
Improving Flash Storage Performance

by Caching Address Mapping Table in Host Memory

Wookhan Jeong, Yongmyung Lee, Hyunsoo Cho, Jaegyu Lee,

Songho Yoon, Jooyoung Hwang, and Donggi Lee

S/W Development Team, Memory Business, Samsung Electronics Co., Ltd.

Abstract

NAND flash memory based storage devices use Flash

Translation Layer (FTL) to translate logical addresses

of I/O requests to corresponding flash memory address-

es. Mobile storage devices typically have RAM with

constrained size, thus lack in memory to keep the whole

mapping table. Therefore, mapping tables are partially

retrieved from NAND flash on demand, causing ran-

dom-read performance degradation.

In order to improve random read performance, we

propose HPB (Host Performance Booster) which uses

host system memory as a cache for FTL mapping table.

By using HPB, FTL data can be read from host memory

faster than from NAND flash memory. We define trans-

actional protocols between host device driver and stor-

age device to manage the host side mapping cache. We

implement HPB on Galaxy S7 smartphone with UFS

device. HPB is shown to have a performance improve-

ment of 58 - 67% for random read workload.

1. Introduction

Flash memory based storage devices are widely used in

mobile devices, desktop PCs, enterprise servers, and

data centers. Flash memory has operational limitations

such as erase-before-write and sequential write on

memory blocks. Flash Translation Layer (FTL) software

manages such constraints and abstracts flash memory

chips as a block device.

FTL maintains its mapping table to perform address

translation from logical addresses (block numbers) to

physical addresses (flash memory block and page num-

bers). FTL mapping methods can be classified into three

types [8]: block mapping, page mapping, and hybrid

mapping. The size of mapping table depends on the

type of mapping scheme. Since block mapping [1]

scheme provides mapping at the granularity of flash

memory's block, it needs a relatively small mapping

table. However, its random write performance is poor,

because a large number of pages in a block are copied

to a new memory block to update a page in the memory

block. In contrast, page mapping [2] appends every

updated page in a log block and maintains page granu-

larity mapping. Hybrid mapping is an extension of

block mapping to improve random writes [3, 4, 5, 6]. It

keeps a smaller mapping table than page mapping while

its performance can be competitive to that of page map-

ping for workloads with substantial access locality.

Among the three types of mapping, page mapping

performs most efficiently, but it requires a large map-

ping table (typically 1/1024 of device size when using

4Bytes mapping entry for 4KiB sized page). If the

whole mapping table cannot fit into device's memory,

FTL loads a part of the table on demand [7], which may

increase latency and hence degrade the performance of

random read I/O.

Random read performance has become more im-

portant as computing power is enhanced with the rise of

rich OS features (e.g. multi-window in Android N) and

applications (MSFT office packages for mobile). How-

ever, flash storage for mobile devices still suffer from

limited memory resources due to its constraints on pow-

er consumption and form factors. Properly managing

the size of mapping table is a serious concern as device

density increases.

In this paper, we propose Host Performance Booster

(HPB), a new method of caching mapping table to host

memory without additional hardware support in mobile

storage devices, to address the mapping table size prob-

lem. We show design and implementation of HPB on a

smartphone with UFS (Universal Flash Storage) which

is a new generation mobile storage using SCSI com-

mand set. We describe the transaction protocol to ex-

change mapping table information between device driv-

er and UFS device. Experimental results show that ran-

dom read performance is improved up to 67% by HPB.

Section 2 describes the background of FTL opera-

tions and overviews HPB. Section 3 explains the details

of HPB implementation. We show experimental results

and related works in Section 4 and Section 5, respec-

tively, and conclude in Section 6.

2. Design Overview

2.1. FTL operation background

FTL maintains Logical-to-Physical (L2P) mapping table

in NAND flash memory. In general, flash memory de-

vices used for mobile systems do not have DRAM, but

SRAM of limited size in storage controller, where FTL

caches recently used L2P mapping entries. On receiving

a read request, FTL looks up the map cache to retrieve a

corresponding mapping entry, or loads the mapping

from flash memory in case of cache miss. Cache miss

penalty is significant for small chunk random reads. For

example, to process a 4KB size read request, two read

operations (one for map and one for data) are required

in case of L2P cache miss.

The overall procedure of processing a read request is

depicted in Figure 1. Device fetches a read request,

looks up its L2P cache in device SRAM. On L2P cache

miss (Case1), L2P in flash memory is loaded, which

takes hundreds of microseconds. On cache hit (Case2),

L2P entry is retrieved from device SRAM.

