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1 Introduction

With the advent of high performing NVMe SSDs, the
bottleneck of system performance is shifting away from
the traditional storage device. In particular, the I/O stack
software layers have already been recognized as a heavy
burden on the overall I/O. Efforts to alleviate this burden
have been considered [1, 2, 3, 4]. Recently, the spotlight
has been on the CPU. With computing capacity as well as
the means to get the data to the processor now being lim-
ited, recent studies have suggested that processing power
be pushed into where the data is residing [5, 6, 7, 8]. With
devices such as 3D XPoint [9, 10, 11] in the horizon, this
phenomenon is expected to be aggravated.

In this paper, we focus on another component related
to such changes. In particular, it has been observed that
the bandwidth of the network that connects clients to
storage servers is now being surpassed by storage band-
width [12, 13]. Figure 1 shows the changes that are
happening. We observe that the changes in the storage
interface is allowing storage bandwidth to surpass that
of the network. As shown in Table 1, recent develop-
ments in SSDs have resulted in individual SSDs provid-
ing read and write bandwidth in the 5GB/s and 3GB/s
range, respectively, which surpasses or is close to that of
10/25/40GbE (Gigabit Ethernet) that comprise the ma-
jority of networks being supported today.

Based on this observation, in this paper, we revisit the
organization of disk arrays. Specifically, we target write
performance in all-flash arrays, which we interchange-
ably refer to as SSD arrays, that are emerging as a solu-
tion for high-end storage [14, 15, 16, 17, 18, 19, 20]. As
shown in Table 2, most major storage vendors carry such
a solution and these products employ plenty of SSDs to
achieve large capacity and high performance [16, 17, 18,
19]. Figure 2 shows how typical all-flash arrays would be
connected to the network and the host. Our goal is to pro-
vide high, sustained, and consistent write performance in
such a storage environment.

Figure 1: Network and storage bandwidth growth trend

Even though SSD arrays employ a large number of
SSDs, reports have shown that contrary to expectations,
they do not provide high, stable performance. In contrast,
large latency variations and oscillating bandwidth for I/O
requests are commonly reported [21, 22, 23, 24, 25].
The major source of such ineffectiveness is the effect of
garbage collection (GC) operations within the SSD de-
vices [26, 27].

Figure 3 shows our preliminary experimental results
where we observe the write bandwidth of a RAID-0 con-
figured SSD array comprising four identical 400GB ca-
pacity PCIe SSDs (with specifications of 128KB sequen-
tial read and write bandwidth of 2.2GB/s and 900MB/s,
respectively) running the synthetic FIO workload [28].
The measurements are made at the storage host, with-
out going through the network, and the numbers reported
are averages of 5 executions of the same workload with

Table 1: Comparison of commodity SSDs
Product SEQ R/W RND R/W Interface

(GB/s) (IOPS)

Intel
P3608 5/3 0.8M/0.15M PCIe
P3710 0.5/0.5 85K/45K SATA

Samsung
PM1725a 6.4/3 1M/170K PCIe
PM1633a 1.2/0.9 190K/30K SAS



Table 2: All-flash array products
Solid Fire EMC Pure Nimble
(NetApp) Storage Storage

Model SF19210 6X-Brick M70 AF9000
Capacity 20TB 240TB 136TB 500TB

# of SSDs 10 150 68 96
IOPS 100K 900K 370K 350K

(Random) - @ 8KB @ 32KB -
Network 20Gb 240Gb 40Gb 40Gb

Figure 2: Organization of a typical network connected
all-flash array

measurements starting with clean empty SSDs (cleaned
for every execution). We observe that, at first, the perfor-
mance is at its peak at roughly 3.5GB/s, which is quite
close to the ideal 3.6GB/s write bandwidth. However, af-
ter some time, performance drops considerably, dropping
even below the line along the x-axis at 1.25GB/s, which
is the bandwidth of today’s typical 10GbE network. This
drop is due to GC. After the performance drop, perfor-
mance stabilizes at low bandwidth and then increases,
but still oscillates considerably.

We observe that with just four SSDs the storage sys-
tem bandwidth can be considerably higher than typical
network bandwidth. However, we also observe that due
to fluctuations in SSD performance due to GC, perfor-
mance can drop considerably. In conclusion, we need to
find a way to stabilize performance such that services are
provided in a steady and expected manner.

Efforts have been made to alleviate such performance
variations at various layers of the system [27, 29, 30, 31,
32, 33]. Despite such effort, performance instability due
to GC still remains a problem since GC is a necessary
operation for flash memory based storage devices.

