioritization extensions we
introduce into the Linux Kernel. As described in Sec-
tion 2, IO prioritization is a currently supported and well
documented feature of the Linux kernel. However, the
only IO scheduler that leverages the IO prioritization fea-
tures is the CFQ scheduler. IO priorities can be assigned
to a single process or a group of processes, and are ma-
nipulated via the iopriority set() system call. IO requests
in the Linux Kernel travel a fairly complex path from the
application to the storage device. As the IO request trav-
els from the application to the device, crossing multiple
kernel layers, it is represented in several forms. To better
understand the technical details of our work, and in order
to describe the changes we introduce into the kernel, we
further examine the IO path in the Linux Kernel and how
IO prioritization fits into this path.

After being dispatched by a user application through
a read()/write() system call, an IO request is handled
by three main layers within the kernel: VFS, block and
the device driver layer. Upon reaching the kernel and
the VFS layer, a bio structure is created from the initial
read()/write() requests, which can then be used by stack-
able device mapper targets. Eventually the bio struc-
ture is passed to the block layer where it gets trans-
formed into a request structure, which is used by block
layer schedulers to reorder and merge requests. CFQ is
the only priority aware scheduler and obtains the prior-
ity of the IO request from the iocontext structure that
is associated with the task struct structure of the cur-

rent running task. The iocontext can be manipulated
with the iopriority set() / get() system calls. Based on
the iocontext value, the request structure is placed in a
high/low priority queue. After the scheduler dispatches a
request the priority is no longer used, and the request op-
tionally transforms into another form (typically a SCSI
command) before eventually being converted by device
drivers into device specific requests.

In order for IO prioritization to be a useful feature that
is independent of block layer schedulers, we have made
changes to the block layer of Linux. We now associate
the iocontext priority information with the request when
a bio is converted into a request. This allows request
based device drivers to act on priority information, which
includes SATA, SAS, and NVMe devices. In this work
our focus was on enabling prioritization within SATA
devices, because they are the dominant storage devices
within the cloud storage stack. We have currently imple-
mented priority support for the device in the libata layer,
which is used by SATA devices and is capable of inter-
facing with several HBAs including AHCI (implemented
in many motherboards). The reader should note that
the kernel-device communication is performed through
an HBA that takes requests from the kernel and inter-
nally converts them to device commands. Consequently,
passing prioritized commands to a device depends on the
HBA support. We also discovered that the Broadcom
LSI 9300-4I4E HBA supported passing prioritized com-
mands to SATA HDDs so we updated the driver for this
HBA, mpt3sas, to support iopriorities.



4 Results
To demonstrate the IO latency effects of host→device
priority communication, we repeat the experiments used
to generate Figure 1b, only this time we run the experi-
ments with priority information passed to the storage de-
vice. In addition to CFQ, we also include results gener-
ated by the NOOP and DEADLINE schedulers because
our work enables IO priority to be independent of the
scheduler. The results were collected on an 8 core In-
tel E5-2640 with 256GiB of memory running the 4.10.1
Linux kernel. All results were collected on a HGST Ul-
traStar HE8 HDD using DIRECT IO in order to observe
storage device performance.

Figure 2 represents the performance results for multi-
ple combinations of foreground fio workloads and avail-
able IO schedulers. As in Section 2, the background
workload is fixed to 32 outstanding IO requests, while
the foreground work varies this parameter from 1-32.
Figure 2 shows that passing priority to the drive can im-
prove application IOPS and tail latencies under mixed
workloads. This result is consistent across all schedulers,
which enables an application greater flexibility to tune
their performance requirements. When we look at the
results for the NOOP and DEADLINE schedulers, Fig-
ure 2a and 2b respectively, we can observe nearly iden-
tical behavior. Recall that neither of these host sched-
ulers have priority support built into their scheduling de-
cisions. Therefore, they do not attempt to reorder or de-
lay requests based on the priority, instead these sched-
ulers just pass the priority value to the drive. The inter-
nal HDD scheduler uses the passed priorities to decide
about the command ordering. The results in these fig-
ures are nearly identical so we choose to examine them
in tandem. In these results we see that the foreground
IOPS goes up significantly for lower queue depths when
prioritized requests are issued to the drive, but has di-
minishing returns with higher queue depths. This is
expected because the drive scheduler can best perform
when there is a lower ratio of high priority to default pri-
ority requests. When the ratio of prioritized commands
rises then non-prioritized commands get delayed causing
anti-starvation mechanisms to kick-in. This leads to the
scheduler switching between requests from both the pri-
oritized and non prioritized set of commands, reaching
lower than optimal IOPS.

