Exo-clones: Better Container Runtime Image Management across the
Clouds

Richard P. Spillane, Wenguang Wang, Luke Lu, Maxime Austruy, Christos Karamanolis, and
Rawlinson Rivera

VMware

Abstract

Our key innovation is to allow volume snapshots in
VDEFS (our native hyper-converged distributed file sys-
tem) to be exported to a stand-alone regular file that can
be imported to another VDFS cluster efficiently (zero-
copy when possible) called exo-clones. Our exo-clones
carry provenance, policy, and similar to git commits,
the fingerprints of the parent clones from which they
were derived. They are analogous to commits in a dis-
tributed source control system, and can be stored outside
of VDFS, rebased, and signed. Although they can be un-
packed to any directory, when used with VDFS they can
be mounted directly with zero-copying and are instantly
available to all nodes mounting VDFS. VDEFES with exo-
clones provides the format and the tools necessary to
both transfer, and run encapsulated applications in both
public and private clouds, and in both test/dev and pro-
duction environments.

1 Introduction

Applications that are deployed using a continuous de-
ployment pipeline must be able to use storage in a va-
riety of different environments, e.g., in development on
a laptop or workstation, perhaps mounting a NAS, in a
test deployment on a test cluster, or in an actual deploy-
ment on a cloud platform or software defined data center
(SDDC).

In each of these environments, the application’s stor-
age must be able to provide some key basic functional-
ity. When the application is running in a deployment en-
vironment the operator of the application must be able
to monitor the application’s IO usage, tune its perfor-
mance, set storage and networking policies or service-
level-agreements, migrate it to a different storage envi-
ronment, and backup and recover the application if it
crashes. When an application is being developed, the de-
veloper must be able to build and deploy the application

in a test environment where it will behave as similarly
as possible to how it executes in production, and can be
inspected and debugged as it runs.

In this paper we explore what becomes possible in
some cases, or more easily and more efficiently done
in others, when an organization’s storage infrastructure
enables them to treat the storage consumed by applica-
tions in production and development, across multiple en-
vironments, in the exact same way, using a common set
of tools that manipulate a single storage object: an exo-
clone. An exo-clone is a volume clone that lives outside
of the file system as a regular file. Exo-clones use a com-
bination of block-level delta encoding between snapshots
as well as a deduplication capability with volumes com-
mon to both sending and receiving parties to maintain a
small network footprint, e.g., potentially much smaller
than Docker file system layers.

To use exo-clones, an organization would need to use
a file system that can efficiently do an exo-clone import,
export, and support all other exo-clone operations. They
would deploy such a file system on their storage infras-
tructure in each of their environments. Exo-clones can be
most efficiently supported on more modern file systems
that already support file and volume clones, like our vir-
tual distributed file system (VDFS), for which we added
support for exo-clones. Since our VDFS can support
multiple backends including or RADOS [4], or
even a POSIX directory, VDFS can be deployed as a
portable file system layer to bring exo-clone support to a
variety of environments, €.g., on-prem, in a public cloud,
or on a developer workstation. Alternatively, native exo-
clone support can be added to other existing file systems
such as BtrFS or ZFS. While we are excited about bring-
ing exo-clone support to other non-VDFS file systems,
in this paper, we discuss specifically how VDF'S supports
exo-clones to serve as an example implementation and
as a gold standard for expected performance behavior of
different exo-clone operations.

Importantly, we intend that exo-clones be a standard

http://www.vmware.com/products/virtual-san

file format so that organizations do not need to install
VDES everywhere they use exo-clones. Just as with reg-
ular files, exo-clones can be easily transmitted, stored,
backed up, shared, or distributed with other 3rd party
(non-VDEFS) systems. Since the file format is standard,
we hope other file systems, and storage systems in gen-
eral will adopt exo-clones to increase their usefulness.
For example, this would allow an organization to per-
form an incremental backup to S3 by merely uploading
periodically taken exo-clones of that volume to S3 as
regular files. This is easy to do as S3 has many exist-
ing tools and APIs for uploading regular files. Or exo-
clones could also serve as a more efficient file system
layer abstraction for Docker which could allow Docker
to efficiently represent changes as exo-clones rather than
sending a whole new file system layer when some few
files or blocks are modified. A more efficient layer ab-
straction would make it feasible for Docker to extend
its runtime versioning to application state: data that is
read or written by the application while it is running,
like media content, configuration data, or centralized
databases, which currently Docker does not support (i.e.,

you | cannot push/pull Docker instances |, only images).

