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Abstract 
While NoSQL databases are gaining popularity for busi-
ness applications, they pose unique challenges towards 
backup and recovery. Our solution, BARNS addresses 
these challenges, namely taking: a) cluster consistent 
backup and ensuring repair free restore, b) storage effi-
cient backups, and c) topology oblivious backup and re-
store. Due to eventual consistency semantics of these da-
tabases, traditional database backup techniques of per-
forming quiesce do not guarantee cluster consistent 
backup. Moreover, taking crash consistent backup in-
creases recovery time due to the need for repairs. In this 
paper, we provide detailed solutions for taking backup of 
two popular, but architecturally different NoSQL DBs, 
Cassandra and MongoDB, when hosted on shared stor-
age. Our solution leverages database distribution and 
partitioning knowledge along with shared storage fea-
tures such as snapshots, clones to efficiently perform 
backup and recovery of NoSQL databases. Our solution 
gets rid of replica copies, thereby saving ~66% backup 
space (under 3x replication). Our preliminary evaluation 
shows that we require a constant restore time of ~2-3 
mins, independent of backup dataset and cluster size.  

1. Introduction 
Recently, we see an increased adoption of NoSQL data-
bases like MongoDB, Cassandra, etc., to address scale 
and agility challenges of modern applications such as 
analysis of ever increasing data related to customers, op-
erations and IoT. While these databases are mostly de-
ployed on commodity servers with direct attached disks, 
many enterprises are turning to high performance and 
scalable shared storage [1]. More recently, many storage 
vendors have partnered with NoSQL companies spe-
cially with improvement in performance of all-flash stor-
age [3][4]. Shared storage also helps achieve consolida-
tion, better data management and enables independent 
scaling of compute and storage.  

According to IDC, one of the top infrastructural chal-
lenges faced by NoSQL deployments is data protection 
and retention [1]. Although NoSQL databases perform 
replication for high availability and read performance, in 
case of logical data corruption, accidental deletion, or 
ransomware attacks [21], the damage spreads to all the 
replicas. Ganesan, et. al [26] also highlight the fact that 
redundancy does not imply fault tolerance. Moreover, 
according to Gartner, enterprises are looking at the abil-
ity to repurpose backup for various use cases such as 

DevOps, test/dev, analytics and cloud onramping [2].  
Hence, there is a need for an efficient and scalable solu-
tion for backup and recovery of NoSQL databases. 

Unlike traditional RDBMS, backup and recovery of 
NoSQL databases has various challenges, which are 
highlighted by Carvalho, et. al [7] and discussed in depth 
in Section 2. These include taking cluster-wide con-
sistent backup resulting in repair free recovery, redun-
dant copy removal from backup, and topology oblivious 
backup and restore. 

In this paper, we present BARNS - a backup and recov-
ery solution for NoSQL databases, hosted on shared stor-
age. Unlike copy-based backup solutions [18, 19, 20], we 
leverage light-weight snapshots, which perform copy-
on-write, and clone (writeable snapshot) features of 
shared storage. Our key contributions include: 

(a) We present two different approaches, based on the 
type of NoSQL database: master-less, e.g., Cassandra 
[10], and master-slave, e.g., MongoDB [6]. 

(b) Leverage NoSQL database knowledge and tech-
niques to achieve cluster-wide consistency during 
backup, get rid of logically identical copies and be resil-
ient to topology changes during backup and recovery.  

BARNS achieves ~66% space savings by logical reduc-
tion of two copies (assuming 3x replica) for both Mon-
goDB and Cassandra. While repair operation (usually re-
quired after restoring) is dependent upon the dataset and 
cluster size in Cassandra, our repair-free restore solution 
requires only a constant restore time of ~2mins.  

