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Abstract
To reduce the performance and lifespan loss caused by
the partial-stripe writes in SSD RAIDs, we propose two
schemes: parity-stream separation and SLC/MLC con-
vertible programming. Parity-stream separation splits
the parity block stream from the data block stream to
decrease valid page copy during garbage collection. In
the convertible programming scheme, the flash memory
blocks that are allocated for parity data are programmed
in SLC mode to reduce the wear caused by programming
stress, while the other flash memory blocks are written in
MLC mode as usual. Evaluation shows that our scheme
decreased garbage collection overhead by up to 58% and
improved lifespan by up to 54%, assuming that the MLC
write stress was 3.5 times that of the SLC.

1 Introduction

In data centers or enterprise systems, SSDs are mostly
used in a form of RAID configurations for securing reli-
ability and performance. However, the characteristic ac-
cess patterns of RAID systems reduce their lifespan and
thus increasing their cost-to-own (CTO) [2, 16, 19, 26].

A representative case is the well-known issue of
partial-stripe writes [13, 16, 18, 19]. In a RAID system,
when an arbitrary data block in a stripe is modified, the
corresponding parity block must be recalculated and up-
dated, resulting in significantly higher write traffic for
parity blocks than for data blocks.

Figure 1 shows the number of write operations is-
sued to each disk in a RAID during execution of the
FIO microbenchmark [1]. The benchmark was config-
ured to issue small random writes of a few tens of KB in
size. In this experiment, to clearly separate parity block
writes from data block writes, we used RAID-4 instead
of RAID-5 or RAID-6.

The results show that the SSD dedicated to parity
blocks received significantly higher write traffic than the
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Figure 1: Number of write operations issued to each disk
in a RAID-4 array during execution of a benchmark pro-
ducing small randome writes.

other SSDs in the RAID. These frequent updates of par-
ity blocks will significantly reduce lifespan of SSDs by
heavy flash cell wear out and degrade overall write per-
formance of RAID systems by increasing garbage col-
lection overhead as well.

Based on this observation, we propose two RAID
management schemes, parity-stream separation and
single-level cell (SLC)/multi-level cell (MLC) convert-
ible programming, to increase the performance and
lifespan of a flash SSD RAID system. The parity-
stream separation scheme, which utilizes multi-streamed
SSDs [12], reduces the number of valid page copy op-
erations caused from garbage collection by separating
the parity-stream from the data-stream at the RAID con-
troller level. The SLC/MLC convertible programming
scheme lessens the wearing out of flash blocks to extend
lifespan of SSDs by programming flash blocks allocated
for the parity-stream in SLC mode.

The proposed schemes were implemented on the
FlashSim flash SSD simulator [14], and evaluated us-
ing the three benchmarks: FIO, TPC-C [20], and Yahoo
Cloud Serving Benchmark (YCSB) [4].



2 Our Approach

2.1 Parity-stream separation
A stream is an abstraction of SSD capacity allocation,
and each stream stores a set of data having the same lifes-
pan expectancy. As shown in Figure 2, a multi-streamed
SSD allocates physical capacity to place data in a stream
together and not to mix data from different streams [12].

This approach significantly improves throughput by
reducing the garbage collection overhead when the life
expectancy of various streams differs. Multi-stream sup-
port was standardized for the SCSI/SAS interface and is
expected to be integrated in the NVMe standard.
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Figure 2: In this example [12], each one of the three
streams writes data to its corresponding flash block.
Without multi-stream support, pages will be allocated se-
quentially from Block 0 to Block 1.

When partial-stripe writes occur frequently, parity
blocks stored in a RAID are likely to be updated more
frequently than data blocks. In a RAID-5 or RAID-6,
parity block updates and data block updates tend to in-
terleave because of parity disk rotation. Therefore, the
chances are high that user data pages will blend with par-
ity pages in a single flash block. In such cases, frequently
updated parity pages are likely to be invalidated soon
while data pages remain valid longer. This incurs addi-
tional valid page copy operations during garbage collec-
tion. Consequently, one can find fairly good opportuni-
ties to reduce garbage collection overhead by separating
parity write as an independent stream.