Organizations must simplify and standardize how ap-
plications consume and manage storage. The current
complexity of application version management is so par-
alyzing that organizations cannot upgrade from insecure
application versions even a year after the vulnerability is
reported [1]]. Exo-clones could become a standard that
allows organizations to overcome protocol and storage
format incompatibilities that prevent them from rapidly
deploying, backing up, migrating, and revision control-
ling applications in different storage environments.

2 Background

We introduce exo-clones as a potential standard file for-
mat for sharing file system changes across different stor-
age systems across different environments. We also in-
troduce an efficient, example implementation supporting
exo-clones on one particular file system, our VDFS [2].
Throughout the remainder of this paper, we will refer to
exo-clones as a feature of VDFS as that is currently the
only implementation.

VDES is being actively developed in VMware as a
next generation file system service. VDEFS is a hyper-
converged distributed POSIX file system with advanced
features such as file clones, volume clones, and volume
snapshots. Part of the design of VDFS is similar to Btrfs.
VDFS uses copy-on-write B-tree to map file name space
to blocks and maintains reference counts of blocks to
support features such as snapshots and clones. VDFS
is built on top of a shared block storage platform, such

as VSAN. VDFS will support parallel data path and dis-
tributed locking in a way similar to GPFS. A few more
features are added to the VDFS product plan to better
support exo-clone. The basics of these features and how
they are used by exo-clones are discussed below.

File Clone. A file can be cloned instantly to another
file on the same volume or different volume. Future
writes to any of the cloned files will use Copy-On-Write
(COW) to preserve contents of unmodified files.

Volume Snapshot and Clone. A VDFS file system con-
tains a set of volumes. Volumes can be instantly cloned
by doing copy-on-write when the clone or original is
written to. Volumes contain a set of snapshots that can
also be instantly cloned.

Snapshot Diff. The difference between two snapshots
of a volume can be efficiently calculated, which has a
cost proportional to the amount of metadata changed be-
tween them. The diff contains both metadata changes,
e.g., file creation, and file data changes.

3 Design

Exo-clones exist in two states: (1) as a special kind of
volume clone in the file system (e.g., VDFES), where they
can be mounted, modified, cloned, and otherwise oper-
ated on in ways similar to how git manipulates com-
mits, and (2) as a regular file that can be transferred to
other storage systems.
The operations supported by VDFES on exo-clones are
the basic operations supported by git on commits:
checkout: Create a writable clone of an existing exo-
clone in order to make changes, discussed in Section@
commit: Commit changes made to a checked out exo-
clone as a new exo-clone, discussed in Section 3.1}
import/export: Export an exo-clone volume to a file
representation that can be copied to another environment,
discussed in Section [3.1] Conversely, import can import
an exo-clone file so it appears as a volume that can be
mounted or checked out, discussed in Section [3.3]
rebase/merge: Apply or merge a set of changes made
based on one exo-clone to a different exo-clone, while re-
solving any potential conflicts, discussed in Section[3.4]
We now discuss how VDEFS implements the above
exo-clone operations efficiently for whole file system
volumes that can be multiple terabytes large.

3.1 Creating an Exo-Clone

When an exo-clone exists as a volume in VDFS, the
whole exo-clone has a reference count (to detect if it is
orphaned), and is read-only. Initially, a VDFS cluster
will have no exo-clones, and may have one or more vol-
ume clones and snapshots. An exo-clone is created by
first making a clone of an existing volume snapshot or

http://sirupsen.com/production-docker/

exo-clone. This operation is similar to a git checkout
of a previous commit, except it applies to an entire file
system volume and so we call it checkout.

When we create an exo-clone we must assign a UUID
and afterward, the exo-clone cannot be modified (i.e.,
exo-clones are immutable objects). The alternative to
identifying exo-clones with a UUID would be a content
hash using, e.g., SHA1. Exo-clones are identified with a
UUID to avoid hashing the contents of updated content,
which would be excessively expensive at the scale of a
file system volume. Since exo-clones are implemented
by the file system it is easier to enforce the immutabil-
ity of the exo-clone by not allowing any writes to the
exo-clone. At the same time, checksumming by the un-
derlying storage layer (e.g., VSAN) can still provide rea-
sonable safe-guards against unintended corruption.