2. Background and Related Work  
Backup in relational DBs is a well-researched topic [13, 
14], but is relatively new in distributed NoSQL data-
bases. While designing a backup and recovery solution 
for NoSQL databases, we need to consider the category 
it belongs to: (a) master-less, or (b) master-slave. In case 
of master-less, e.g., Cassandra, Couchbase, data is scat-
tered across all the nodes, typically through consistent 
hashing [22]. Generally, no node is an exact replica of 
another. In master-slave, e.g., MongoDB, Redis, a pri-
mary is responsible for accepting all updates and propa-
gating to all secondary nodes. On reaching consistency, 
primary and secondary nodes hold the same data.  

Key challenges in backup and restore for NoSQL DBs 
are as follows:  



Cluster-wide consistent backup: Relational DBs that 
typically run on a single or handful of nodes, expose 
APIs to quiesce database [5], which makes it simple to 
take application consistent backup. However, in case of 
distributed NoSQL databases, which are elastic in na-
ture, eventually consistent and do not support cross-
node, cross table transactions, it is impractical to perform 
quiesce of all the nodes to take backup. Moreover, node-
level quiesce does not guarantee that data across nodes 
would be consistent, due to eventual consistency, 
thereby requiring repair during restore. One can take un-
coordinated backup or snapshot of individual nodes re-
sulting in crash consistent backup, such as in OpsCenter 
[12]. While such a backup is quick, repair operation is 
inevitable during restore. DataStax recommends running 
nodetool repair command after restoring from a Cassan-
dra snapshot [24]. This impacts recovery time objective 
(RTO) adversely, making both quiesce-based solution 
and crash consistent backup unattractive. Thus, there is 
a need to design a backup and recovery solution for 
NoSQL databases, which performs quick, cluster con-
sistent backup and provides repair free recovery.  

Removal of redundant copies: NoSQL DBs perform 
replication for high availability and load distribution, but 
these are not required in backup copy. One might argue 
that fixed or variable length deduplication, which is gen-
erally enabled on shared storage can get rid of replicas. 
However, these replicas do not de-duplicate due to rea-
sons such as data distribution and layout, compression 
and encryption [7]. For example, Cassandra distributes 
and replicates data in such a way that different combina-
tion of rows are stored in the data files across the nodes, 
making it impossible to achieve chunk level deduplica-
tion. MongoDB's WiredTiger storage engine appends 
unique internal metadata, which diminishes opportunity 
to de-duplicate replicas of same document. 

Topology changes: Topology of NoSQL cluster may 
change across backup and restore. For instance, a node 
may go down during backup or an additional node may 
be introduced during restore and vice-versa. In these sce-
narios, it is important to reconcile the differences in par-
titioning strategies to avoid repair during restores.  

There exist open source tools such as mongodump [23], 
which enable users to take node-level dumps of DB con-
tents and later restore back using mongorestore [17]. 
Such tools require custom scripting to implement cluster 
level backups and restore, which must address chal-
lenges listed above. Solutions like those from Datos IO 
[18], Talena [19], and MongoDB Ops Manager [20] ad-
dress these challenges by post processing incremental 
data streams. These solutions do not integrate with un-

derlying storage features of snapshots and clones, and in-
stead copy data out of the cluster to implement backup 
workflows. Exact internal details of these solutions are 
not known as these are proprietary offerings.  

In this paper, we present backup and recovery solutions 
for Cassandra and MongoDB when hosted on shared 
storage. Our work differs from above solutions, as we do 
not require deep semantic understanding of replicated 
data. Instead, we leverage in-built database features or 
commands and shared storage features to address the 
challenges discussed previously. Since we refrain from 
looking into the data stream, our solution provides key 
differentiating features: (a) perform backup and recovery 
on data encrypted by databases, (b) compatible with dif-
ferent versions of Cassandra and MongoDB, and (c) ex-
tend this solution to other databases similar to Cassandra 
and MongoDB (using their APIs or commands).   

