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Abstract

To speed up development and increase reliability the
Microkernel approach advocated moving many OS ser-
vices to user space. At that time, the main disadvan-
tage of microkernels turned out to be their poor per-
formance. In the last two decades, however, CPU and
RAM technologies have improved significantly and re-
searchers demonstrated that by carefully designing and
implementing a microkernel its overhead can be reduced
significantly. Storage devices often remain a major bot-
tleneck in systems due to their relatively slow speed.
Thus, user-space 1/O services, such as file systems and
block layer, might see significantly lower relative over-
head than any other OS services. In this paper we ex-
amine the reality of a partial return of the microkernel
architecture—but for I/O subsystems only. We observed
over 100 user-space file systems have been developed in
recent years. However, performance analysis and care-
ful design of user-space file systems were disproportion-
ately overlooked by the storage community. Through
extensive benchmarks we present Linux FUSE perfor-
mance for several systems and 45 workloads. We estab-
lish that in many setups, FUSE already achieves accept-
able performance but further research is needed for file
systems to comfortably migrate to user space.

1 Introduction

Modern general-purpose OSes, such as Unix/Linux and
Windows, lean heavily towards the monolithic kernel ar-
chitecture. In the 1980s, when the monolithic kernel
approach became a development bottleneck, the idea of
microkernels arose [1, 15]. Microkernels offer only a
limited number of services to user applications: pro-
cess scheduling, virtual memory management, and Inter-
Process Communication (IPC). The rest of the services,
including file systems, were provided by user-space dae-
mons. Despite their benefits, microkernels did not suc-
ceed at first due to high performance overheads caused
by IPC message copying, excessive number of system
call invocations, and more.

Computational power has improved significantly
since 1994 when the acclaimed Mach 3 microkernel
project was officially over. The 1994 Intel Pentium
performed 190 MIPS; the latest Intel Core i7 achieves
177,000 MIPS—almost 1,000x improvement. Simi-
larly, cache sizes for these CPUs increased 200x (16KB
vs. 3MB). A number of CPU optimizations were added
to improve processing speeds, e.g., intelligent prefetch-
ers and a special syscall instruction. Finally, the average

number of cores per system is up from one to dozens.

At the same time, three factors dominated the stor-
age space. First, HDDs, which still account for most of
the storage devices shipped, have improved their perfor-
mance by only 10x since 1994. Second, dataset sizes in-
creased and data-access patterns became less predictable
due to higher complexity of modern I/O stack [19].
Thus, many modern workloads bottleneck on device
I/O; consequently, OS services that involve I/O opera-
tions might not experience as high performance penalty
as before due to CPU-hungry IPC. However, the third
factor—the advent of Flash-based storage—suggests the
contrary. Modern SSDs are over 10,000x faster than
1994 HDDs; consequently, OS I/O services might have
added more relative overhead than before [5]. As such,
there is no clear understanding on how the balance be-
tween CPU and storage performance shifted and im-
pacted the overheads of user-space I/O services.

In the 90s, Liedtke et al. demonstrated that by care-
fully designing and implementing a microkernel with
performance as a key feature, microkernel overheads
could be reduced significantly [7]. Alas, this proof came
too late to impact server and desktop OSes, which com-
fortably settled into the monolithic approach. Today, mi-
crokernels such as the L4 family are used widely, but pri-
marily in embedded applications [10]. We believe that
the same techniques that allow L4 to achieve high per-
formance in embedded systems can be used to migrate
I/O stack in general-purpose OSes to user space.

File systems and the block layer are two main I/O
stack OS services. File systems are complex pieces of
software with many lines of code and numerous im-
plementations. Linux 3.6 has over 70 file systems,
consuming almost 30% of all kernel code (excluding
architecture-specific code and drivers). Software De-
fined Storage (SDS) paradigms suggest moving even
more storage-related functionality to the OS. Maintain-
ing such a large code base in a kernel is difficult; moving
it to user space would simplify this task significantly, in-
crease kernel reliability, extensibility, and security. In
recent years we observed a rapid growth of user-space
file systems, e.g., over 100 file systems are implemented
using FUSE [18]. Initially, FUSE-based file systems
offered a common interface to diverse user data (e.g.,
archive files, ftp servers). Nowadays, however, even tra-
ditional file systems are implemented using FUSE [21].
Many enterprise distributed file system like PLFS and
GPEFS are implemented in user space [4].