In this paper, we present a storage organization for
SSD arrays that totally eliminates garbage collection
(GC) within an SSD (that is, internal GC does not oc-
cur). This is based on two key, simple observations: 1)
host-end storage systems are connected through the net-
work, and 2) the storage device is no longer the bottle-
neck, but rather, the network bandwidth is. These two
observations imply that network bandwidth performance
should be the target performance goal for SSD arrays. We
show that this can be achieved, not as occasional peak
performance, but as sustained, consistent performance as
we eliminate all internal GC.

The remainder of this paper is organized as follows. In
Section 2, we discuss the organization that we propose.

Figure 3: Observed bandwidth serving the FIO bench-
mark workload on a RAID-0 configured SSD array of 4
PCIe SSDs

Then, in Section 3, we discuss the experimental setup
as well as the results of the measurements. Finally, we
conclude the paper with Section 4.

2 Serial Management of SSD Arrays
In the days of HDDs, where disk bandwidth was limited,
it was logical to organize disks as an array so that in-
dividual disks could be accessed in parallel to increase
bandwidth. However, with contemporary SSDs, as indi-
vidual device bandwidth start to surpass network band-
width, parallel organization of many SSDs may no longer
be advantageous.

Based on this observation, we propose to organize the
array of SSDs in a serial manner. This organization al-
lows only one SSD to service all write requests, though
SSDs in the array will take turns as the write servicing
SSD. As we will show later, such management allows
clients to observe consistent SSD write bandwidth per-
formance. The goal of such an organization is to provide,
at all times, 1) consistent unfluctuating SSD write perfor-
mance, 2) at peak network bandwidth performance. This
can be achieved by forbidding GC within SSDs. We now
discuss the organization in detail.

2.1 Design
In describing our technique, let us for now assume that
the ideal SSD write bandwidth as specified on the prod-
uct is greater than the network bandwidth. This will gen-
erally be true with contemporary high-end SSDs and net-
work configurations as we discussed earlier (for exam-
ple, 3 GB/s for PCIe SSDs shown in Table 1 versus 1.25
GB/s for 10GbE). If this is not the case, we can increase
the number of the so-called front-end SSDs, which we
describe later, to serve our purpose. For simplicity, but
without loss of generality, let us assume that we have one
front-end SSD satisfying the above assumption and con-
centrate on writes. In this case, the network will always
be the bottleneck if the SSD can be used at its maximum.



(a) The physical organization

(b) The logical view

Figure 4: Overall architecture of proposed organization

This is what we strive for. Let us assume that we have
n SSDs, where n is the number of SSDs in an all-flash
array, for example, as specified in Table 2.

Given these assumptions, the array of SSDs in our pro-
posed organization can be viewed as a serial sequence of
SSDs, where data is written to only one SSD at a time.
As the SSD bandwidth is higher than the network band-
width, there is no loss of performance as one SSD can
absorb all write requests. We refer to the SSD serving the
write request as the front-end, while the rest of the SSDs
are referred to as the back-end as depicted in Figure 4(a).
Logically, such an organization can be viewed as a se-
quential list of blocks as depicted in Figure 4(b). How-
ever, physically, each SSD is controlled independently,
which is different from a typical log-structured layout.

Let us now see how we can manage the SSDs to
achieve consistent, maximal performance. Assume at
first that all SSDs are empty. As writes come in, all
data are written only in log-structured manner without
any GC. Hence, the SSD can be written with maximum
performance. However, the front-end SSD will eventu-
ally fill up with a mixture of valid and invalid flash
pages. Then, the front-end is replaced with a new, clean
SSD. (Initially, the selected SSDs will be empty. How-
ever, with time, the selected SSD will contain a mix of
valid and invalid data.) Evidently, if this keeps going,
all the SSDs will fill up. Our past experience from log-
structured designs tell us that some form of garbage col-
lection is required.

Given such a scenario, let us now discuss how our pro-
posed organization is different from the traditional log-
structured approach.

• First, only the front-end SSD is actively performing
writes. All back-end SSDs are free to serve read re-
quests if there are any targeted towards these SSDs
(Figure 5(a)).

• Second, no GC occurs within the frond-end SSD so
that performance is maximized.

Figure 5: Sequence for handling write requests with xGC

• Third, when the front-end SSD fills up, it relieves
its role as a front-end SSD to one of the back-end
SSDs (Figure 5(b)).

• Fourth, GC of an SSD occurs not within SSDs, but
only among back-end SSDs. Hence, we refer to this
GC as external GC (xGC) in contrast to the tra-
ditional internal GC that happens within an SSD.
Figures 5(b) and (c) show the sequence in which
GC occurs. Once the front-end SSD relieves its role
to a back-end SSD, the new front-end absorbs the
writes, while the valid data in the old front-end SSD
are moved to one of the back-end SSDs as depicted
in Figure 5(b). When all valid data is moved, then
the old front-end is cleaned by issuing a TRIM com-
mand to the entire SSD (Figure 5(c)). This makes
GC a deterministic and simple activity.

