
BARNS: Towards Building Backup and Recovery for NoSQL Databases

Atish Kathpal, NetApp Priya Sehgal, NetApp

Abstract
While NoSQL databases are gaining popularity for busi-
ness applications, they pose unique challenges towards
backup and recovery. Our solution, BARNS addresses
these challenges, namely taking: a) cluster consistent
backup and ensuring repair free restore, b) storage effi-
cient backups, and c) topology oblivious backup and re-
store. Due to eventual consistency semantics of these da-
tabases, traditional database backup techniques of per-
forming quiesce do not guarantee cluster consistent
backup. Moreover, taking crash consistent backup in-
creases recovery time due to the need for repairs. In this
paper, we provide detailed solutions for taking backup of
two popular, but architecturally different NoSQL DBs,
Cassandra and MongoDB, when hosted on shared stor-
age. Our solution leverages database distribution and
partitioning knowledge along with shared storage fea-
tures such as snapshots, clones to efficiently perform
backup and recovery of NoSQL databases. Our solution
gets rid of replica copies, thereby saving ~66% backup
space (under 3x replication). Our preliminary evaluation
shows that we require a constant restore time of ~2-3
mins, independent of backup dataset and cluster size.

1. Introduction
Recently, we see an increased adoption of NoSQL data-
bases like MongoDB, Cassandra, etc., to address scale
and agility challenges of modern applications such as
analysis of ever increasing data related to customers, op-
erations and IoT. While these databases are mostly de-
ployed on commodity servers with direct attached disks,
many enterprises are turning to high performance and
scalable shared storage [1]. More recently, many storage
vendors have partnered with NoSQL companies spe-
cially with improvement in performance of all-flash stor-
age [3][4]. Shared storage also helps achieve consolida-
tion, better data management and enables independent
scaling of compute and storage.

According to IDC, one of the top infrastructural chal-
lenges faced by NoSQL deployments is data protection
and retention [1]. Although NoSQL databases perform
replication for high availability and read performance, in
case of logical data corruption, accidental deletion, or
ransomware attacks [21], the damage spreads to all the
replicas. Ganesan, et. al [26] also highlight the fact that
redundancy does not imply fault tolerance. Moreover,
according to Gartner, enterprises are looking at the abil-
ity to repurpose backup for various use cases such as

DevOps, test/dev, analytics and cloud onramping [2].
Hence, there is a need for an efficient and scalable solu-
tion for backup and recovery of NoSQL databases.

Unlike traditional RDBMS, backup and recovery of
NoSQL databases has various challenges, which are
highlighted by Carvalho, et. al [7] and discussed in depth
in Section 2. These include taking cluster-wide con-
sistent backup resulting in repair free recovery, redun-
dant copy removal from backup, and topology oblivious
backup and restore.

In this paper, we present BARNS - a backup and recov-
ery solution for NoSQL databases, hosted on shared stor-
age. Unlike copy-based backup solutions [18, 19, 20], we
leverage light-weight snapshots, which perform copy-
on-write, and clone (writeable snapshot) features of
shared storage. Our key contributions include:

(a) We present two different approaches, based on the
type of NoSQL database: master-less, e.g., Cassandra
[10], and master-slave, e.g., MongoDB [6].

(b) Leverage NoSQL database knowledge and tech-
niques to achieve cluster-wide consistency during
backup, get rid of logically identical copies and be resil-
ient to topology changes during backup and recovery.

BARNS achieves ~66% space savings by logical reduc-
tion of two copies (assuming 3x replica) for both Mon-
goDB and Cassandra. While repair operation (usually re-
quired after restoring) is dependent upon the dataset and
cluster size in Cassandra, our repair-free restore solution
requires only a constant restore time of ~2mins.

2. Background and Related Work
Backup in relational DBs is a well-researched topic [13,
14], but is relatively new in distributed NoSQL data-
bases. While designing a backup and recovery solution
for NoSQL databases, we need to consider the category
it belongs to: (a) master-less, or (b) master-slave. In case
of master-less, e.g., Cassandra, Couchbase, data is scat-
tered across all the nodes, typically through consistent
hashing [22]. Generally, no node is an exact replica of
another. In master-slave, e.g., MongoDB, Redis, a pri-
mary is responsible for accepting all updates and propa-
gating to all secondary nodes. On reaching consistency,
primary and secondary nodes hold the same data.