2.2. HPB Overview

The key idea of HPB is that host device driver caches

L2P mapping in host memory (DRAM) and sends the

corresponding L2P information piggybacked in an I/O

request to device whether the L2P entry is cached in

host memory. Since the L2P information is provided by

the host in the request, device does not have to load

L2P entry from flash memory even on its internal L2P

cache miss (Case3 in Figure 1). Device investigates the

host provided L2P to protect data against possible cor-

ruption of L2P metadata. In the following, we describe

the HPB in more detail.

2.2.1. L2P Cache Initialization

At boot time, HPB device driver allocates kernel

memory for L2P cache, requests L2P information to

device, and populates the L2P cache.

2.2.2. Device to Host L2P information delivery

In HPB, L2P information is delivered from device to

host driver in two ways. First, host driver can fetch a

chunk of L2P entries by sending a command, imple-

mented via SCSI READ_BUFFER command [11] (Fig-

ure 2(a)). This command can be issued only when the

storage device is idle to avoid any impact on normal I/O

performance. Second, device piggybacks L2P infor-

mation in response packets of normal I/O requests (Fig-

ure 2(b)). While this does not incur command overhead,

the size of information that can be contained in a re-

sponse packet is limited. Both methods are used to syn-

chronize the host side L2P cache with device's L2P

mapping table, which is explained more in 2.2.4.

2.2.3. Host to Device L2P information delivery

HPB driver includes L2P information in an I/O request

if host side cache has a corresponding L2P entry (Figure

2(c)). On receiving a read request with L2P information,

device verifies if the given L2P has been published by

itself, and checks whether that entry is up-to-date. If the

given L2P passes those inspections, device uses it

without loading the entry from flash memory. This will

be described in more detail in 2.2.5.

2.2.4. L2P Cache Consistency

L2P mapping entries in device are updated not only by

host’s writes but also by FTL’s internal operations such

as wear leveling (WL), which is required to avoid block

wear-outs, or garbage collection (GC), which is re-

Figure 2: HPB related host-device interface

Figure 1: Legacy mobile storage operation as per read

request. tR means the latency of reading a flash memory

page.

quired to reclaim free space. HPB device notifies host

of L2P change events by raising a flag in a response

packet, then HPB driver fetches up-to-date L2P entries

from device.

As shown in Figure 2(d), device maintains a bitmap

to keep track of address ranges that have L2P change(s).

Since this bitmap should reside in device memory, small

bitmap is preferred. To reduce the bitmap size, we have

a single bit which represents a group of consecutive

pages. Device notifies host of which group has updated

L2P entries, and then the host driver issues a

READ_BUFFER command to fetch L2P entries for the

group.

HPB device checks if given L2P is up-to-date by re-

ferring to the dirty bitmap, and ignores it if the group, to

which the requested page belongs, is dirty. Since the

group of page is large, a small change to the group may

deteriorate performance. To keep the host side L2P

cache consistent as early as possible, HPB device re-

turns updated L2P entries in a response packet for nor-

mal I/O. Most of flash devices have an internal write

buffer, so the requested data may not have been persist-

ed when a write I/O request is completed. Therefore, it

should be noted that the L2P information for a write

request may be delivered in response packet of other

requests later.

2.2.5. L2P information verification

As previously mentioned, since L2P map is critical to

data integrity, HPB device verifies the L2P information

given by the host before using it. Host side L2P cache

may be modified by malicious software or kernel de-

fects. HPB driver checks if the L2P entry has been pub-

lished by itself. To do so, HPB device makes a signa-

ture using LBA and PPN, encrypts L2P entry using ran-

dom seed and the signature as shown in Figure 3. Since

encryption key is not provided to host, host cannot de-

crypt it. HPB device can detect whether the L2P entry

has been tampered while in host memory by decrypting

the entry and checking the signature. We do not imple-

ment the verification scheme in this work because the

device used in our experiment does not have an encryp-

tion/decryption hardware engine.

3. Implementation

This section describes our implementation of HPB on a

Galaxy S7 [12] smartphone with an UFS device [13] in

order to prove the concept of HPB.

3.1. Host-Device Protocol on UFS

Here we describe the interface between HPB driver and

HPB device for HPB operation.

Figure 4 shows how a Linux host and UFS device

communicate. UFS storage stack is a layered architec-

ture consisting of application layer and transport layer.

CDB (Command Descriptor Block) and UPIU (UFS

Protocol Information Unit) are the main structures in

the application layer and the transport layer, respective-

ly. CDB is a structure for a client to send a command to

a SCSI device. UPIU is a data structure used to transfer

information between UFS host and device. CDB is in-

cluded in a “command” UPIU. Data is exchanged with-

in “data” UPIUs. We explain our implementation using

CDB and UPIU in the following.