2.2 Benefits of Serial Organization
There are two major benefits to our approach. The first is
on performance and other is on the efficiency of the SSD.
We discuss each of these below.

The performance benefits of serial management is as
follows, which we quantify in Section 3.
Writes: As writes are being done in a log-structured

manner, that is, a sequential manner, and no GC oc-
curs performance is optimized.

Reads: As writes to the front-end SSD are of recent
data, most of the reads targeted towards the front-
end SSD will be absorbed by the cache in either the
client and/or the host without affecting the front-end
SSD. Similarly, reads targeted towards the back-
end SSDs will not be affected by the front-end
SSD write activities. Furthermore, as read latency
is greatly affected by GC, and as we rid of internal
GC, read performance is stabilized.

The second benefit offered by serial management is
the simplicity that it brings to the design of the FTL
(Flash Translation Layer) within the SSD. Recall that
most high-end commodity SSDs employ large amounts
of DRAM as buffer space and require substantial spare
flash memory to be used as OPS (Over Provisioning
Space) [34]. In addition, for high performance, tech-
niques such as page-level mapping must be employed



over simpler, resource thrifty block-level mapping within
the FTL. These kinds of restrictions impose a burden on
the SSD controller in terms of cost and performance. As
there is no need to perform internal GC (though in prac-
tice, we believe some form of minimal internal GC may
be needed), serial management alleviates these burden on
the FTL in the following manner (though these aspects
are not quantified in this study):

1. Less internal resources are required for SSDs used
in our organization. This is because block-level
mapping, with large block sizes, may be adopted as
write requests always arrive in append only manner.
Hence, less memory space is required to manage the
blocks within the FTL.

2. SSD capacity increases, in effect, as with no internal
(or minimal) GC, no (or less) OPS space is needed
to perform GC.

3. Longer lifetime can be expected for SSDs used in
our organization. This is because with internal GC
the same valid page may be copied multiple times
within an SSD if it, by chance, happens to be in
the victim block multiple times. In contrast, with
our technique a valid page is written once and never
copied within an SSD as there is no internal GC.

4. Wear-leveling becomes simple and even for all
blocks with serially managed SSDs resulting in
more predictable SSD lifetime management. This is
so as an erasure happens only when a TRIM com-
mand is issued to the entire SSD. Hence, all blocks
wear out evenly for the entire lifetime of the SSD.

2.3 Previous Work on Serial Management
Most previous studies on an array of disks have at-
tempted to increases access parallelism such as in RAID
configurations. In contrast, the Gecko study by Shin et
al. takes a similar approach as ours in that they consider
serial management of storage devices [35]. Gecko views
the chain of HDDs as a log with new writes being made
to the tail of the log. This is, in essence, similar to the
traditional log-structured approach, and the general dif-
ferences between the traditional log-structured approach
and ours was described in Section 2.1.

Some other specific differences are as follows. Gecko
was designed for HDD, while ours is for high-end SSDs
that have bandwidth similar or surpassing that of the net-
work. Gecko does not forbid the replacement of HDDs
with SSDs, but then, does not consider the peculiarities
of SSDs. In particular, our technique completely sep-
arates GC writes from first-class writes allowing first-
class writes to make full use of the bandwidth. Gecko,
on the other hand, intermixes them, which incurs con-
tention at the disk that holds the tail. Furthermore, GC
writes in Gecko are for segment cleaning and is different

from SSD internal GC, which is not controlled in Gecko.
Hence, the effect of internal GC, which is the key per-
formance distracting factor and which our technique is
obviating, still remains with Gecko.

One similarity between the two is how metadata is
managed. Similarly to Gecko, we maintain a logical to
physical address map as well as an inverse map in mem-
ory. Such mappings are kept for each SSD, and they oc-
cupy around 0.2% of the total capacity of the SSDs.

3 Experimental Environment and Results
In this section, we discuss the initial implementation of
our proposed serial management scheme. We present the
experimental setup and the benchmarks used in our eval-
uations, and then discuss the results.