As shown in Figure 3, at the RAID controller level,
the parity-stream separation scheme maps parity writes
to parity-stream and user data writes to data-stream be-
cause the controller knows which are parity writes. Nat-
urally, the parity writes and data writes are delivered to
SSDs with their stream IDs. The FTL (flash translation
layer) inside the SSDs stores parity pages in the flash
blocks allocated only for the parity-stream while the data
pages are stored in the flash blocks for the data-stream.

This approach is expected to significantly reduce the
number of valid pages in a victim flash block for garbage
collection. In addition, this will lower the write am-
plification factor which will end up with the improved
throughput and wear out reduction of a RAID system.
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Figure 3: Parity writes are tagged as a parity-stream at
the RAID controller. Flash blocks allocated to parity-
stream are programmed using SLC mode.

2.2 SLC/MLC convertible programming
Although parity-stream separation suppresses valid page
copy operations during garbage collection, it does not
eliminate frequent parity block writes caused by partial
parity updates. These frequent updates still adversely af-
fect SSD lifespan in a RAID. Moreover, the proportion
of parity block writes is expected to grow because of the
expanded stripe size as the number of SSDs constituting
a RAID increases to earn more parallelism. Therefore,
reducing the wear caused by frequent updates is as im-
portant as reducing the garbage collection overhead. To
achieve this goal, we propose SLC/MLC convertible pro-
gramming.

The structure of MLC flash cells is fundamentally the
same as that of SLC flash cells. The differences between
SLC and MLC lie in how to program and how to interpret
threshold voltages in the flash cells. Therefore, if it is
possible to change its programming method and thresh-
old voltage interpretation, a flash block can be used in-
terchangeably in both SLC and MLC modes, depending
on demand. In fact, to shorten write latency, some com-
mercial MLC SSDs use a few of their flash blocks as a
write buffer simulating high-performance SLC [21].

In general, an SLC flash cell provides a program/erase
(P/E) endurance cycle more than 10 times greater than its
MLC counterpart. The extended lifespan of SLC flash
cells is due to low programming stress and the fewer
reference voltages. Therefore, if the flash blocks dedi-
cated to the parity-stream are managed in the SLC pro-
gramming mode, wear will be significantly reduced due
to lessened programming stress, and in turn, the overall
lifespan of the SSD will be extended.

The proposed approach programs the flash blocks ded-
icated to the parity-stream in the SLC mode as shown in
Figure 3. If a new free block is required for the parity-
stream, the FTL first tries to allocate an existing free
block that has been used in the SLC mode. If there are no



such free blocks, an MLC free block will be converted to
an SLC one and allocated for the parity-stream.

When an MLC flash block is used in SLC mode, the
capacity will be shrunk by one half. Therefore, the
available SSD capacity is decreased by programming an
MLC flash block in SLC mode. In general, the com-
mercial SSDs contain significantly greater flash memory
than their nameplate capacity [22]. The size of this over-
provisioned area is usually up to approximately 30% of
the nameplate capacity. Decreased capacity caused by
the conversion to SLC mode will be deducted from this
over-provisioned area, maintaining the nameplate capac-
ity. However, in an extreme case in which parity writes
dominate, the ratio of SLC blocks will monotonically in-
creases to the point where the nameplate capacity cannot
be guaranteed. Therefore, the maximum allowable num-
ber of flash blocks that can be used in SLC mode must
be enforced. When that number reaches its upper limit,
even the parity-stream must be stored in the MLC mode.

This reduction of the over-provisioned capacity from
the SLC conversion may increase the frequency of
garbage collection, which may result in increased write
amplification. Therefore, it is desirable to dynamically
determine the optimal number of flash blocks to be used
in SLC mode for given conditions. However, the dy-
namic determination model is beyond the scope of our
paper and is left to future research. Instead, we ana-
lyze the trade-off between garbage collection overhead
increase and wear out reduction depending on the upper
limit of the SLC flash block count in Section 3.

3 Evaluation

3.1 Evaluation environment
We implemented the proposed schemes in the FlashSim
SSD simulator [14] for evaluation. In addition, we added
multi-stream support to the DFTL [5], which is the de-
fault FTL of FlashSim.

We used block-level I/O traces as inputs to FlashSim.
We collected the block-level I/O traces using a storage
server. The server used 7 SSDs, which were grouped as a
RAID-5 volume, and Linux kernel 4.4.35 as its software
RAID controller. A stripe of the RAID volume was 3
MB. The traces were extracted using ftrace. The RAID
controller was modified to tag parity writes. The parity
tag was delivered to the block layer and recorded in the
traces together with its corresponding I/O request.

