
Request-aware Cooperative I/O Scheduling for Scale-out Database

Applications

Hyungil Jo1, Sung-hun Kim1, Sangwook Kim1,2, Jinkyu Jeong1, and Joonwon Lee1

1Sungkyunkwan University
2Apposha

Abstract

Interactive data center applications suffer from the tail

latency problem. Since most modern data center applica-

tions take the sharded architecture to serve scale-out ser-

vices, a request comprises multiple sub-requests handled

in individual back-end nodes. Depending on the state

of each back-end node, a node may issue multiple I/Os

for a single sub-request. Since traditional I/O schedul-

ing operates in an application-agnostic manner, it some-

times causes a long latency gap between the responses

of sub-requests, thereby delaying the response to end-

users. In this paper, we propose a request-aware cooper-

ative I/O scheduling scheme to reduce the tail latency of

a database application. Our proposed scheme captures

request arrival order at the front-end of an application

and exploits it to make a decision for I/O scheduling in

individual back-end nodes. We implemented a prototype

based on MongoDB and the Linux kernel and evaluated

it with a read-intensive scan workload. Experimental re-

sults show that our proposed scheme effectively reduces

the latency gap between sub-requests, thereby reducing

the tail latency.

1 Introduction

Modern data center applications provide highly interac-

tive services to end-users. In interactive applications,

providing a consistently low latency in responding to

user-requests is one of the important concerns of ser-

vice providers [7]. In a decade, several studies have

conducted to reduce tail latency on individual building

blocks of data center applications, such as data center

networks [10, 9], application protocols [17, 19], request

scheduling [14], and layered I/O stacks [18, 16]; most

of these relieved the tail latency problem directly or in-

directly. However, such studies do not carefully con-

sider the cases that latency of a request involves causally-

related multiple I/Os on multiple nodes.

Database applications such as MongoDB [2] and Cas-

sandra [12] are representative data center applications

because they provide consistent data stores for other ap-

plications such as web servers. To cope with the growth

of database size and user demands, modern database ap-

plications support scale-out architectures, such as shard-

ing [5]. On a sharded database, a request such as a search

query splits into multiple sub-requests that are handled

in a group of servers [8], and the system will wait for the

completion of whole sub-requests. Each server handles

an assigned sub-request through a number of internal be-

haviors such as cache lookup, index tree traversal, and in-

teraction with the kernel for issuing I/Os. As a result, the

original request must wait for the completion of all inter-

nal behaviors involved in all sub-requests. Since internal

behaviors are not determined until a request arrives, this

uncertainty can lead to latency fluctuations.

With an application study reported herein, we found

several conditions that exacerbate tail latency in database

applications (§3).

• An original request finishes only after receiving

completion messages of all sub-requests.

• A node issues multiple I/Os for a single sub-request,

and the response of the sub-request can be delayed

by the contention with I/Os caused by other concur-

rent sub-requests handled in the same node.

• Application-agnostic I/O scheduling can delay the

response of a sub-request. For example, fair I/O

bandwidth allocation in the block layer significantly

increases the latency of each sub-request since it

only considers fairness among the threads while ig-

noring fairness among the user requests.

Based on the observations, we conclude that, if I/Os on

multiple nodes caused by one request are cooperatively

scheduled by reflecting the application’s semantic, it re-

lieves the tail latency by avoiding the above conditions.

We choose the request arrival order as a useful applica-

tion semantic that can be exploited for I/O scheduling.



Thus, in this paper, we propose a request-aware coop-

erative I/O scheduling scheme to reduce the tail latency

of requests. The proposed scheme comprises two parts.

First, the proposed scheme propagates the request arrival

order from the application to the I/O schedulers in the

back-end nodes of an application (§4.1). Second, the I/O

scheduler in each node exploits the propagated request

arrival order to make decisions for scheduling I/Os. By

doing so, each I/O scheduler can enforce the request ar-

rival order in its local I/O scheduling (§4.2).