Figures 2a and 2b demonstrate that enabling prior-
itization within the device has a large positive impact
on the tail latency of the foreground IO. For the fore-
ground workload, QD 1 and NOOP scheduler, priorities
reduce the tail latency from 1.4s down to 81ms, over 10x.
It is interesting to note that these results are collected
with the background workload fixed at 32 outstanding
requests, which puts significant stress on the HDD re-
sources. The lower tail latency is observable for all queue

depths across both the DEADLINE and NOOP sched-
ulers. For QD 1, the tail latency of the background work-
load increases by about 2x when priority is passed to the
drive and this is also expected given the drive is forced
to work on prioritized IO. Expectedly, the tail latency for
the background workload further increases as the number
of high priority requests is increased.

The last set of results we wish to examine are what
happens to the CFQ scheduler when we pass iopriorities
to the device. In Figure 2c we see that by passing io-
priority to the drive, in addition to using priority in the
scheduler, we are able to ensure the prioritized IO has
lower latencies. Note that this figure is identical to Fig-
ure 1b with the addition of performance results of pass-
ing priority to the drive. Recall that we discussed in Sec-
tion 2 that CFQ had the surprising behavior of increasing
tail latency and lowering IOPS of prioritized foreground
workloads, but by passing priority to the drive this is no
longer an issue. We also see that IOPS are increased for
foreground work with QD 4 and lower. The tail latency
of the prioritized commands are vastly improved when
we pass them to the device across all queue depths.

In summary by passing iopriority to the storage de-
vice, foreground IO achieves much better latency num-
bers and also increased IOPS in many cases. This im-
provement comes at a cost to the IOPS and latency of the
background workload. These properties are held inde-
pendently of the host level scheduler that is used.

5 Related Work
IO scheduling has been the main topic of many studies
in recent years. Kim et al. [12] propose connecting the
IO priorities across the storage stack layers, to address
the problem of priority inversions. Their approach is
request-centric and based on the IO dependencies. Yang
et al. introduce split scheduling [18], a handler-based
cross-layer scheduling that enables preserving the IO in-
formation. Split scheduling prevents host-side storage
layers, from reordering an IO request. IOFlow [17] pro-
vides IO differentiation information between storage hy-
pervisors and servers. Our method can be seen as com-
plementary to these approaches, because we extend pri-
oritized host based-scheduling to a device.

Young Jin et al. [19] address the issue of host-IO De-
vice re-scheduling. They acknowledge the host-device
IO re-scheduling and design a dynamic scheduler that al-
lows switching on/off the host and the device schedulers
at runtime. They do not attempt passing the IO priorities
to the device. A set of real-time scheduling algorithms
has been developed [16, 8, 16]. While they rely on
SCAN to deliver highest throughput, we allow our prior-
ity commands to be processed completely independently
of the standard drive request processing algorithm. Other
traditional schedulers [11, 14, 13] allow IO priorities, but
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Figure 2: Drive Priority & Scheduler Impact These graphs demonstrate that priority information passed to the storage device
improves latency across all host level schedulers.

do not pass them to the IO device. Differentiated Stor-
age [15] proposed modifications to IO interfaces to pro-
vide application to device IO classification, whereas we
reuse existing interfaces and infrastructure.

Multiple studies [9, 5, 10] investigate IO scheduling
in distributed systems, by mixing IO- and computation-
-bound workloads on a single node and focusing on the
effects of multi-level IO scheduling in a virtualized/cloud
environment. These studies are limited to the host side
and do not include priority-aware IO devices. Blagojević
et al. [6] show the importance of IO scheduling in a cloud
environment and address the device interaction with a
distributed IO accesses. In our work we systematically
examine the Linux kernel changes necessary to allow IO
prioritization within the device. Our work allows trans-
parent integration of priorities with distributed systems
and local host software.

6 Conclusion & Future Directions
In this work we have shown that using iopriority within
a storage device improves prioritized application tail la-
tencies and IOPS. Our approach is complementary to ex-
isting priority handling in host level schedulers and we
have implemented our changes in the Linux Kernel and

these changes have been merged upstream. The results
show that prioritized commands to the device improve
foreground performance across three Linux schedulers.
This work is a step in the direction of allowing finer
grained control of storage device behavior. Although we
have demonstrated our work on an HDD it is applica-
ble to SSDs as well, because they also queue and delay
requests internally. With cloud storage providers being
heavily dependent on predictable tail latencies this work
provides a new dimension of optimization which is criti-
cal for cost and performance sensitive applications.

Our future work will focus on examining more work-
loads and including mixed read/write workloads. Priori-
tization is currently implemented at the process level and
we plan to investigate command level prioritization with
aio interfaces in the Linux Kernel. In addition we will
look at the internals of host level schedulers and identify
areas where knowledge of device priority may lead to al-
ternative design choices. This work has focused on HDD
performance and another direction of the future work
will be an SSD extension. In addition, the NVMe stan-
dards have command and queue level prioritization and
we plan to investigate ioprioritization in this context.
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