At any point, a volume clone can be marked as an exo-
clone, at which point it is either the first exo-clone in its
lineage (analogous to an initial git init) or it was cre-
ated by cloning an existing exo-clone, or merging mul-
tiple exo-clones (analogous to a git commit). If it is
the first exo-clone it has no parent, but if it was created
from one or more exo-clones then its parent UUIDs are
the UUIDs of those parent exo-clones. In either case, it
is similar to a git commit, but again for an entire file
system volume, and we call this operation commit. Each
parent exo-clone’s reference count is increased when re-
ferred to by the new child exo-clone.

Now we describe how an exo-clone volume is con-
verted into an exo-clone file. This is called the export
operation. First we describe the exo-clone file format,
which is illustrated in Figure|T}

Header Metadata Data

Exo-clone file

External exo- V
clone uuids and

addresses

File System Tree

Figure 1: Exo-clone On-disk Format

Parent UUIDs: lists all the other exo-clones that are
immediate parents to this exo-clone.

Dedup UUIDs: lists other exo-clones that are addi-
tional dependencies of this exo-clone. Additional depen-
dencies contain file content referred to by the exo-clone
but need not be ancestors or parents of this exo-clone.
Only exo-clones can be dependencies, but any volume
can be converted to an exo-clone instantly.

Metadata: the metadata part contains a serialized file
system tree which represents added and deleted file sys-
tem metadata, such as created files, deleted directories,

etc... Our current prototype implements this by record-
ing journal log entries that when replayed by our recov-
ery code, reconstruct the exo-clone.

Data: all new file data are stored in this section, and
are pointed by the file system tree in the metadata. The
figure also shows that when data are deduplicated, mul-
tiple metadata can point to the same data extent.

Commit Metadata: this section contains some descrip-
tive information easily parsed by user-level tools without
having to mount the exo-clone as a volume.

Content UUID: the UUID that represents the state of
the content of this exo-clone.

When an exo-clone file is first created, its file system
meta-data is encoded (e.g., using) into the
payload section of the file format. Next only the block
ranges that were modified via this exo-clone are cloned
into the payload section, if the underlying file system
supports file cloning. By cloning the blocks rather than
copying them, we avoid writing file data and only need
to write metadata (directory entries, pointers to data, etc),
so creating these files in VDFS is very efficient and con-
sumes only space to hold meta-data.

It is important to not scan the entire exo-clone volume
to produce the file. VDFS uses a COW B-tree to rep-
resent a volume, and clones the B-tree when creating a
new snapshot. COW B-tree file systems like VDFS and
BtrFS use a copy-on-write B-tree algorithm, and so when
a volume is cloned and then modified, only B-tree nodes
that were modified are duplicated, and unmodified B-tree
nodes are shared as in Figure [2| where FOO is removed
and FOO’ is added. Therefore we can determine what
data and meta-data has been changed relative to the par-
ent UUID by comparing the parent snapshot from which
the current volume was created. Furthermore, we can
limit our comparison of these two B-trees to only the B-
tree nodes which were actually modified.

This is how VDEFS performs a zero-copy export of an
exo-clone volume to a regular file representation without
scanning unchanged meta-data, data, and without per-
forming any hashing of content.

Current Exo-clone
Snapshot Volume Diff

(O ()
“DAS? (o) (o0 :> foo
Lo e o

|
File N ¥ d

Data egative no. e
means deleting

file “foo”

Figure 2: How to get exo-clone diff from snapshots

https://google.github.io/flatbuffers/

3.2 Exo-clones Outside of VDFS

An exo-clone can be copied outside of the original VDFS
instance and used by another VDFS cluster, or in a 3rd-
party storage system. As discussed in Section[3.1] the file
format provides a section for Dedup UUIDs. This section
is optional, but if used, it can dramatically reduce the size
of exo-clone files so they can be efficiently transmitted
over the network.

When creating an exo-clone file the user can choose
to deduplicate the exo-clone if they want to make the re-
sulting file as small as possible for transmission. When
deduplicating an exo-clone, VDFS selects some number
of other exo-clones that it believes the receiving party
will also have, and VDFS rewrites the exo-clone such
that it refers to the data in the other exo-clones. All exo-
clones that become dependencies in this way are listed in
the Dedup UUIDs section of the file format.