Key challenges in backup and restore for NoSQL DBs
are as follows:

Cluster-wide consistent backup: Relational DBs that
typically run on a single or handful of nodes, expose
APIs to quiesce database [5], which makes it simple to
take application consistent backup. However, in case of
distributed NoSQL databases, which are elastic in na-
ture, eventually consistent and do not support cross-
node, cross table transactions, it is impractical to perform
quiesce of all the nodes to take backup. Moreover, node-
level quiesce does not guarantee that data across nodes
would be consistent, due to eventual consistency,
thereby requiring repair during restore. One can take un-
coordinated backup or snapshot of individual nodes re-
sulting in crash consistent backup, such as in OpsCenter
[12]. While such a backup is quick, repair operation is
inevitable during restore. DataStax recommends running
nodetool repair command after restoring from a Cassan-
dra snapshot [24]. This impacts recovery time objective
(RTO) adversely, making both quiesce-based solution
and crash consistent backup unattractive. Thus, there is
a need to design a backup and recovery solution for
NoSQL databases, which performs quick, cluster con-
sistent backup and provides repair free recovery.

Removal of redundant copies: NoSQL DBs perform
replication for high availability and load distribution, but
these are not required in backup copy. One might argue
that fixed or variable length deduplication, which is gen-
erally enabled on shared storage can get rid of replicas.
However, these replicas do not de-duplicate due to rea-
sons such as data distribution and layout, compression
and encryption [7]. For example, Cassandra distributes
and replicates data in such a way that different combina-
tion of rows are stored in the data files across the nodes,
making it impossible to achieve chunk level deduplica-
tion. MongoDB's WiredTiger storage engine appends
unique internal metadata, which diminishes opportunity
to de-duplicate replicas of same document.

Topology changes: Topology of NoSQL cluster may
change across backup and restore. For instance, a node
may go down during backup or an additional node may
be introduced during restore and vice-versa. In these sce-
narios, it is important to reconcile the differences in par-
titioning strategies to avoid repair during restores.

There exist open source tools such as mongodump [23],
which enable users to take node-level dumps of DB con-
tents and later restore back using mongorestore [17].
Such tools require custom scripting to implement cluster
level backups and restore, which must address chal-
lenges listed above. Solutions like those from Datos IO
[18], Talena [19], and MongoDB Ops Manager [20] ad-
dress these challenges by post processing incremental
data streams. These solutions do not integrate with un-

derlying storage features of snapshots and clones, and in-
stead copy data out of the cluster to implement backup
workflows. Exact internal details of these solutions are
not known as these are proprietary offerings.

In this paper, we present backup and recovery solutions
for Cassandra and MongoDB when hosted on shared
storage. Our work differs from above solutions, as we do
not require deep semantic understanding of replicated
data. Instead, we leverage in-built database features or
commands and shared storage features to address the
challenges discussed previously. Since we refrain from
looking into the data stream, our solution provides key
differentiating features: (a) perform backup and recovery
on data encrypted by databases, (b) compatible with dif-
ferent versions of Cassandra and MongoDB, and (c) ex-
tend this solution to other databases similar to Cassandra
and MongoDB (using their APIs or commands).

3. BARNS
The aim of BARNS is to honor the consistency seman-
tics of NoSQL databases and achieve space efficient, to-
pology oblivious backup and recovery. Instead of per-
forming recovery at restore-time, BARNS does most of
the recovery related work when it creates the backup.
We reuse database functionality to create a cluster-con-
sistent backup and leverage light-weight snapshot (per-
forms copy-on-write) and clones (writeable snapshot)
features present in most modern storage systems, to gain
space-efficiency. We do not stop foreground IOs while
taking backup.

3.1. Cassandra Backup/Recovery
Cassandra offers tunable consistency for both reads and
writes. To achieve strong consistency, it is recommended
to perform write and read operations on quorum nodes
[16]. However, we found experimentally that the values
with the latest timestamp always win and replicate to
other nodes during reads, irrespective of the consistency
level. Consider a four node Cassandra cluster with nodes
named A, B, C, and D and consisting of keyspaces with
a replication factor of 3. Suppose a quorum write request
comes to A for a key K1 with value V1, which hashes
into B and is replicated to C and D, but both C and D are
unreachable. On receiving acknowledgement from only
B, A fails the quorum write. However, the latest write to
K1 is still present with B. As Cassandra does not provide
a way to rollback writes, when nodes C, D become avail-
able, the latest value of K1 is propagated to both C and
D due to read repair or manual repair. Thus, our solu-
tion must ensure that we meet such consistency seman-
tics in backup. Moreover, Cassandra employs consistent
hashing to distribute data to various nodes making it dif-
ficult to decide the minimal number of data nodes to
backup that can capture the entire data.