Despite the evident renaissance of user-space file sys-



tems, performance analysis and careful design of FUSE-
like frameworks were largely overlooked by the storage
community. In this position paper, we evaluate user-
space file system’s performance. Our results indicate
that for many workloads and devices user-space file sys-
tems can achieve acceptable performance already now.
However, for some setups, the FUSE layer still can be a
significant bottleneck. Therefore, we propose to jump-
start research on user-space file systems. Arguably, with
a right amount of effort, the entire I/O stack, includ-
ing block layers and drivers, can be effectively moved
to user space in the future.

2 Benefits of User-Space File Systems

Historically, most file systems were implemented in the
OS kernel, excluding some distributed file systems that
needed greater portability. When developing a new file
system today, one common assumption is that to achieve
production-level performance, the code should be writ-
ten in the kernel. Moving file system development to
user space would require significant change in the com-
munity’s mindset. The benefits must be compelling: low
overheads if any and significantly improved portability,
maintainability, and versatility.

Development ease. The comfort of software develop-
ment (and consequently its speed) is largely determined
by the completeness of a programmer’s toolbox. Nu-
merous user-space tools for debugging, tracing, profil-
ing, and testing are available to user-level developers.
A bug does not crash or corrupt the state of the whole
system, but stops only a single program; this also often
produces an easily debuggable error message. After the
bug is identified and fixed, restarting the file system is
as easy as any other user application. Programmers are
not limited to a single programming language (usually
C or C++), but can use and mix any programming and
scripting languages as desired. A large number of useful
software libraries are readily available.

Reliability and security. By reducing the amount of
code running in the kernel, one reduces the chances that
a kernel bug crashes an entire production system. In re-
cent years, malicious attacks on kernels have become
more frequent than on user applications. As the main
reason for this trend Kermerlis et al. lists the fact that ap-
plications are better protected by various OS-protection
mechanisms [9]. Counter-intuitively then, moving file
system code to the user space makes them more secure.

Portability. Porting user-space file systems to other
OSes is much easier than kernel code. This was recog-
nized by some distributed file systems, whose clients of-
ten run on multiple OSes [20]. E.g., if file systems were
written in user space initially, Unix file systems could
have been more readily accessible under Windows.

Performance. The common thinking that user-space
file systems cannot be faster than kernel counterparts
mistakenly assume that both use the same algorithms
and data structures. However, an abundance of libraries
is available in the user space, where it is easier to use and
try new, more efficient algorithms. For example, predic-
tive prefetching can use Al algorithms to adapt to a spe-
cific user’s workload; cache management can use clas-
sification libraries to implement better eviction policies.
Porting such libraries to the kernel would be daunting.

3 Historical Background

The original microkernel-based OSes implemented file
systems as user-space services. This approach was log-
ically continued by the modern microkernels. E.g.,
GNU Hurd supports ufs, ext2, isofs, nfs, and ftpfs file
servers [8]. In this case, implementing file systems as
user processes was just a part of a general paradigm.

Starting from the 1990s, projects developing user-
space file systems as part of monolithic kernels began
to appear. These endeavors can be roughly classified
into two types: specialized solutions and general frame-
works. The first type includes the designs in which
some specific file system was completely or partially im-
plemented in the user space, without providing a gen-
eral approach for writing user-space file systems. E.g.,
Steere et al. proposed to move Coda file system’s cache
management—the most complex part of the system—
to the user space [17]. Another example of a special-
ized solution is Arla—an open source implementation
of AFS [20]. Only 10% of Arla’s code is located in the
kernel which allowed it to be ported to many OSes: So-
laris, FreeBSD, Linux, AIX, Windows, and others.

The second type of solutions—general solutions—
include the designs that focus explicitly on expanding
OS functionality by building a full-fledged frameworks
for creating user-space file systems [2, 3, 12]. The orig-
inal intention behind creating such frameworks was to
enable programs to look inside archived files, access
the remote files over FTP, and similar use cases—all
without modifying the programs. Over time, however,
it became clear that there were many more use cases
for the user-space file system frameworks. E.g., one
can extend a functionality of an existing file system by
stacking a user-space file system on top. Lessfs and
SDEFS add deduplication support to any file system this
way [11, 16]. In recent years, some traditional disk-
based file systems were ported to user space [13,21].

It became evident that good support for user-space
file systems is needed in the kernel. The Linux FUSE
project [18] was a spin-off of AVFS [3] and is currently
considered a state of the art in the field. It was merged to
Linux mainline starting in version 2.6.14 in 2005. Soon
afterwards, FUSE was ported to almost every widely
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Figure 1: FUSE high-level design.

used general purpose OS: FreeBSD, NetBSD, Mac OS
X, Windows, Solaris, and Minix.