3. BARNS 
The aim of BARNS is to honor the consistency seman-
tics of NoSQL databases and achieve space efficient, to-
pology oblivious backup and recovery. Instead of per-
forming recovery at restore-time, BARNS does most of 
the recovery related work when it creates the backup.  
We reuse database functionality to create a cluster-con-
sistent backup and leverage light-weight snapshot (per-
forms copy-on-write) and clones (writeable snapshot) 
features present in most modern storage systems, to gain 
space-efficiency. We do not stop foreground IOs while 
taking backup. 

3.1. Cassandra Backup/Recovery 
Cassandra offers tunable consistency for both reads and 
writes. To achieve strong consistency, it is recommended 
to perform write and read operations on quorum nodes 
[16]. However, we found experimentally that the values 
with the latest timestamp always win and replicate to 
other nodes during reads, irrespective of the consistency 
level. Consider a four node Cassandra cluster with nodes 
named A, B, C, and D and consisting of keyspaces with 
a replication factor of 3. Suppose a quorum write request 
comes to A for a key K1 with value V1, which hashes 
into B and is replicated to C and D, but both C and D are 
unreachable. On receiving acknowledgement from only 
B, A fails the quorum write. However, the latest write to 
K1 is still present with B. As Cassandra does not provide 
a way to rollback writes, when nodes C, D become avail-
able, the latest value of K1 is propagated to both C and 
D due to read repair or manual repair. Thus, our solu-
tion must ensure that we meet such consistency seman-
tics in backup. Moreover, Cassandra employs consistent 
hashing to distribute data to various nodes making it dif-
ficult to decide the minimal number of data nodes to 
backup that can capture the entire data. 



The core idea is to perform merge sort on the data files 
across all nodes. This is like running Cassandra's com-
paction across all nodes. Cassandra's compaction pro-
cess merges keys based on timestamp, combines col-
umns, evicts tombstones and consolidates data files [11]. 
Traditionally, compaction is meant to reclaim space and 
resolve conflicts in data files only for a single node. We 
leverage this mechanism to achieve cluster-wide con-
sistent and space efficient backup, and a repair-free re-
covery. To achieve topology oblivious backup and re-
covery, we save cluster configuration, i.e., health and to-
ken assignment of each node.  

Backup Workflow 

Whenever a write comes to a Cassandra node, it stores 
the data in an in-memory structure, memtable, and ap-
pends it to an on-disk commit log. The memtable is 
flushed to SSTables on reaching a threshold. We need to 
backup the SSTables and commit logs per node. Let us 
consider a simple deployment model of Cassandra on 
shared storage with one to one mapping between Cassan-
dra nodes and a logical storage container, say an iSCSI 
LUN. Each data LUN stores commit log and SSTables 
belonging to a node. BARNS takes Cassandra backup in 
two phases: 

(1) Light weight backup (LWB) – In this phase, we cap-
ture the topology of the Cassandra cluster: health and to-
ken assignment of every node. We take un-coordinated 
snapshot of data LUNs of only healthy nodes and save 
the mapping of these snapshots with the token assigned 
to the individual nodes in a backup metadata (bkp_meta) 
and assign a backup name to it. We save only the token 
information for dead/unhealthy nodes in bkp_meta. A 
sample of bkp_meta for a two-node cluster with one un-
healthy node is shown below. 
   {"backup_name": 1488869633.586644,  
    "cluster_name": "barns", 
    "members": [ 
      {"lun": "/vol/cass1/lun_cass1", 
       "snap-name": "17-03-02_01:02:18",  
       "stateStr": "Healthy", 
       "tokens": "<list of tokens> " } 
      {"lun": "/vol/cass2/lun_cass2", 
       "snap-name": "", 
       "stateStr": "UnHealthy", 
       "tokens": "<list of tokens> " }]}        

If SSTables and commit logs of a single node reside on 
different LUNs, we need to ensure that the snapshot of 
both these LUNs is coordinated, e.g., using NetApp® 
Consistency Group [15]. This helps achieve consistent 
snapshot per node.  However, the snapshot of LUNs 
across the nodes is un-coordinated as we take care of 
consistency in post-processing phase.  