The core idea is to perform merge sort on the data files
across all nodes. This is like running Cassandra's com-
paction across all nodes. Cassandra's compaction pro-
cess merges keys based on timestamp, combines col-
umns, evicts tombstones and consolidates data files [11].
Traditionally, compaction is meant to reclaim space and
resolve conflicts in data files only for a single node. We
leverage this mechanism to achieve cluster-wide con-
sistent and space efficient backup, and a repair-free re-
covery. To achieve topology oblivious backup and re-
covery, we save cluster configuration, i.e., health and to-
ken assignment of each node.

Backup Workflow

Whenever a write comes to a Cassandra node, it stores
the data in an in-memory structure, memtable, and ap-
pends it to an on-disk commit log. The memtable is
flushed to SSTables on reaching a threshold. We need to
backup the SSTables and commit logs per node. Let us
consider a simple deployment model of Cassandra on
shared storage with one to one mapping between Cassan-
dra nodes and a logical storage container, say an iSCSI
LUN. Each data LUN stores commit log and SSTables
belonging to a node. BARNS takes Cassandra backup in
two phases:

(1) Light weight backup (LWB) – In this phase, we cap-
ture the topology of the Cassandra cluster: health and to-
ken assignment of every node. We take un-coordinated
snapshot of data LUNs of only healthy nodes and save
the mapping of these snapshots with the token assigned
to the individual nodes in a backup metadata (bkp_meta)
and assign a backup name to it. We save only the token
information for dead/unhealthy nodes in bkp_meta. A
sample of bkp_meta for a two-node cluster with one un-
healthy node is shown below.
 {"backup_name": 1488869633.586644,
 "cluster_name": "barns",
 "members": [
 {"lun": "/vol/cass1/lun_cass1",
 "snap-name": "17-03-02_01:02:18",
 "stateStr": "Healthy",
 "tokens": "<list of tokens> " }
 {"lun": "/vol/cass2/lun_cass2",
 "snap-name": "",
 "stateStr": "UnHealthy",
 "tokens": "<list of tokens> " }]}

If SSTables and commit logs of a single node reside on
different LUNs, we need to ensure that the snapshot of
both these LUNs is coordinated, e.g., using NetApp®
Consistency Group [15]. This helps achieve consistent
snapshot per node. However, the snapshot of LUNs
across the nodes is un-coordinated as we take care of
consistency in post-processing phase.

(2) Post-processing phase (PP) – This phase is responsi-
ble for resolving consistency conflicts and removing re-
dundant copies of data by post processing the snapshots
taken in LWB phase. We use a different set of Cassandra
node(s) for performing this phase, referred to as
pp_node. This phase is divided in two sub-phases - (a)
pp-flush: flush commit logs to SSTable, and (b) pp-com-
pact: perform compaction across all SSTables. In pp-
flush, we clone the snapshots taken in LWB. These
clones are discovered and mounted on pp_node at differ-
ent mount points, say /cassandra1, /cassandra2,
etc. and configured with appropriate tokens as retrieved
from bkp_meta. Cassandra instances are started against
these mount points. Once Cassandra is running, we initi-
ate commit log flush operation by issuing - nodetool
flush command, on each clone. At the end of pp-flush,
we have new SSTables with higher version numbers cre-
ated for all the keyspaces on all the clones. We delete all
the empty commit logs and stop the cluster.

As shown in Figure 1., the main goal of pp-compact sub-
phase is to perform compaction across all the clones
mounted during pp-flush. Before running compaction,
we need to organize the data stored in multiple mount
points in such a way that a single Cassandra instance can
access all the SSTables. Hence, we rename SSTable file-
names (version number portion) of a keyspace such that
it is unique across the various mount points. Further, to
store the results of the compaction we create a special
LUN, say fullback_lun and mount on say /cassan-
dra_full on pp-node. To unify the view for Cassan-
dra, we mount all the previous mount points containing
the renamed SSTables (as read-only) and the mount
point dedicated to store results i.e., /cassan-
dra_full (as read-write) using unionfs-fuse [9] on
/cassandra. We configure Cassandra such that it
uses unionfs mount point, /cassandra, as its data di-
rectory and takes charge of the tokens of all nodes pre-
sent in bkp_meta. With the virtue of unionfs, a single
Cassandra process can access all the SSTables stored
across multiple mount points. Finally, we call Cassandra