As a case study, we used MongoDB as a database ap-

plication [2] and examined its read path from the front-

end of the application to the I/O scheduler in an OS.

Then, the proposed scheme was implemented in the ap-

plication as well as in the Linux kernel. With a read-

intensive scan workload, we show that the proposed co-

operative I/O scheduling scheme effectively reduces the

tail latency of requests.

2 Background

In modern applications such as database applications, a

request such as CRUD (create, read, update, delete) is

composed of a number of internal behaviors [15]. This

may affect the predictability of the latencies of respond-

ing to users since the completion of an original request

is delayed until all behaviors are complete. Due to the

scale-out architecture of modern applications, such be-

haviors caused by a single request are handled at mul-

tiple nodes, and therefore, it sometimes exacerbate the

unpredictability in the latency of requests. Thus, we in-

vestigate internal behaviors in MongoDB, a popular dis-

tributed database application, and the Linux kernel to

find a method that can serve predictable latency of re-

quest.

2.1 Behaviors in Application

With sharding, an application splits its key space into

multiple partitions and creates a number of back-end

shards on multiple nodes to deal with each partition.

Since an application creates shards on different nodes for

load balancing, an application requires a responsible en-

tity, such as a front-end proxy (e.g., a query router) or an

out-of-band coordinator, to serve transparent application

services. In sharded applications, depending on the type

of request (e.g., scan), a request is divided into a num-

ber of sub-requests, which are distributed into multiple

shards as shown in Figure 1.

Depending on the state of each sub-request, a shard

can have different behaviors. For example, database ap-

plications commonly index their blocks in storage by us-

ing index trees such as B-tree or LSM tree [13]. When an

application gets a request to retrieve a record and it is not

in the cache, it traverses an index tree to find the block

Proxy

Shard 1 Shard 2 Shard 3

Application

Kernel

Disk

Request

Figure 1: Causal relationships in a request: depend-

ing on the state of each shard, the length of the critical

path in a sub-request is decided. In this figure, a sub-

request on shard 2 has the longest critical path.

location of a record. While traversing an index tree, an

application accesses several internal nodes of the index

tree, and it may issues several I/Os if accessing nodes

are not in the cache. While I/Os seem individual from

the perspective of the I/O layer (e.g., the I/O stack in the

kernel), those are correlated to a request from the per-

spective of the application.

When a sub-request on each shard is completed, a

shard transfers the result to the proxy. When the results

of all sub-requests arrive at the proxy, the proxy aggre-

gates them and then responds to the original request.

2.2 Behaviors in Kernel

In each shard, the OS kernel handles I/Os on behalf of

an application. A typical I/O stack in modern OSes is

composed of a number of independent layers [11]. If a

read I/O hits in the kernel caching layer, it is served with-

out accessing storage. Otherwise, a file system submits

a block read request to the block layer, and the block

layer makes a read I/O request and admits it into a re-

quest queue of a block device. Lastly, an I/O scheduler

dispatches an I/O request from a request queue to the

block device depending on its local policy, such as earli-

est deadline first or fair scheduling [1].

However, it does not directly result in low latency of

the original request. This is because an I/O scheduler

does not recognize the scale-out structure of the applica-

tion and thus it misses knowledge of correlations across

I/Os. Accordingly, the I/O scheduler merely handles I/O

requests on a best-effort basis in the layer and sometimes

cannot make the best decision to minimize the latency

of a request. For example, individual I/O requests for

traversing an index tree can be mixed and re-ordered de-

pending on the I/O scheduling policy.

3 Key Insights

By searching the behaviors of MongoDB and the Linux

kernel, we observed two key causes of latency fluctuation



in a request.

Causal relationship: In sharded applications, since

each request is handled according to the aggregator-leaf

model, a request and its sub-requests are causally related.