Since FUSE was merged in the kernel mainline more
than a hundred file systems were developed for it. For
comparison, for 23 years of Linux development, about
70 file systems were developed—at a rate of about four
times slower than with FUSE. Despite FUSE’s rapid
adoption, there were few systematic studies on FUSE
performance. In fact, to the best of our knowledge, there
is only one study and it mainly examined FUSE Java
Bindings performance [14]. With this paper we hope to
increase the community discussion about the feasibility
of moving file system and potentially the entire I/O stack
development to the user space, as well as increase the ef-
fort for this migration.

Application

4 User-Level File System Designs

General design options. Practical user-space file sys-
tem design should not require application changes or re-
compilations. One can use library preloading to over-
ride default library calls, such as open() and read().
AVFS uses this method but its practicality is limited to
the applications that access file system through shared li-
braries [3]. Another way is to have an in-kernel compo-
nent that emulates an in-kernel file system but in reality
communicates with a user-space daemon. Earlier works
used distributed file system clients, such as NFS, Samba,
and Coda, to avoid kernel modifications [12]. The user
had to run a local user-space file system server that was
modified to perform the required tasks, but this added
unnecessary network stack overheads. So, creating an
optimized in-kernel driver was the next logical option.
FUSE design. Although FUSE is generally associ-
ated with Linux, its ports exist in many modern OSes.
High-level design is the same on all platforms (Fig-
ure 1). FUSE consists of an in-kernel driver and a multi-
threaded user space daemon that interacts with the driver
using a FUSE library. The driver registers itself with the
Virtual File System (VFS) kernel layer as any other reg-
ular kernel-based file system. For the user it looks like
another file system type supported by the kernel, but in
fact it is a whole family of FUSE-based file systems.
Applications access FUSE file systems using regular
I/O system calls. The VFES invokes the corresponding in-
kernel file system—FUSE driver. The driver maintains
an in-kernel request queue, which is read by the threads

Workload |Description

file-rread Random read from a preallocated 30GB file.
file-rwrite  |Random write to a preallocated 30GB file.
file-sread Sequential read from a preallocated 60GB file.
file-swrite  |Sequential write to a new 60GB file.

32files-sread |32 threads sequentially read 32 preallocated
1GB files. Each thread reads its own file.
32files-swrite(32 threads sequentially write 32 new 1GB files.
Each thread writes its own file.

Create 4 million 4KB files in a flat directory.
Read 4 million 4KB files in a flat directory. Ev-
ery next file to read is selected randomly.
Deletion of 800,000 4KB preallocated files in|
a flat directory.

Web-server workload emulated by Filebench.
Scaled up to 1.25 million files.

Mail-server workload emulated by Filebench.
Scaled up to 1.5 million files.

File-server workload emulated by Filebench.
Scaled up to 200,000 files.

Table 1: Workload descriptions.

files-create
files-read

files-delete

Web-server

Mail-server

File-server

of the user-space daemon. The daemon implements the
main file system logic. Often, the daemon has to call sys-
tem calls to perform its tasks. E.g., for a write, a FUSE-
based file system might need to write to an underlying
file or send a network packet to a server. When request
processing is completed, the daemon sends replies along
with the data back to the driver.

User-to-kernel and kernel-to-user communications
cause the main overheads in FUSE. To reduce the num-
ber of such communications, current FUSE implemen-
tations typically support a cache. If a read comes from
an application and the corresponding data was already
previously read and cached in the kernel, then no com-
munication with the user space is required. Starting
from Linux 3.15 write-back cache is supported as well.
Another common optimization implemented in FUSE
is a zero-memory copying for moving the data. Fig-
ure 1 demonstrates that in a naive implementation, the
data often needs to cross the user-kernel boundary twice.
To avoid that, advanced implementations use the splice
functionality to copy or remap pages right in the kernel,
without copying them to the user space.

5 Evaluation

We describe our experiments and results in this section.
Experimental setup. Performance  degradation
caused by FUSE depends heavily on the speed of
underlying storage. To account for this we used three
setups with different storage devices. The HDD setup
used a Dell PowerEdge R710 machine with a 4-core
Intel Xeon E5530 2.40GHz CPU. File systems were
deployed on top of a Seagate Savvio 15K.2 disk drive
(15KRPM, 146GB). The Desktop SSD setup used the
same machine but file systems were deployed on Intel
X25-M 200GB SSD. Finally, the Enterprise SSD setup
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Figure 2: FUSE-Ext4 performance relative to Ext3 for a variety of workloads and devices.

was deployed on an IBM System x3650 M4

s€rver

equipped with two Intel Xeon CPUs (8 cores per CPU)
and Micron MTFDDAK128MAR-1J SSD. We limited
the amount of RAM available to the OS to 4GB in all
setups to trigger accesses to non-cached data easier. The
machines ran the CentOS 7 distribution, vanilla Linux
3.19, and libfuse commit 04ad73 dated the 2015-04-02.