Figure 1: pp-compact phase

compaction command, nodetool compact, which
merges all the SSTables and stores the compacted result
on /cassandra_full. At the end of pp-compact,
fullback_lun contains cluster consistent, space efficient
backup of the production cluster. We create a snapshot
of fullback_lun and discard all the previous clones cre-
ated during pp-flush and snapshots taken during LWB.
The backup metadata is now updated with the full
backup LUN's snapshot name and all the tokens of the
initial Cassandra cluster.

Restore Workflow

We clone the snapshot corresponding to the fullback_lun
and mount it on all the Cassandra nodes of the restore
cluster. We create a different clone per restore node. The
tokens from backup metadata are distributed equally to
all the restore nodes. Once Cassandra starts on each of
the restore nodes, its data directory contains data of all
the peers. However, individual Cassandra instances ig-
nore the extra data and only take ownership of the data
based on token ring assignment. Thus, restore is oblivi-
ous of the number of nodes that were a part of the pro-
duction cluster during backup. Since the clone provided
by most shared storage appliances performs copy-on-
write, our recovery solution is also space efficient.

Limitations: Our solution only provides full backup of
Cassandra, and is CPU and memory intensive during
post processing. In future, we plan to augment our solu-
tion with incremental backup. Moreover, since Cassan-
dra allows maximum 1536 tokens to be assigned to a
node, a single pp-compact instance will not be able to
scale beyond 6 nodes (assuming each node has 256 to-
kens). To solve this problem, we propose to run multiple
instances of pp-compact, each responsible for compact-
ing 6 nodes. This will result in more than one full backup
LUN, impacting storage efficiency and requiring some
repair across the full backups. We do not flush in-core
commit log, resulting in loss of some cached, but
acknowledged writes. We can resolve this problem by
configuring Cassandra to sync the commit log before ac-
knowledging the client.

3.2. MongoDB Backup/Recovery
Backup Workflow

Unlike Cassandra, MongoDB is a master-slave NoSQL
DB. A sharded and replicated MongoDB cluster consists
of several shards (partitions) with each shard consisting
of a replica set (RS). A RS contains a set of nodes: one
primary or master and multiple secondary members.
These are complete logical replicas of each other. All up-
dates to a RS first go to primary and eventually propagate
to secondary nodes. Hence, an intuitive solution is to
take snapshot of primary node LUNs of each RS in the

cluster. However, there exist error scenarios that need to
be handled. Moreover, given the master-slave architec-
ture, we need to ensure that data within a single shard or
RS is consistent during backup. BARNS takes Mon-
goDB backup in two phases:

(1) Light weight backup (LWB) - In this phase, we first
pause any background inter-shard data migrations by
calling "stop balancer" API, as recommended by Mon-
goDB [25]. Next, we query the cluster topology and
mark the data LUNs (consisting of journal and data files)
of all live nodes for backup. If a replica set (RS) has less
than quorum number of healthy nodes, we must fail the
backup, because the RS cannot elect a primary or serve
IOs in such state and needs manual intervention. In the
normal case, BARNS triggers an un-coordinated storage
snapshot of all LUNs marked for backup. Lastly, we per-
sist backup metadata, which includes a backup name, list
of all RS in the cluster and a mapping of each member
LUN in the RS to its respective snapshot name (like Cas-
sandra backup metadata).

(2) Post process (PP) - We post-process the snapshots
taken during LWB in a separate sandbox environment,
to bring backup to a cluster consistent state. Each RS can
be post processed independently, in parallel or sequen-
tially depending upon resource constraints. For each RS,
we mount the member snapshots on post process node(s)
and start MongoDB instances to bring up the complete
RS. Upon startup, MongoDB replays necessary journal
logs and checkpoints them to its data directory, just as
though it were recovering from a crash. If there was ab-
sence of a stable primary during LWB, MongoDB RS
elects a new up-to-date primary from among the second-
ary nodes, during PP. We take a fresh snapshot of only
the primary node in the RS and drop all other previously
taken snapshots in LWB. Thus, our solution logically
eradicates replica copies in the backup by only retaining
primary node's snapshot. Lastly, we update backup
metadata to reflect single primary node's snapshot name
for each RS.