We used three benchmarks: FIO [1], TPC-C [20] on
MySQL, and YCSB [4] on Cassandra. Table 1 illustrates
their specific configurations.

Table 2 describes the parameters for simulating SSDs
in our evaluation. The flash memory characteristics fol-
lowed that of V-NAND [23].

Table 1: Workload configuration

FIO
(Random write)

Runtime 20 min.
No. of jobs 4
Write size 16 KB
File size 4 GB

Distribution Zipfian
θ=0.99

TPC-C Runtime 2 h.
No. of warehouses 40

YCSB
(Update only)

Heap size 2 GB
No. of threads 32

Record size 1 KB
No. of records 4 millions

No. of operations 3 billions

Distribution Zipfian
θ=0.99

Table 2: Parameters used for SSD simulation

Total block number 2048
Over provisioning area 28%

Page size 16 KB

No. of pages per block SLC 128
MLC 256

Read delay SLC 20 us
MLC 35 us

Write delay SLC 180 us
MLC 390 us

Block erase latency 4000 us
MLC:SLC write stress 1.5×, 2.5×, 3.5×

No technical specifications reveal the difference in
programming stress between SLC and MLC modes when
the same flash memory is interchangeably written in both
modes. However, in such cases, the ratio of program-
ming stress per byte between the two modes reported as
being from 1.4 [11] to 3.5 [3]. Accordingly, we simu-
lated varying the ratio between 1.5 and 3.5.

3.2 Benchmark results
The number of valid page copies caused by garbage col-
lection is the main determinant of garbage collection
overhead and causes response delays when the number
of free blocks available suddenly drops due to a burst
write requests. Figure 4 shows the normalized number
of copied pages caused by garbage collection.

Page copy operations diminished by 58% for FIO be-
cause its continual, small, random writes maximized the
benefit of parity-stream separation. The average write
size of TPC-C was significantly larger than that of FIO
because the former used buffered I/O and the latter used



 0

 0.5

 1

 1.5

 2

1.5x 2.5x 3.5x

N
o

rm
a

liz
e

d
 L

if
e

s
p

a
n

MLC:SLC Program Stress

FIO

None
PS

PS+CP

 0

 0.5

 1

 1.5

 2

1.5x 2.5x 3.5x

MLC:SLC Program Stress

TPC-C

 0

 0.5

 1

 1.5

 2

1.5x 2.5x 3.5x

MLC:SLC Program Stress

YCSB

Figure 5: Normalized expected lifespans under various MLC:SLC programming stress ratios.
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Figure 4: Normalized number of page copy operations
for garbage collection. PS and CP mean parity-stream
separation and convertible programming, respectively.

direct I/O. This increased write size reduced the effec-
tiveness of parity-stream separation.

To update its data, Cassandra first records the update
in the commit log. When the log is committed, the up-
dated data is saved in a new table file, which is im-
mutable. Thus, every update creates a new table file,
and the multiple table instances are regularly merged and
compacted into a single table file [6]. Because of this
copy-on-write update style, the sizes of write requests
flowing from YCSB were similar to the stripe size. In ad-
dition, because our simulation did not utilize the TRIM
command [9], both logging and copy-on-write updating
increased the capacity utilization of simulated SSDs to
close to 100%. These two factors incapacitated parity-
stream separation.

As stated, convertible programming shrinks the pro-
portion of over-provisioned capacity, resulting in in-
creased valid copy operations for all three benchmarks.
Specifically, YCSB showed an appreciably higher num-
ber of copy operations because of the extremely high ca-
pacity use mentioned. However, the actual performance
decrease was smaller than the increase in copy operations
because a significant percentage of copy operations was
done in SLC mode.

To analyze the effect of the proposed schemes on SSD
lifespans, we measured the accumulated wear out caused
by programming stress during execution of benchmarks,
varying the wear stress ratio between SLC and MLC
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Figure 6: Throughput and lifespan measured while exe-
cuting FIO with varying capacity utilization. Lines mean
throughput and bars mean normalized lifespan.

modes. We found that expected lifespan was inversely
proportional to accumulated wear out.