We selected a set of micro workloads that covers a
significant range of file system operations: sequential
and random I/O, reads and writes, data- and meta-data-
intensive workloads, single- and multi-threaded work-
loads, and used a variety of I/O sizes. All workloads
were encoded using the Filebench Workload Model Lan-
guage [6]. In addition, we ran three macro-workloads
provided by Filebench: Web-, Mail-, and File-servers.
Table 1 details our workload notations. All workloads,
except files-create, files-read, files-delete, Web-, Mail-,
and File-server were ran with 4KB, 32KB, 128KB, and
IMB 1/0O sizes. For files-read and files-create the 1/0
size was determined by the file size, 4KB. Web-, Mail-,
and File-server are macro workloads for which I/O sizes
and thread counts are dictated by Filebench. File-rread,
file-rwrite, file-sread, files-create, files-read, and files-
delete were executed for 1 and 32 threads. We did not
run file-swrite for 32 threads, as such workload is less
common in practice.

All experiments ran for at least 10 minutes and we
present standard deviation on all graphs. To encourage
reproducibility and further research, we published the
details of the hardware and software configurations, all
Filebench WML files, benchmarking scripts, and all raw
experimental results here: https://avatar.fsl.cs.

sunysb.edu/groups/fuseperformancepublic/.

FUSE. To estimate FUSE’s overhead, we first mea-
sured the throughput of native Ext4. Then we measured
the throughput of a FUSE overlay file system deployed
on top of Ext4. The only functionality of the overlay
file system is to pass requests to the underlying file sys-
tem. We refer to this setup as FUSE-Ext4. Note that this
setup implies that we measured higher FUSE overhead
than one using a full-fledged user-space native Ext4 im-
plementation (if it would exist).

We calculated the relative performance of FUSE-Ext4
compared to plain Ext4 for each workload. Figure 2
presents the results for three different storage devices.
The relative performance varied across workloads and
devices—from 31% (files-create-1th) to 100%. We cat-
egorized the workloads by FUSE’s relative performance
into four classes. (1) The Green class includes the work-
loads with relative performance higher than 95%. Here,
there is almost no performance penalty and such work-
loads are ready to be serviced by user-space file systems.



(2) The Yellow class includes the workloads with 75%
to 95% relative performance. Such overheads are often
acceptable given the benefits that user-space develop-
ment provides. (3) The Orange class consists of work-
loads that performed at 25-75% of Ext4. Such over-
heads might be acceptable only if user-space file systems
provide major benefits. And finally, (4) the Red class
includes workloads that demonstrated unacceptably low
performance—Iless than 25% of an in-kernel file system.

Interestingly, none of the workloads fall into the red
class. In our experiments with earlier FUSE versions (2
years earlier, not presented in this paper) up to 10% of
workloads were in the red class. FUSE performance has
clearly improved over time. Moreover, for all systems,
most of the workloads are in the favorable, green class.

Differences in the relative performance of storage de-
vices and CPUs cause some workloads to perform better
on one system than another. For many write-intensive
workloads we see that FUSE on the desktop SSD out-
performs FUSE on the enterprise SSD. It turned out that
our enterprise SSD is slower for writes than the desk-
top SSD. Our enterprise SSD maintains a constant write
latency across its lifetime, which requires limiting the
rate of writes. For the desktop SSD, however, writes
are faster initially, but their speed is expected to degrade
over time.

Results for macro workloads (Web-, File-, and Mail-
server) are probably the most important as they are
closer to real-world workloads. In the SSD setups per-
formance degraded by 2-50% while for HDD setup we
did not observe any performance penalty. In this posi-
tion paper we do not perform detailed analysis of FUSE
overhead. Instead, the results aim to intensify research
in the overlooked area that has a profound impact on all
aspects of storage design.

6 Conclusions

Modern file systems are complex software that are diffi-
cult to develop and maintain, especially in kernel space.
We argue that a lot of file system development can be
moved to user space in the future. Contrary to popu-
lar belief, our experiments demonstrated that for over
40 workloads, the throughput of user-space file systems
has an acceptable level. Mature frameworks for writ-
ing user-space file systems are in place in many modern
OSes, which opens the door for productive research. We
believe that the research community should give more
attention to evaluating and improving FUSE.
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