1) As shown in Figure 5, we redefine the 8 byte LBA

field of READ16 command’s CDB in order to contain 4

byte LBA and 4 byte L2P entry.

2) UFS driver issues a READ_BUFFER command,

containing a group number as shown in Figure 5, to Figure 3: Encryption of an L2P entry

Figure 5: UPIU examples in HPB

Figure 4: UFS protocol overview

fetch L2P entries of the group from device. A group

consists of 4096 L2P entries in our implementation. On

receiving the READ_BUFFER command, UFS device

responds with L2P entries of the group.

3) UFS device notifies host of dirty group using a flag

in device information field of a response UPIU. If the

flag is clear, for example, dirty group number is con-

tained in the response UPIU. Then, HPB driver issues a

READ_BUFFER command for the dirty group. On the

other hand, if the flag is set, the latest L2P entry is in-

cluded in Data segment in Response UPIU. Figure 5

shows CDB and UPIU fields mentioned above.

3.2. Device side L2P management

HPB device maintains a L2P dirty bitmap in its memory

to manage L2P cache consistency to keep track of the

dirty page groups. The whole LBA range is divided into

several groups and one bit is assigned to each group.

The size of group affects the overall performance of

HPB because if there is any L2P change to a page in a

group, device ignores L2P information of all pages be-

longing to the group. In our implementation, a group

consists of 4096 pages.

 HPB device marks a bit of the L2P dirty bitmap for a

group when it processes host writes, GC, and WL oper-

ations. It clears the bit when host HPB driver fetches the

latest L2P information via READ_BUFFER command

or response UPIU.

3.3. Device Driver

One of our major design goals for HPB driver is to be

transparent to the upper layer, including file system.

HPB driver initializes during the initialization phase of

UFS driver. It allocates kernel virtual memory for L2P

cache and data structures to manage the cache. HPB

driver performs the following three operations.

1) If UFS device sends L2P map entries in response

UPIU, HPB driver writes these entries to its L2P cache.

2) If UFS device sends a dirty L2P group number in

response UPIU, HPB driver issues the READ_BUFFER

request with the group number, which is executed dur-

ing device idle time to avoid impact on normal I/O.

HPB driver updates its L2P cache using the data deliv-

ered as per the request.

3) When the upper layer requests a read to the UFS

driver, HPB driver finds a corresponding physical ad-

dress with its logical address and issues the read com-

mand which includes the physical address using

READ16 command format.

3.4 Multi-page Read Request Handling

The implementation in this paper has a limitation that

only one L2P entry can be transmitted in to a READ16

CDB. With this constraint, if the physical chunk corre-

sponding to the logical address of the request is physi-

cally contiguous, the PPN information of the entire

chunk of the request is transmitted with only one PPN

transmission. Transmitting additional information can

be supported by using extra header segment, which is

under discussion in JEDEC for possible inclusion in the

next UFS 3.0 standard. If extra header is supported, we

do not need to change READ16 CDB fields as well.

4. Performance Results

On Galaxy S7 with UFS, we performed a series of mi-

cro benchmarks to analyze the HPB performance.

Random read performance: HPB performance benefit

is expected to be more significant under smaller chunk

random read requests, because the workload accesses

L2P map frequently. To see the benefit for small ran-

dom read requests, we use tiobench [14] that measures

I/O performance using multiple threads. We configure

tiobench to set 4KB record size on 1GB address range

and use 1, 2, 4, 8 and 16 threads. As shown in Figure 6,

HPB shows 59 ~ 67% of random read performance im-

provement, as the cache hit rate is 100% in the Host-

side L2P Cache.

Figure 6: tiobench 4KB RR (Random Read) per-

formance

Figure 7: tiobench SR(Sequential Read), SW(Sequential

Write), RW(Random Write) performance.

Figure 7 shows there is no performance improvement

in sequential read because the searching time for L2P

map occupies only a small portion of the overall time.

In addition, HPB does not affect write performance

because there is no difference between HPB driver and

normal driver under write workload.

Mixed workload: We tested read and write mixed

workload to see HPB performance when L2P mapping

changes due to host writes and host updates its L2P

cache accordingly as described in 2.2.2. As shown in

Figure 8, HPB achieves 8 ~ 43% performance im-

provements for various mix ratio. Even in highly write

intensive load (read 10%, write 90%), HPB still gives

8% performance improvement.

Multi-page chunk read test: Figure 9 shows the result

of random read workloads with various chunk sizes

(4KB to 512KB). We tested with tiobench and set the

test parameters to 1GB address range, 195MB I/O size,

and 8 threads. As mentioned in 3.4, HPB driver delivers

L2P entry if the requested chunk is physically contigu-

ous. The performance gain of HPB becomes smaller as

the chunk size increases because the elapsed time to

load the L2P entry from flash memory becomes smaller

compared to the time to read data.