Similarly, a sub-request in a back-end node may issue a

number of I/Os; thus, a sub-request and its issuing I/Os

are also causally related. Causal relationship implies that

a parent must wait for completion of children tasks (Fig-

ure 1). Furthermore, by the transitive law, a request and

I/Os issued by its sub-requests have causal relationships.

Variable critical path: An application and the kernel

commonly have their own cache. A request percolates

down to lower layer only if a cache miss occurs. The

critical path length of a request is decided based on the

state of the cache. Since the state changes over time and

in response to running workloads, an application cannot

determine the completion time of a request. Moreover,

some internal behaviors such as index tree traversal can

incur additional I/Os in the critical path.

Based on these observations, we found that comple-

tion time of a request is determined by the sub-request

that has the longest critical path. To reduce the tail la-

tency of requests, we suggest a strategy for an I/O sched-

uler that considers such internal behaviors of an appli-

cation. Briefly, the strategy forces that scheduling of I/O

requests to follow the request arrival order captured in the

application, and the I/O scheduler schedules I/O requests

in the same causal relationship in a batched manner.

4 Design and Implementation

To enforce our strategies for I/O scheduling in distributed

nodes, the context of a request should be propagated

through the full parallel I/O path of the application and

the OS kernel. To this end, the proposed cooperative I/O

scheduling scheme is composed of two parts: request

context propagation and cooperative I/O scheduler. We

summarized the roles of these two components as fol-

lows:

• Request context propagation is a mechanism

that delivers the context of a request, especially

causal relationships (Figure 1), from an applica-

tion’s proxy to I/O schedulers in the shards.

• The cooperative I/O scheduler in each shard

schedules I/O requests by reflecting the arrival or-

der of the original requests at the proxy.

We used MongoDB [2] and the Linux kernel to imple-

ment our scheme. Request context propagation compo-

nents are implemented into both MongoDB and the ker-

nel, and the cooperative I/O scheduler was implemented

as an I/O scheduler in the kernel. In the rest of this sec-

tion, we describe implementation details of the two com-

ponents.

4.1 Request Context Propagation
MongoDB has a number of components to support shard-

ing. The front-end proxy (hereinafter, ”proxy”) in Mon-

goDB, named mongos, receives requests from clients

and sends sub-requests to back-end shards (hereinafter,

”shards”). The proxy waits for completion of whole the

sub-requests and then aggregates results of sub-requests

to return the results to the clients. A configuration server

stores metadata that describes the layout of the parti-

tioned key space and the sharding architecture. Each

shard has an instance of mongod that actually handles op-

erations in an original request, such as CRUD. A mongod

process is multi-threaded, and each thread is in charge

of handling one request. Each component of MongoDB

operates independently and interacts with other compo-

nents by exchanging messages.

When a request arrives, mongos interprets it and en-

codes a request into a message, which is of a form that

each shard can handle. Then, mongos determines which

shards are appropriate and forwards the message to each

of these shards.

We add a module to mongos that captures the request

arrival order and embeds it in each message. When a re-

quest arrives, a module creates a request-context object

and assigns a unique request id to the request. A mod-

ule maintains a request-context object until a request is

completed. When mongos creates a message, it includes

the request id in the message. By doing so, mongos can

propagate the request arrival order to the shards.

Once the message arrives at each shard, mongod in-

terprets the message and invokes the appropriate service

such as query processing. While a thread in mongod han-

dles a message, I/Os should be accompanied with the

corresponding request id of the message. To this end,

we implemented two system calls, ctx begin() and

ctx end(). The former is called with a request id be-

fore handling a message, and the latter is called when

message processing is complete. In mongod, I/Os issued

between the two system calls are tagged with the corre-

sponding request id. As a result, the request context can

be propagated to the kernel. The kernel allows only one

request context to each thread at once since each thread

handles an assigned sub-request synchronously. When-

ever the form of an I/O is changed (e.g., from a bio to

an I/O request), the request id is also transferred to the

changed form until the I/O reaches the I/O scheduler.