As shown in Figure 5, the convertible programming
scheme appreciably extended SSD lifespans in all cases.
In particular, when the stress ratio was 3.5, the proposed
scheme improved the expected lifespan for TPC-C by
54%, which is a gain from the 35% wear reduction.

Because the number of copy operations for garbage
collection was a relatively small portion of the overall
write operations, parity-stream separation alone barely
affected lifespan. For instance, in spite of increased copy
operations, the YCSB lifespan was improved by approx-
imately 10%.

3.3 Effect of utilization and SLC ratio
As shown in the YCSB results, using SLC mode un-
der condition of high capacity utilization shrank the rel-
ative size of over-provisioned area, and thus increasing
garbage collection overhead. To investigate the relation-
ship between the effectiveness of the proposed schemes
and capacity utilization, we observed throughput and
lifespan changes under our approach while varying the
capacity utilization of the FIO benchmark.

Figure 6 shows that with the proposed schemes the
throughput proportionally decreased to the capacity uti-
lization. When the utilization was over 50% the through-
put was poorer than that without the proposed schemes.
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Figure 7: Lifespan and throughput measured while exe-
cuting FIO with varying upper limit of SLC block ratio.
The programming stress ratio was set at 2.5×. Each line
represents a different capacity utilization.

However, storage capacity is being severely underuti-
lized in most of data centers [17], and the appropriate
use of the TRIM command keeps the capacity utilization
at the FTL level the same as that at the file system level.
Therefore, the proposed schemes will operate under fa-
vorable conditions in terms of capacity utilization most
of the time.

Diminishment of lifespan improvement also occurred
in proportion to capacity utilization. However, the life
expectancy of SSDs was markedly improved in all con-
ditions. In particular, when the ratio of programming
stress between the MLC and SLC modes was 2.5, the
proposed schemes achieved lifespan improvement of ap-
proximately, even at 90% capacity utilization.

Figure 7 presents the lifespan and throughput changes
according to the upper limit of the ratio of the flash
blocks that are allowed to be programmed in SLC mode.
An SLC ratio of 0% means that using of SLC mode is
prohibited, whereas an SLC ratio of 100% means that
the size of the over-provisioned area may become zero.
Since this ratio is the upper limit, naturally, the real num-
ber of blocks used in SLC mode may be lower.

Figure 7a shows that the higher the number of allow-
able SLC blocks the more the lifespan was increased, re-
gardless of capacity utilization. However, the proposed

schemes more effectively increased lifespan when the
utilization was low. In contrast, as shown in Figure 7b,
the proposed schemes decreased throughput when the
utilization was greater than 50%.

4 Related Work

In order to improve reliability and extend mean time be-
tween failure (MTBF), a few parity distribution schemes
for SSD RAIDs were proposed, which include uneven
distribution [2] and wear-level-aware distribution [26].
These approaches allow RAIDs to sidestep the damage
caused by frequent parity updates to some degree.

Postponing parity writes using non-volatile memory
buffer can efficiently reduce the number of parity updates
issued to storage devices [7, 8, 24]. This approach is
orthogonal to our schemes and can be combined together
with them to minimize write amplification due to parity
updates.

An SSD management scheme that consolidates par-
ity pages to reduce garbage collection overhead has been
proposed [25]. It is technically challenging to differen-
tiate parity pages from data pages inside an SSD with-
out stream information. Therefore, this approach distin-
guishes parity pages by detecting the different access pat-
terns from the upper RAID layer.

Dynamic SLC/MLC switching of flash cells has been
used to increase SSD performance and lifespan. Worn-
out MLC blocks can be revived by using them in SLC
mode [10]. A file system has been proposed that divides
flash memory into SLC and MLC regions and dynami-
cally changes the size of each region to meet the chang-
ing requirements of applications [15].

5 Conclusions

This paper proposed and evaluated the parity-stream sep-
aration and SLC/MLC convertible programming to rem-
edy the adverse effects caused by partial-stripe writes
in SSD RAIDs. Evaluation showed that the proposed
schemes significantly reduced garbage collection over-
head when there are frequent small random writes, and
improved lifespan of SSDs for all evaluation cases.

We expect that splitting the parity-stream into multi-
ple streams based on the update patterns of their corre-
sponding stripes will further reduce garbage collection
overhead. In addition, we plan to investigate a model
that dynamically determines the optimal upper bound of
the number of SLC flash blocks in terms of workload and
system characteristics.
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