 

 

 

(2) Post-processing phase (PP) – This phase is responsi-
ble for resolving consistency conflicts and removing re-
dundant copies of data by post processing the snapshots 
taken in LWB phase.  We use a different set of Cassandra 
node(s) for performing this phase, referred to as 
pp_node. This phase is divided in two sub-phases - (a) 
pp-flush: flush commit logs to SSTable, and (b) pp-com-
pact: perform compaction across all SSTables. In pp-
flush, we clone the snapshots taken in LWB. These 
clones are discovered and mounted on pp_node at differ-
ent mount points, say /cassandra1, /cassandra2, 
etc. and configured with appropriate tokens as retrieved 
from bkp_meta. Cassandra instances are started against 
these mount points. Once Cassandra is running, we initi-
ate commit log flush operation by issuing - nodetool 
flush command, on each clone. At the end of pp-flush, 
we have new SSTables with higher version numbers cre-
ated for all the keyspaces on all the clones. We delete all 
the empty commit logs and stop the cluster. 

As shown in Figure 1., the main goal of pp-compact sub-
phase is to perform compaction across all the clones 
mounted during pp-flush. Before running compaction, 
we need to organize the data stored in multiple mount 
points in such a way that a single Cassandra instance can 
access all the SSTables. Hence, we rename SSTable file-
names (version number portion) of a keyspace such that 
it is unique across the various mount points. Further, to 
store the results of the compaction we create a special 
LUN, say fullback_lun and mount on say /cassan-
dra_full on pp-node. To unify the view for Cassan-
dra, we mount all the previous mount points containing 
the renamed SSTables (as read-only) and the mount 
point dedicated to store results i.e., /cassan-
dra_full (as read-write) using unionfs-fuse [9] on 
/cassandra. We configure Cassandra such that it 
uses unionfs mount point, /cassandra, as its data di-
rectory and takes charge of the tokens of all nodes pre-
sent in bkp_meta. With the virtue of unionfs, a single 
Cassandra process can access all the SSTables stored 
across multiple mount points. Finally, we call Cassandra 

Figure 1: pp-compact phase 



compaction command, nodetool compact, which 
merges all the SSTables and stores the compacted result 
on /cassandra_full. At the end of pp-compact, 
fullback_lun contains cluster consistent, space efficient 
backup of the production cluster. We create a snapshot 
of fullback_lun and discard all the previous clones cre-
ated during pp-flush and snapshots taken during LWB. 
The backup metadata is now updated with the full 
backup LUN's snapshot name and all the tokens of the 
initial Cassandra cluster.  

Restore Workflow 

We clone the snapshot corresponding to the fullback_lun 
and mount it on all the Cassandra nodes of the restore 
cluster. We create a different clone per restore node. The 
tokens from backup metadata are distributed equally to 
all the restore nodes. Once Cassandra starts on each of 
the restore nodes, its data directory contains data of all 
the peers. However, individual Cassandra instances ig-
nore the extra data and only take ownership of the data 
based on token ring assignment. Thus, restore is oblivi-
ous of the number of nodes that were a part of the pro-
duction cluster during backup. Since the clone provided 
by most shared storage appliances performs copy-on-
write, our recovery solution is also space efficient.  

Limitations:  Our solution only provides full backup of 
Cassandra, and is CPU and memory intensive during 
post processing.  In future, we plan to augment our solu-
tion with incremental backup. Moreover, since Cassan-
dra allows maximum 1536 tokens to be assigned to a 
node, a single pp-compact instance will not be able to 
scale beyond 6 nodes (assuming each node has 256 to-
kens). To solve this problem, we propose to run multiple 
instances of pp-compact, each responsible for compact-
ing 6 nodes. This will result in more than one full backup 
LUN, impacting storage efficiency and requiring some 
repair across the full backups. We do not flush in-core 
commit log, resulting in loss of some cached, but 
acknowledged writes. We can resolve this problem by 
configuring Cassandra to sync the commit log before ac-
knowledging the client.  