4.2 Cooperative I/O Scheduler
The goal of our cooperative I/O scheduler is to enforce

the order of I/O scheduling to follow the request arrival

order captured at the proxy. Since each I/O request is

tagged with a corresponding request id, our scheduler

can schedule I/O requests in the order of the request ids.

We implemented our cooperative I/O scheduler based on
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Figure 2: Request-aware cooperative I/O scheduling:

circles and rounded rectangles represent user and I/O re-

quests, respectively. The number in each circle indicates

the request arrival order.

the noop scheduler of the Linux kernel. While the origi-

nal noop scheduler schedules all I/O requests in a first-in

first-out (FIFO) manner, the cooperative I/O scheduler

reorders the received I/O requests according to request

id, as depicted in Figure 2.

Basically, I/O requests in the request queue are in the

form of a linked list and are isted in order of request id.

When a new I/O request arrives, it should be inserted in

the correct position, between the last I/O request hav-

ing the same request id and the first I/O request having a

larger request id. This search operation may increase the

queueing time. Since I/O requests irrelevant to applica-

tions are assigned a default request id (i.e., 0), the search

operation can also waste time in traversing I/O requests

with the default request id.

To avoid unnecessary traversal, the cooperative I/O

scheduler maintains a lookup table to track outstanding

request contexts. Each entry contains a request id, a

pointer to the last I/O request in the same request con-

text, and several statistical information. When an I/O re-

quest arrives, the cooperative I/O scheduler looks up the

table and find an entry which has the matched request

id and then inserts the arriving request at an appropriate

position in the request queue by following the pointer to

the entry. An entry of the lookup table is allocated when

an I/O request with a new request id arrives and is freed

upon the completion of the last I/O request which is im-

plied by the ctx end() call. Since maximum size of the

lookup table is decided by the application’s parallelism

level (in our case, it is less than 500 in each shard), neg-

ligible additional memory overhead is incurred by using

the cooperative scheduling scheme.

5 Evaluation

To evaluate the request-aware cooperative I/O scheduling

scheme, we used four VMs on two physical machines to

run mongod, and two physical machines to run a mongos

and a client. Each machine had two Intel Xeon E5-2650

CPUs, 32 GB of memory, and two SAS SSDs, and the

machines were interconnected by 10 Gbit Ethernet. Each

VM had two virtual cores, 2 GB of memory and a dedi-
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Figure 3: Latency gap between sub-requests: each

value is the difference between the minimum and the

maximum latency of sub-requests.

cated SSD for database storage. Physical resources were

not overcommitted in each physical machine to avoid re-

source contention. For prototyping, we used Linux 4.8.2

and MongoDB 3.2.10.

We defined and ran a synthetic workload using the Ya-

hoo Cloud Serving Benchmark (YCSB) [6] as follows:

• Scan: The workload performs a range query that

finds N documents having a value greater-than-or-

equal-to a specific value. Note that N is a random

variable ranging uniformly from 1 to 100.

A workload runs on a data set composed of forty mil-

lion 1 KB documents. We ran YCSB on a client ma-

chine which generates concurrent requests by 64 client

threads. For comparison, we used three I/O schedulers

in the Linux kernel (noop, deadline, and completely-fair

queue (cfq)). Hereafter, we denote the cooperative I/O

scheduler as coop.

Figure 3 shows the latency gap between the first and

last response of sub-requests of each request. We present

two cases from our experiments: a query for 50 docu-

ments as a median case and a query for 95 documents as

an extreme case. As shown in the figure, when the num-

ber of documents to fetch increases, the latency gap sig-

nificantly increases in the original Linux I/O schedulers.

Due to the increased number of documents, internal be-

haviors, such as index tree traversal and cache misses,

generate more I/Os. However, our scheme is success-

ful in reducing the latency gap by respecting the global

scheduling order.