Even though exo-clones in VDFS exist as volumes
with uncompressed block data consuming storage capac-
ity, they can be compressed with a tool like gzip, just
like tar archives, before they are stored in a 3rd-party
storage system, e.g., for incremental backup. In this use-
case, the information in the Parent, Dedup, and Con-
tent UUID sections will allow customers and operators
to write simple programs to ensure all dependencies are
present for an exo-clone, while simultaneously reaping
the benefits of deduplication, without having to mount
the exo-clone as a volume.

3.3 Mounting Exo-Clones

The goal with mounting exo-clones in VDES is to avoid
decoding and deserialization of the vast majority of the
exo-clone file data. We call this zero-copy import. This
operation is similar to a fast-forward merge operation in
git. Import follows two steps: (1) verify mounting is
possible, (2) deserialize the file system tree serialized in
the meta-data section, and finally (3) increment the ref-
erence counts of all file data blocks referred to by the
exo-clone.

For step one, we simply ensure all exo-clones listed
in the Parent UUIDs and Dedup UUIDs sections are lo-
cally available and can be mounted by VDFS. For step
two, we deserialize the file system tree updates. This is
done by making a writable clone of the parent exo-clone
and replaying the file system operations in the meta-data
section on top of it. For step three, we walk the file sys-
tem tree of the exo-clone and increase the reference count
of all file extents referred to by the tree. Once all steps
are complete we mark the writable clone as an exo-clone
(which is read-only) and grant it the content UUID listed
in the exo-clone header.

3.4 Resolving Conflicting Exo-clones

Merging exo-clones is analalgous to how a concurrent
source control system would merge commits. When
merging two conflicting exo-clones we have a parent
exo-clone, and two child exo-clones (e.g., A and B) that
each list the parent as their parent. We must construct a
fourth exo-clone called a merge exo-clone that has A and
B as its two parents and within which all conflicts have
been resolved.

We first create the merge exo-clone by making a
writable clone of one of the children, e.g., A. Second we
make clones of all the files that were added or modified
in B into the merge exo-clone. If no two files were modi-
fied (or added) in both A and B then there are no conflicts
and we can commit the merge exo-clone by marking it
read-only and assigning it a UUID. If there were con-
flicts, then we do a third step: for each file that conflicts
(was modified/added in both A and B) we create clones
of both A and B’s version in the merge exo-clone. This
way all the conflicting files can be directly modified by
the user until the user has manually resolved conflicts as
they see fit. Once they are done, they can manually con-
clude the merge, at which point it is marked read-only
and assigned a UUID.

4 Related Work

Docker is today’s de facto standard for container runtime
image management. It uses a file system layer format to
represent layers of an application, but changes to any file
in that layer are represented as an entirely new file sys-
tem layer, even though other files in the layer have not
been . To overcome this, Docker expects de-
velopers to place files that are frequently updated (e.g.,
media assets, model files, sound and image files, etc...),
either in development or by the application at run-time,
in a separate volume. This decision forces the user to
find another solution to manage changes to these files
and then to manually map them in when running the con-
tainer. Exo-clones efficiently track changes to any file
and do not require bifurcating the developer and man-
agement interface based on the size of files and the rate
at which files are revised. With exo-clones Docker can
efficiently represent the entire application, not just the
portions that are infrequently revised.

Recent local file systems like ZFS and BtrFS have
the ability to ’ send and receive volume snapshots | using

’custom stream format ‘ They stop short at both effi-
ciency (zero-copy) and change tracking features (merge
and rebase). ZFS send iterates all metadata of a snap-
shot at block level and form a logical log like zdump
file. The zdump file includes the create/delete/write op-

https://docs.docker.com/terms/layer/
https://btrfs.wiki.kernel.org/index.php/Design_notes_on_Send/Receive
https://btrfs.wiki.kernel.org/index.php/Design_notes_on_Send/Receive

erations which can be replayed at the target file system.
Btrfs send compares two file system trees (skipping com-
mon subtrees) and generates a logical log (dump file).
Files cloned at the source remain cloned when the vol-
ume is recreated at the target.

Source version control systems like and
various for handling large files, have

their own ways to support binary files by only version-
ing metadata and store the binary data as a whole. Since
these tools are not in the IO path, users must manu-
ally track changes made to a separate working directory,
and cannot utilize copy-on-write making them impracti-
cal for tracking whole volumes or providing consistent
point-in-time snapshots.

