
Lightweight KV-based Distributed Store for Datacenters

Chanwoo Chung, Jinhyung Koo†, Arvind, and Sungjin Lee∗

Massachusetts Institute of Technology (MIT) †Inha University
∗Daegu Gyeongbuk Institute of Science & Technology (DGIST)

A great deal of digital data is generated every day by

content providers, end-users, and even IoT sensors. This

data is stored in and managed by thousands of distributed

storage nodes, each comprised of a power-hungry x86

Xeon server with a huge amount of DRAM and an array

of HDDs or SSDs grouped by RAID [2]. Such clusters

take up a large amount of space in datacenters and re-

quire a lot of electricity and cooling facilities. Therefore,

packing as much data as possible into a smaller datacen-

ter space and managing it in an energy- and performance-

efficient manner can result in enormous savings.

Existing storage nodes have to run complex soft-

ware to manage distributed and local file systems, and

support various host-to-storage protocols, such as NFS,

SMB/CIFS, and RADOS. Data reduction techniques like

deduplication and compression are often implemented

in storage nodes. We argue that the conventional dis-

tributed storage architecture with such nodes is over-

designed with excessive hardware resources and unnec-

essarily complex software.

We believe that the hardware and software of existing

storage systems can be refactored to run on a lightweight

storage node comprised of low-power ARM cores, FP-

GAs, and raw NAND flash chips. Such a node can be a

drive-sized embedded system, which can directly interact

with application servers over a datacenter network such

as Ethernet. A single server with N drives in the con-

ventional system can be replaced with N new drive-sized

nodes. For example, a flash storage solution composed

of a Xeon server and 25 SSDs requires 6 U of rack space

and 800 W of power, while the same capacity is achieved

with 25 proposed nodes that require only 2 U and 250 W,

resulting in tremendous savings in power, space, and a

total cost of ownership. Both the proposed and conven-

tional architectures are shown below. The cost-effective

�
�
�
�
�
��
��
�
	

�

����������	

��
��

����������	�

��
��

����������	�

��
��

����������	�

��
��

����������	�

��
��

��
��
�

�

�

���

����

�����
���	

����

����������	
�����
�
	 �������������������������������� ����������!�"

#���$��%%� ������� �����#�����&�!��''�%

����	��	
����
������������
���������	��	
��
��	�

��������	�
������
������	���
����	����	�

������������	��
���

������������������������������
�

�

performance of such a system is achieved by hardware

accelerators and software optimization.

For software, we propose to use a key-value store

(KVS) based on LSM-trees because KVS’s simplicity

makes it possible to run it on low-power cores. KVSs

are widely deployed in datacenters and have a popular

server-client protocol [6, 5]. In addition, the flexibil-

ity of KVSs allows us to emulate existing data stores,

such as file systems and DBMSs, in a virtualized manner

– protocol adapters implemented in application servers

may translate file or database I/Os to a set of KVS opera-

tions. In this way, the necessity of running various host-

to-storage protocols can be removed from storage nodes.

Moreover, LSM-tree engines are flash-friendly because

of append-only writes [4]. We can optimize and simplify

existing implementations of flash management with little

modification, reducing overhead dramatically.

We propose to augment the computing power of the

embedded cores with an FPGA between the processor

and raw flash chips, and use it to implement a flash chip

controller, a node-to-node network controller, and var-

ious hardware accelerators for deduplication, compres-

sion, and even application logics [1]. The accelerators

preprocess data sent to application servers and thus ef-

fectively reduce datacenter network traffic and latency.

Additionally, a separate node-to-node network can be

used to scale the capacity of the storage nodes without

RAID and reduce the number of nodes that directly con-

nect to the datacenter network. The simplified flash man-

agement duties may migrate from software to hardware,

which further enables us to process I/Os quickly.

The proposed nodes can also serve as tools for big

data analytics like graph processing with in-store com-

puting capability from hardware accelerators on FPGAs

coupled with flash [3].

�

����������	
��
 ��������������������������

���
������������

���� �
������� ����!�����"����##� �����
� ����������$��

�

��������

	
��

���
�	����

��������

	
��

���
�	����

����������	

��
��

����������	�

��
��

����������	�

��
��

����������	�

��
��

����������	�

��
���

��������	
� �
�������	
� �������	
� ��������	
� �

���������	
����

��
���������
���	�������

�
�
�
�
��
�
��
�
�
�
��
�
��

�
	

������������	��
���

������������������������������
�

�

����������������������������

Figure: A comparison of the conventional distributed store and the proposed one.

References

[1] CAULFIELD, A. M., CHUNG, E. S., PUTNAM,

A., ANGEPAT, H., FOWERS, J., HASELMAN, M.,

HEIL, S., HUMPHREY, M., KAUR, P., KIM, J. Y.,

LO, D., MASSENGILL, T., OVTCHAROV, K., PA-

PAMICHAEL, M., WOODS, L., LANKA, S., CHIOU,

D., AND BURGER, D. A cloud-scale acceleration ar-

chitecture. In Proceedings of the IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO)

(2016), pp. 1–13.

[2] DELL EMC. EMC XtremIO 4.0 System Specifica-

tions, 2015. Retrieved May 15, 2017, from https:

//www.emc.com/collateral/data-sheet/

h12451-xtremio-4-system-specifications-ss.

pdf.

[3] JUN, S.-W., LIU, M., LEE, S., HICKS, J.,

ANKCORN, J., KING, M., XU, S., AND ARVIND.

Bluedbm: An appliance for big data analytics.

In Proceedings of the International Symposium on

Computer Architecture (ISCA) (2015), pp. 1–13.

[4] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., AND

ARVIND. Application-managed flash. In Proceed-

ings of the USENIX Conference on File and Storage

Technologies (FAST) (2016), pp. 339–353.

[5] REDIS LAB. Redis Protocol Specification. Retrieved

May 15, 2017, from https://redis.io/topics/

protocol.

[6] WU, X., XU, Y., SHAO, Z., AND JIANG, S.

Lsm-trie: An lsm-tree-based ultra-large key-value

store for small data items. In Proceedings of

the USENIX Annual Technical Conference (USENIX

ATC) (2015), pp. 71–82.