This phase also helps resolve any error scenarios such as
journal corruption of the primary node of a RS due to
filesystem or storage faults [26], which was undetected
during LWB. As part of post process, MongoDB will be
able to identify such corruptions during startup and re-
pair them with help of the secondary nodes, ensuring that
restore is repair free. If MongoDB fails to recover from
any corruption, which gets detected as part of this phase,
we fail the backup and inform user, rather than failing to
bring up the cluster during restore. This phase lends the
advantages of a) better storage efficiency (~66% saving
in 3x replica) by preserving snapshot of only primary’s
data for each RS, and b) provides a good control point

for detecting, correcting and in few unrecoverable cases,
alerting about errors during backup. Unlike Cassandra,
since MongoDB's PP does not involve reading all the
data, and leverages snapshots the backup is incremental.

Restore Workflow

Restore involves mapping the final set of RS snapshots
captured as part of PP, to corresponding RS in the restore
cluster. The backup metadata helps achieve this map-
ping. It requires that replica set IDs in backup topology
match those in restore cluster. The number of members
within each RS may differ across backup and restore, en-
abling flexibility in restore topology. However, our solu-
tion does not allow change in the number of RS across
backup and restore, and we plan to consider efficient
ways to accomplish this as part of future work. For each
shard, we clone the primary’s snapshot (taken during PP
phase) and map it to as many replicas of the restore clus-
ter. Thus, all nodes in the target cluster start with com-
plete copy of data and do not need to perform an intra-
replica-set sync. We reconfigure the restored nodes to re-
flect their new node IDs, ports and replica set member-
ship, since the cloned snapshot will carry details of the
original cluster, using MongoDB APIs.

Limitation: Our solution allows MongoDB recovery to
a fixed-point in time, based on when snapshot was taken.
It does not allow any point-in-time restore. We plan to
augment the above solution by streaming and storing
MongoDB's operation log (Oplog) efficiently, such that
it allows replaying operations up to a desired timestamp.

4. Preliminary Evaluation
4.1 Cassandra

Figure 2: Performance of BARNS backup for Cassandra

We evaluate the total time it takes to backup and restore
a Cassandra cluster using BARNS. The production Cas-
sandra cluster consists of 4 nodes, each running Cassan-
dra 4.0, with its SSTables and commit logs on 4 different
iSCSI LUNs on shared storage. The post process node is
an independent VM with 2 CPUs and 8GB RAM. We
ingest data using YCSB [8] into the four node Cassandra
cluster and perform backup at different intervals – as the

data set increases by 4GB. Figure 2, shows the perfor-
mance of the different phases of backup with the increase
in the data set size. Irrespective of the data set size, LWB
and pp-flush phase take constant amount of time, 10-20
secs and 40 secs, respectively. This is because in LWB,
we take light weight snapshots of all the data LUNs,
which takes constant time. Since the size of the commit
log cannot grow beyond a point, pp-flush also takes con-
stant time. The time taken to perform compaction (pp-
compact), increases with the amount of data. We observe
an increase of around 70% when going from 4GB to
8GB, because 8GB dataset cannot completely reside in
memory. Later, we observe a rise in pp-compact time by
~35-40% for every 4GB increase.

The recovery time remains close to 60-80 secs, irrespec-
tive of the data set or cluster size. This is because, there
is no repair required during restore as we post process all
the data. To compare how much time, it takes to perform
repair operation (without post process), we fire nodetool
repair command on two nodes simultaneously, each
containing around 7GB data set. It took ~456 secs to
complete the repair operation. Thus, we see the benefit
of performing post-process during backup.

4.2 MongoDB
We evaluated LWB, PP and restore phases for Mon-
goDB 3.2.7 cluster with 9 nodes consisting of 2 RS with
3 replicas each and a 3-node configuration server RS,
with each node hosted over iSCSI LUNs. We observed
that LWB takes around 10 seconds, PP takes around 2.5
minutes per RS while restore times are around 2.5
minutes for the entire cluster. These observations are in-
dependent of cluster size and dataset size. This is be-
cause, MongoDB's master-slave architecture provides us
an easy candidate (primary node) for taking space effi-
cient and consistent backup. Even in absence of primary,
new leader election only takes only a few seconds. Due
to this, we observe negligible increase in recovery time,
even if we skip the PP phase. PP though, achieves stor-
age efficient backups, even under error-scenarios and
provides opportunity to detect faults in LWB backup.