Solutions exist for other use-cases that can be ad-
dressed by exo-clones. Users of VDFS can backup vol-
ume snapshots as exo-clones that are copied off-site.
This provides the same kind of incremental backup pro-

vided by | SnapVault | except that SnapVault provides a

way of searching through backed up content. On the
other hand, VDFS exo-clones are regular files that can be
stored in any 3rd party storage system, like S3 or a NAS.
This gives users control of where to store their backup.

S Comparison to Other Approaches

Developers build applications on top of a base layer, in
Docker, this is often the UBUNTU base layer, which is
just the Ubuntu LTS distribution. When a change hap-
pens to a layer, the new layer must be retransmitted to
any developers that want to rebuild their own applica-
tion layer on top of the new base update, or to deploy-
ment nodes that want to run the newer container. With
exo-clones, only the chunks that are modified must be
retransmitted, not the whole layer, and we examine the
effects this has on network overhead in this experiment.
Our current prototype is very early in development and
does not yet support block or variable length chunking so
we simulate our results using the deduplication tool pub-
lished by Meister [3]]. We look at how much data must
be sent to the application environment, both for Docker
and VDFS exo-clones, when a base layer is updated.
Since the UBUNTU base layer is updated less fre-
quently (six month intervals for security) it also makes
sense to look at another base layer that may be trans-
mitted more frequently, but also would be specific to an
organization. For this analysis we looked at two versions
of ESXi built one week apart as a PXE-bootable image.
Figure [3|shows our results. LTS UPGRADE shows the
size of the container image file that must be transmit-
ted over network to perform an LTS Upgrade. Docker
must transmit the entire FS layer for the new version of
LTS 14.04.3 which is 199MB large. If the upgrade is en-

400
300

200
100
o NN

LTS Upgrade

PXE Upgrade

O Docker FS Layer Exo Whole-file B Exo Blk-chunk B Exo Var-chunk

Figure 3: Projected Container Image Sizes in MBs

coded as an exo-clone relative to the older LTS 14.04.2,
either with variable or block-aligned chunking, then only
a 24MB exo-clone need be transmitted, a file which is
88% smaller than the necessary Docker FS layer. If
Docker were modified to support whole-file deduplica-
tion it would generate layers that are the size of WHOLE
FILE, i.e., 58MB for LTS. For a PXE upgrade, which con-
sists primarily of zipped image files, Figure 3| shows no
improvement until a variable-length chunking scheme is
used, in which case the variable-length chunking exo-
clone is 25% smaller than either the whole-file exo-clone
or the plain Docker FS layer.

6 Conclusion

Docker and other application revision tracking technolo-
gies, or incremental backup solutions, or other use cases
for syncing file system state across multiple storage en-
vironments assume the file system is incapable of effi-
ciently making and managing writable snapshots, or of
deduplicating common content. Consequently each of
these solutions is designed around a false trade-off: that
storage solutions can exploit block-granularity copy-on-
write for efficiency, but only if they are built into a spe-
cific storage stack that sacrifices portability. In this pa-
per we have shown how these technologies and tools,
specifically Docker file system layers, can be dramati-
cally improved or simplified if modern file systems that
support snapshots provide a common primitive for effi-
ciently representing updates between different file sys-
tems.

References

[1] 2015 data breach investigations report. 15-17.

[2] Lu, L., WANG, W., AUSTRUY, M., L1, Z., HUANG, G., PAl,
A., AND KARAMANOLIS, C. VDFS: A cloud-centric virtual dis-
tributed file system. In Proceedings of VMware RADIO 2015 (May
2015).

[3] MEISTER, D. Advanced data deduplication techniques and their
application. PhD thesis, Universititsbibliothek Mainz, 2013.

[4] WEIL, S., LEUNG, A., BRANDT, S., AND MALTZAHN, C. Ra-
dos: A fast, scalable, and reliable storage service for petabyte-scale
storage clusters. In Proceedings of the ACM Petascale Data Stor-
age Workshop 2007 (PDSW 07) (Nov. 2007).

https://en.wikipedia.org/wiki/Perforce
https://git-lfs.github.com
http://www.netapp.com/us/products/protection-software/snapvault.aspx

	Introduction
	Background
	Design
	Creating an Exo-Clone
	Exo-clones Outside of VDFS
	Mounting Exo-Clones
	Resolving Conflicting Exo-clones

	Related Work
	Comparison to Other Approaches
	Conclusion