We present throughput and latencies of the scan work-

load in Table 1 and Figure 4, respectively. Four I/O

schedulers show similar throughput because most re-

quests are served from in-memory cache. Since appli-

cations incur I/Os when cache misses occurred, effect of

I/O scheduling is notably shown in the tail latency. Dead-

line and noop showed moderate response times, whereas

cfq aggravated the tail latency. Since cfq applies fair I/O

scheduling to threads, a sub-request can be delayed due

to reordering of I/O requests. The cooperative I/O sched-

uler, however, outperforms other schedulers in terms of



Configuration noop deadline cfq coop

Throughput (ops/sec) 147.92 150.25 145.40 150.76

Table 1: Throughput of the scan workload.
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Figure 4: Average and tail latencies of the scan work-

load.

the tail latency, reducing tail latency up to 57% better

than that of cfq and 32% better than those of noop and

deadline. Although our scheme does not strictly co-

schedule I/Os associated with the same request over the

multiple nodes, respecting the global order in each node

is effective in synchronizing sub-request handling.

6 Discussion

While the prototype implementation showed that the

request-aware cooperative I/O scheduling is effective in

reducing tail latency, the prototype implementation only

considers read-oriented workloads. To make our scheme

more effective for all types of workloads, we need to con-

sider the following aspects.

6.1 Complexity in Write Path

Applications and kernel I/O stacks extensively use write

merging that cause the difficulty in assigning proper re-

quest id to a merged I/O request. For example, database

applications use a group commit that flushes transac-

tional logs made by multiple threads together [3]. Each

transactional log contains updates by a single update re-

quest by a user. In addition, when database applications

run on a file system supporting crash consistency, an-

other write entanglement occurs in the file system jour-

naling layer [20, 11]. Hence, write I/Os caused by a

group commit are caused by multiple requests. Assign-

ing a request id to a merged I/O should be done carefully.

Otherwise, tail latency can be aggravated because of star-

vation of I/Os or violation of the request order.

6.2 Background Jobs

Most applications have maintenance jobs running in the

background. For example, Cassandra [12] conducts com-

paction on data files to guarantee low latency of read re-

quests, and MongoDB makes a snapshot periodically to

support snapshot-level durability [4]. Since such jobs in-

cur heavy I/Os, I/Os associated with user requests can be

affected [20, 11]. One problem is that it is difficult for the

I/O scheduler to schedule background jobs since they are

not initiated by user-requests. Previous work [11] sug-

gests that prioritizes I/Os for foreground jobs from I/Os

for background jobs and also prioritizes low-priority I/Os

when the runtime dependencies between I/Os is found.

However, this suggestion might be ineffective since it

only supports two level prioritization whereas we also

require mapping of background I/Os to the dependent re-

quest context in runtime.

6.3 Replication

Database applications usually adopt data replication for

high availability. On an application with data replica-

tion, request latency can be prolonged due to the repli-

cation protocol. Applications commonly use quorum-

based replication protocols for data consistency. In that

case, a write request is propagated to replication nodes

and then is complete when the majority return the results.

For a read request, an application executes a quorum read

if it is a masterless system, or just reads from a single

node if it has a primary node. If the scheduling order of

I/O requests from concurrent requests are stirred in any

replication nodes, it can delay the completion of all re-

quests. We believe that our cooperative I/O scheduling

scheme relieves the tail latency problem in replication

nodes by enforcing global scheduling order.

7 Conclusions

In this paper, we investigated the I/O path from a

database application to the kernel I/O stack to understand

the causes of tail latency. Based on our observations,

we designed a request-aware cooperative I/O schedul-

ing scheme and implemented a prototype in a read path.

With a synthetic scan workload, we demonstrated that

our prototype effectively reduces the tail latency of the

workload. We plan to reflect considerations noted in Sec-

tion 6 to our prototype and to search for other applica-

tions that can benefit from the request-aware cooperative

I/O scheduling scheme.
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