3.2. MongoDB Backup/Recovery  
Backup Workflow 

Unlike Cassandra, MongoDB is a master-slave NoSQL 
DB. A sharded and replicated MongoDB cluster consists 
of several shards (partitions) with each shard consisting 
of a replica set (RS). A RS contains a set of nodes: one 
primary or master and multiple secondary members. 
These are complete logical replicas of each other. All up-
dates to a RS first go to primary and eventually propagate 
to secondary nodes. Hence, an intuitive solution is to 
take snapshot of primary node LUNs of each RS in the 

cluster. However, there exist error scenarios that need to 
be handled. Moreover, given the master-slave architec-
ture, we need to ensure that data within a single shard or 
RS is consistent during backup. BARNS takes Mon-
goDB backup in two phases: 

(1) Light weight backup (LWB) - In this phase, we first 
pause any background inter-shard data migrations by 
calling "stop balancer" API, as recommended by Mon-
goDB [25]. Next, we query the cluster topology and 
mark the data LUNs (consisting of journal and data files) 
of all live nodes for backup. If a replica set (RS) has less 
than quorum number of healthy nodes, we must fail the 
backup, because the RS cannot elect a primary or serve 
IOs in such state and needs manual intervention. In the 
normal case, BARNS triggers an un-coordinated storage 
snapshot of all LUNs marked for backup. Lastly, we per-
sist backup metadata, which includes a backup name, list 
of all RS in the cluster and a mapping of each member 
LUN in the RS to its respective snapshot name (like Cas-
sandra backup metadata).  

(2) Post process (PP) -  We post-process the snapshots 
taken during LWB in a separate sandbox environment, 
to bring backup to a cluster consistent state. Each RS can 
be post processed independently, in parallel or sequen-
tially depending upon resource constraints. For each RS, 
we mount the member snapshots on post process node(s) 
and start MongoDB instances to bring up the complete 
RS. Upon startup, MongoDB replays necessary journal 
logs and checkpoints them to its data directory, just as 
though it were recovering from a crash. If there was ab-
sence of a stable primary during LWB, MongoDB RS 
elects a new up-to-date primary from among the second-
ary nodes, during PP. We take a fresh snapshot of only 
the primary node in the RS and drop all other previously 
taken snapshots in LWB. Thus, our solution logically 
eradicates replica copies in the backup by only retaining 
primary node's snapshot. Lastly, we update backup 
metadata to reflect single primary node's snapshot name 
for each RS.  

This phase also helps resolve any error scenarios such as 
journal corruption of the primary node of a RS due to 
filesystem or storage faults [26], which was undetected 
during LWB. As part of post process, MongoDB will be 
able to identify such corruptions during startup and re-
pair them with help of the secondary nodes, ensuring that 
restore is repair free. If MongoDB fails to recover from 
any corruption, which gets detected as part of this phase, 
we fail the backup and inform user, rather than failing to 
bring up the cluster during restore. This phase lends the 
advantages of a) better storage efficiency (~66% saving 
in 3x replica) by preserving snapshot of only primary’s 
data for each RS, and b) provides a good control point 



for detecting, correcting and in few unrecoverable cases, 
alerting about errors during backup. Unlike Cassandra, 
since MongoDB's PP does not involve reading all the 
data, and leverages snapshots the backup is incremental.   