3.1 Experimental Setup
Experimental Platform: For the storage server, we use
a Dell R730 equipped with a Xeon E5-2609 CPU, 64GB
DRAM, and four Intel 750 400GB NVMe SSDs. De-
pending on the experiment target, the four SSDs are con-
figured in parallel manner as a volume of RAID-0 or in
the serial manner that we propose resulting in 1.6TB stor-
age capacity. The RAID-0 volume with a chunk size of
64KB is created using LVM2 [36]. For the host system,
we use an x86 compatible PC with an i5-6600k CPU,
16GB DRAM, and local storage. The host is directly
connected to the storage server via a 10Gb/s Ethernet
card. The operating systems for the storage server and
the host are Linux kernel-4.4.43 and kernel-4.3.3, respec-
tively, and the Ext4 file system is used.

Benchmark Parameters: Two types of workloads are
used for our experiments. In Section 3.2, we use a sim-
ple FTP application to isolate the effect of the network.
For this workload, we make use of 10 threads with each
thread transmitting a 10 GB file.

In Section 3.3, where the stability of performance is
considered, we use the synthetic FIO benchmark work-
load. The benchmark is executed with one thread and the
thread issues random writes with a queue depth of 32 and
to 10 files. Over the entire experiments, we make use of
two different FIO workloads. The first is the aging work-
load that writes for 15 minutes, where the block size is
256KB with a footprint of 1200GB. After aging, we use
a second workload where 64KB sized random writes are
issued for 30 minutes on a 200GB footprint.

3.2 Network as a Bottleneck
In this section, we observe how the network affects the
performance of the parallel configuration, that is, RAID-
0 versus the serial configuration that we propose. For
both cases, we connect the storage array to the host via
10Gb/s network connection and have 10 threads in the
host individually send 10GB files to write to storage via



Figure 6: Performance of RAID-0 and serially config-
ured storage connected to the host via 10GbE network

the network. We observe the throughput at the storage
layer as writing a total of 100GBs saturates the network
and storage bandwidth.

Figure 6 is what we observe at the storage end for
RAID-0 and the serial configuration that we propose with
the y-axis being the throughput in MB/s. We see that for
RAID-0 (the dotted line) the bandwidth fluctuates con-
siderably, periodically reaching the peak and zero val-
ues. This phenomenon occurs because as the data arrives
through the network, RAID-0 processes the requests in
bulks; once that is done, it has to wait for the new data to
arrive through the network resulting in zero bandwidth.
However, the results reveal that on average, 900MB/s
throughput is maintained at the storage layer. This is be-
low the perfect available network bandwidth, but very
close to the practical peak bandwidth.

In contrast, for our serial configuration (red solid line),
we also observe fluctuations but at a much smaller scale
than the RAID-0 case. We find that the average band-
width is around 890MB/s for this case, which is slightly
below the 900MB/s we saw for RAID-0. However, recall
that for RAID-0 all four SSDs are simultaneously being
used whereas for our proposed configuration only one is
being used. We see that matching the storage bandwidth
with the network bandwidth is a logical choice. While
this was not possible with past disk technology, with cur-
rent high-end SSDs, this is easily achieved.

3.3 Sustained, Consistent Performance
We showed in the previous section that the network is the
bottleneck with high bandwidth SSDs. In this section, we
remove the network aspect, which is the source of perfor-
mance fluctuation in the previous experiments, and con-
centrate on storage performance. Recall from Figure 3
how RAID-0 performance drops after some time due to
GC operations. We conduct a similar experiment with
our proposed serial configuration on a locally connected
storage end with the workload and setting as described
in Section 3.1. The average throughput results obtained

Figure 7: Proposed organization performance results

for 5 measurements are shown in Figure 7. The line in the
middle demarcates the results during and after aging. The
demarcating line represents a sudden drop in throughput
that is due to a slight pause in generating the workload
during the experiments.

Overall, we see that performance during and after ag-
ing is consistent. Some points of interest in Figure 7 are
as follows. First, we see that there are slight differences
in the bandwidth observed when front-end and back-end
SSDs are swapped as a new front-end is selected. This
is because most commercial SSDs do not come with ex-
actly the same performance. We find that performance
changes according to the performance characteristics of
each SSD selected as the front-end. This, we find, is con-
sistent for each of the SSDs. Second, we see that xGC
does not affect performance. Even though GC is happen-
ing, this has no bearing on performance. Finally, we at-
tain overall high, sustained performance that we set out
to attain even though we do observe occasional small
dips in performance.

4 Conclusion
Based on the observation that storages devices are no
longer the performance bottleneck, but that the network
is, this paper proposes a serial organization for SSD ar-
rays. Such serial organization allowed us to completely
avoid internal garbage collection of SSDs such that high
performance of write requests can be sustained. Experi-
mental results showed that this is a promising approach.
We are currently looking into specific details concerning
the implementation of this approach and other possible
design issues that we might have overlooked. To con-
sider the scalability issue, we also plan to implement a
prototype all-flash array with many more SSDs.
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