5. Related Works

The concept of using the host-side memory to improve

the performance of the device was proposed in NVMe

Host Memory Buffer (NVMe HMB) [9] and UFS Uni-

fied Memory Extension (UFS UME) [10]. UFS UME

requires additional hardware design for device to access

host memory. Uboldface FS device operates as a bus

slave so it cannot access host-side memory by itself.

Accordingly, additional interconnection interface is

required for the UFS UME, which increases the hard-

ware cost. In addition, UFS UME requires allocation of

contiguous physical memory. In contrast, HPB offers

significantly enhanced operational flexibility because it

uses virtual memory allocated by device driver. The

memory allocated for L2P cache can be returned to ker-

nel and re-allocated for the HPB driver.

6. Conclusions and Future Works

In this paper, we propose HPB (Host Performance

Booster), a method of caching Logical-to-Physical

(L2P) mapping table in host-side memory to improve

random read performance for storage devices that have

not enough memory to keep the whole L2P mapping

table in device’s RAM. We implemented HPB on a

Galaxy S7 with UFS (Universal Flash Storage) storage

device. Experimental results show that HPB improves

performance by 58 ~ 67% for random read workloads

and 8 ~ 43% for read/write mixed workloads.

To our knowledge, our work is the first study on de-

sign and implementation of host managed L2P map

caching. We hope our approach opens a variety of in-

teresting research directions. Our future works include

host-side L2P cache replacement algorithm and optimi-

zation of the L2P cache consistency protocol to reduce

the L2P cache synchronization overheads. We also plan

to implement HPB on NVMe SSDs and compare with

the NVMe HMB.

7. Reference

[1] A. Ban. Flash file system, April 4 1995. US Patent

5,404,485.

[2] A. Ban. Flash file system optimized for page-mode

flash technologies, August 10 1999. US Patent

5,937,425.

[3] Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul

Min, and Yookun Cho. A space efficient flash

translation layer for CompactFlash systems. Con-

sumer Electronics, IEEE Transactions on,

48(2):366-375, May 2002.

[4] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung,

Dong-Ho Lee, Sangwon Park, and Ha-Joo Song. A

log buffer-based flash translation layer using fully-

Figure 8: Mixed pattern performance (4KB record size,

1GB I/O issue, 16 threads). In RW(x:y), x is read portion and

y is write portion.

Figure 9: Performance for various chunk sizes.

associative sector translation. ACM Trans. Embed.

Comput. Syst., 6(3):18, 2007.

[5] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A Superb-

lockBased Flash Translation Layer for NAND

Flash Memory. In Proceedings of the 6th ACM &

IEEE International conference on Embedded soft-

ware (EMSOFT ’08), Seoul, Korea, August 2006.

[6] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:

Locality-Aware Sector Translation for NAND

Flash Memory-Based Storage Systems. In Pro-

ceedings of the International Workshop on Storage

and I/O Virtualization, Performance, Energy,

Evaluation and Dependability (SPEED2008), Feb-

ruary 2008.

[7] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a

Flash Translation Layer Employing Demand-

Based Selective Caching of Page-Level Address

Mappings. In Proceedings of the 14th International

Conference on Architectural Support for Pro-

gramming Languages and Operating Systems

(ASPLOS XIV), pages 229–240, Washington, DC,

March 2009.

[8] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W.

Lee, and H.-J. Song. System Software for Flash

Memory: A Survey. In Proceedings of the 5th In-

ternational conference on Embedded and Ubiqui-

tous Computing (EUC ’06), pages 394–404, Au-

gust 2006.

[9] NVMe specifications 1.21a,

http://www.nvmexpress.org/specifications/

[10] JEDEC JESD220-1A, Universal Flash Storage

(UFS) Unified Memory Extension, Version 1.1.

https://www.jedec.org/

[11] JEDEC JESD220C, Universal Flash Storage

(UFS), Version 2.1. https://www.jedec.org/

[12] Samsung Galaxy S7.

http://www.samsung.com/us/explore/galaxy-s7-

features-and-specs/

[13] Samsung Universal Flash Storage.

http://www.samsung.com/semiconductor/products/

flash-storage/ufs/

[14] Threaded I/O tester.

https://sourceforge.net/projects/tiobench/

http://www.samsung.com/semiconductor/products/flash-storage/ufs/
http://www.samsung.com/semiconductor/products/flash-storage/ufs/
https://sourceforge.net/projects/tiobench/