Restore Workflow 

Restore involves mapping the final set of RS snapshots 
captured as part of PP, to corresponding RS in the restore 
cluster. The backup metadata helps achieve this map-
ping. It requires that replica set IDs in backup topology 
match those in restore cluster. The number of members 
within each RS may differ across backup and restore, en-
abling flexibility in restore topology. However, our solu-
tion does not allow change in the number of RS across 
backup and restore, and we plan to consider efficient 
ways to accomplish this as part of future work. For each 
shard, we clone the primary’s snapshot (taken during PP 
phase) and map it to as many replicas of the restore clus-
ter. Thus, all nodes in the target cluster start with com-
plete copy of data and do not need to perform an intra-
replica-set sync. We reconfigure the restored nodes to re-
flect their new node IDs, ports and replica set member-
ship, since the cloned snapshot will carry details of the 
original cluster, using MongoDB APIs. 

Limitation: Our solution allows MongoDB recovery to 
a fixed-point in time, based on when snapshot was taken. 
It does not allow any point-in-time restore. We plan to 
augment the above solution by streaming and storing 
MongoDB's operation log (Oplog) efficiently, such that 
it allows replaying operations up to a desired timestamp.   

4. Preliminary Evaluation 
4.1 Cassandra 

Figure 2: Performance of BARNS backup for Cassandra 

We evaluate the total time it takes to backup and restore 
a Cassandra cluster using BARNS. The production Cas-
sandra cluster consists of 4 nodes, each running Cassan-
dra 4.0, with its SSTables and commit logs on 4 different 
iSCSI LUNs on shared storage. The post process node is 
an independent VM with 2 CPUs and 8GB RAM. We 
ingest data using YCSB [8] into the four node Cassandra 
cluster and perform backup at different intervals – as the 

data set increases by 4GB. Figure 2, shows the perfor-
mance of the different phases of backup with the increase 
in the data set size. Irrespective of the data set size, LWB 
and pp-flush phase take constant amount of time, 10-20 
secs and 40 secs, respectively. This is because in LWB, 
we take light weight snapshots of all the data LUNs, 
which takes constant time. Since the size of the commit 
log cannot grow beyond a point, pp-flush also takes con-
stant time. The time taken to perform compaction (pp-
compact), increases with the amount of data. We observe 
an increase of around 70% when going from 4GB to 
8GB, because 8GB dataset cannot completely reside in 
memory. Later, we observe a rise in pp-compact time by 
~35-40% for every 4GB increase.  

The recovery time remains close to 60-80 secs, irrespec-
tive of the data set or cluster size. This is because, there 
is no repair required during restore as we post process all 
the data. To compare how much time, it takes to perform 
repair operation (without post process), we fire nodetool 
repair command on two nodes simultaneously, each 
containing around 7GB data set. It took ~456 secs to 
complete the repair operation. Thus, we see the benefit 
of performing post-process during backup. 

4.2 MongoDB  
We evaluated LWB, PP and restore phases for Mon-
goDB 3.2.7 cluster with 9 nodes consisting of 2 RS with 
3 replicas each and a 3-node configuration server RS, 
with each node hosted over iSCSI LUNs. We observed 
that LWB takes around 10 seconds, PP takes around 2.5 
minutes per RS while restore times are around 2.5 
minutes for the entire cluster. These observations are in-
dependent of cluster size and dataset size. This is be-
cause, MongoDB's master-slave architecture provides us 
an easy candidate (primary node) for taking space effi-
cient and consistent backup. Even in absence of primary, 
new leader election only takes only a few seconds. Due 
to this, we observe negligible increase in recovery time, 
even if we skip the PP phase. PP though, achieves stor-
age efficient backups, even under error-scenarios and 
provides opportunity to detect faults in LWB backup. 

5. Conclusion and Future Work 
In this paper, we present solutions to perform backup and 
recovery of Cassandra and MongoDB when hosted on 
shared storage. We leverage database features and data 
distribution logic to take space efficient, topology obliv-
ious, and cluster consistent backup, to achieve repair-
free restore. While our recovery times are constant, we 
need to improve post processing times for Cassandra. 
We would also like to extend our work to other master-
less and master-slave databases. We plan to explore so-
lutions for multi-site deployment of these databases and 
integrations with cloud storage. 
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