5. Conclusion and Future Work
In this paper, we present solutions to perform backup and
recovery of Cassandra and MongoDB when hosted on
shared storage. We leverage database features and data
distribution logic to take space efficient, topology obliv-
ious, and cluster consistent backup, to achieve repair-
free restore. While our recovery times are constant, we
need to improve post processing times for Cassandra.
We would also like to extend our work to other master-
less and master-slave databases. We plan to explore so-
lutions for multi-site deployment of these databases and
integrations with cloud storage.

References
[1] Nadkarni A., Polyglot Persistence: Insights on NoSQL
Adoption and the Resulting Impact on Infrastructure. IDC.
2016 Feb.
[2] Russell D., Rhame R., Thomas M., Predicts 2017: Business
Continuity Management and IT Service Continuity
Management. Gartner. 2016 Nov.
[3] MongoDB Partners with Pure Storage,
https://www.mongodb.com/lp/partners/pure-storage
[4] MongoDB Partners with SolidFire,
https://www.solidfire.com/press-releases/solidfire-announces-
partnership-with-mongodb
[5] Alapati, S., Expert Oracle9i database administration.
Apress, 2008.
[6] Chodorow K. MongoDB: the definitive guide. " O'Reilly
Media, Inc." 2013 May.
[7] Carvalho N, Kim H, Lu M, Sarkar P, Shekhar R, Thakur T,
Zhou P, Arpaci-Dusseau RH, Datos IO. Finding consistency in
an inconsistent world: towards deep semantic understanding of
scale-out distributed databases. HotStorage, 2016 Jun.
USENIX Association.
[8] Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears
R. Benchmarking cloud serving systems with YCSB.
InProceedings of the 1st ACM symposium on Cloud
computing 2010 Jun 10 (pp. 143-154). ACM.
[9] Unionfs-fuse man page,
http://manpages.ubuntu.com/manpages/precise/man8/unionfs-
fuse.8.html
[10] Lakshman A, Malik P. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems
Review. 2010 Apr 14;44(2):35-40.
[11] Cassandra Compaction.
https://docs.datastax.com/en/cassandra/2.1/cassandra/tools/too
lsCompact.html
[12] Mishra V. Cassandra: Administration and Monitoring.
Beginning Apache Cassandra Development 2014 (pp. 171-
189). Apress.
[13] Zawodny JD, Balling DJ. High Performance MySQL:
Optimization, Backups, Replication, Load Balancing & More.
" O'Reilly Media, Inc."; 2004 Apr 8.
[14] Preston C. Backup & recovery: inexpensive backup
solutions for open systems. " O'Reilly Media, Inc."; 2007.
[15] NetApp Consistency Group,
https://library.netapp.com/ecmdocs/ECMP12404965/html/GU
ID-AA34DCF7-6827-4ACC-AA5E-63B1FEA8EFCE.html
[16] Cassandra Consistency:
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dml
AboutDataConsistency.html
[17] Mongorestore,
https://docs.mongodb.com/manual/reference/program/mongor
estore
[18] Datos IO Recover X, White Paper, June 2016
[19] An Inside Look into the Talena Architecture, White Paper,
2016
[20] MongoDB Ops Manager Manual, Release 2.0, MongoDB,
Inc., Mar 07, 2017
[21] MongoDB ransomware attacks and lessons learned,
http://www.computerworld.com/article/3157766/linux/mongo
db-ransomware-attacks-and-lessons-learned.html
[22] Karger D, Lehman E, Leighton T, Panigrahy R, Levine M,
Lewin D. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide
Web. InProceedings of the twenty-ninth annual ACM
symposium on Theory of computing 1997 May 4 (pp. 654-
663). ACM.

[23] Mongodump,
https://docs.mongodb.com/manual/reference/program/mongo
dump/
[24] Cassandra Restore,
https://docs.datastax.com/en/cassandra/2.1/cassandra/operatio
ns/ops_backup_snapshot_restore_t.html
[25] MongoDB Cluster Balancer,
https://docs.mongodb.com/manual/tutorial/manage-sharded-
cluster-balancer/#disable-balancing-during-backups
[26] Ganesan, Aishwarya, et al. "Redundancy Does Not Imply
Fault Tolerance: Analysis of Distributed Storage Reactions to
Single Errors and Corruptions."

