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Abstract

This paper presents a detector of soon-to-fail disks based
on a combination of statistical models. During opera-
tion the detector takes as input a performance signal from
each disk and sends and alarm when there is enough
evidence (according to the models) that the disk is not
healthy. The parameters of these models are automati-
cally trained using signals from healthy and failed disks.
In an evaluation on a population of 1190 production disks
from a popular customer-facing internet service, the de-
tector was able to predict 15 out of the 17 failed disks
(88.2% detection) with 30 false alarms (2.56% false pos-
itive rate).

1 Introduction

The ability to provide advance warning of hard disk fail-
ures is extremely useful in internet and cloud services.
For cloud services this ability enables completely unin-
terrupted service as preventive reallocation may be exe-
cuted prior to imminent disk failures. For internet ser-
vices such as email, content (news, search, movies),
and ecommerce, advance warning may trigger immediate
replication or replacement which will increase availabil-
ity and reliability statistics, and may even reduce repli-
cations and prevent data loss. In addition to preventive
actions, one can imagine more invasive ones involving
perhaps intrusive diagnostics and repairs. IT departments
in regular businesses and individual users would obtain
similar benefits from having a detector producing these
alarms.

In this paper we describe, characterize, and evaluate
a software based detector of soon-to-fail disks. This de-
tector which we call D-FAD (for Disk Failure Advance
Detector), takes as input a performance signal from each
disk and produces an alarm according to a combination
of statistical models. The parameters in these models are
automatically trained from a population of healthy and

failed disks, using machine learning techniques.
Predicting the future is notoriously difficult. There is a

trade-off between the ability to accurately predict failure
(indicated by the detection rate), and the number of false
alarms (indicated by false positive rate). This trade-off
is reflected in the tension between the cost of ignoring
an alarm for a failing disk and the cost of unnecessary
action in reaction to a false one. Ignoring an alarm for
an impending failure will result in a degradation of the
quality, availability, and reliability of the service. Acting
on a false alarm will result on unnecessary costs related
to, for example, migrating users in a cloud service. The
decision about how to act on this trade-off is entirely de-
pendent on economic and business considerations of the
service. Thus, we report on the detection and false posi-
tive rates of D-FAD providing the necessary information
to act on this trade-off.

When applied to a population of 1190 production disks
from a popular 24x7 customer-facing internet service D-
FAD predicts 15 out of 17 failed disks (88.2% detection
rate), with 30 false alarms (2.56% false positive rate). In
the case of the preventive action being moving users in
a cloud service, this translates to 30 additional “moves”
replicas for guaranteeing uninterrupted service in spite of
15 disks failures.

The parameters of the statistical models for D-FAD
were fitted using 200 disks, containing a mixture of 17
failed disks and 183 healthy disks. In addition, we used
700 disks to estimate the false positive rate. The disks
used for training and those used for testing (evaluating
the performance of D-FAD) came from the same popula-
tion of disks. We divided this total population in two sets,
maintaining the same proportion of failed and healthy
disks in each set. Signals from the disks in the testing
set were only used during the evaluation of D-FAD. Also,
for the purposes of this paper, as long as D-FAD sends an
alarm between 18 days and 4 hours of the disk failing we
will regard the impending failure as detected. By training
D-FAD on the specific workload that disks experience
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in production, the models are not subject to the inherent
uncertainty in the failure rates specified by the manufac-
turer which can present a lot of variability (see [5]), and
which were estimated from proprietary stress workloads.
Another way to look at the benefits of D-FAD is that it
reduces the uncertainty of identifying failing disks in the
whole population of disks (using the manufacturer fail-
ure rate), to a smaller population composed of the of de-
tected failures (15 in our case) plus the false alarms (30
in our case).

In summary, this paper proposes and evaluates D-FAD
a software based detector of soon-to-fail disks, with the
following benefits:

• The input to the detector is a single performance
signal, average maximum latency; consequently it
is efficient at scale.

• It is based on models fitted directly from production
workloads; thus, the detector will customize to the
particular usage and stress in production.

• The results on real data from 1190 production disks
of a 24x7 customer-facing internet service are a
88.2% detection rate and a 2.56% false positive rate.

These benefits are encouraging for further research into
building robust detectors based on performance signals
from the disks.

The rest of the paper is organized as follows: Section 2
briefly compares this work against the most relevant pub-
lished literature. Section 3 introduces a set of prelimi-
nary definitions. Section 4 describe the models and the
methods for training. Section 5 discusses the results of
the evaluation and we conclude in Section 6.

2 Related Work

This section is by no means comprehensive. It touches
on the published work that is closer to ours and that help
to put our work in the right perspective. The seminal
paper by Pinheiro, Weber, and Barroso [5] contains an
in depth study on a much larger scale than ours. We
use the same definition of failure and like them we study
disks in operation under stress from real workloads. Our
results also confirm their finding that “. . .we find that
failure prediction models based on SMART parameters
alone are likely to be severely limited in their prediction
accuracy. . .” Similarly as further reported in that paper
we found that a small percentage of failed disks show no
SMART error signals (at least amongst the ones we had
access to). The important difference between the current
paper and [5] is that we focus on prediction based on
performance (and not on error signals) with positive re-
sults. In [2] and [3] the authors look at machine learning
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Figure 1: Examples of the AML time series for healthy and
STF disks. Each graph contains 8 time series from neighboring
disks. Time series for healthy disks are at the bottom of the Y
axis. The difference with the values for STF disks is sometimes
over 7 standard deviations. The top graphs are taken 8 hours
before failure. The bottom two are taken 4 days before failure.
The X axis is in intervals of 20 minutes. Units in the Y axis are
obscured by request from the operations team at the site.

methods for predicting disk failures using also SMART
signals from the disk. Again, this contrasts with us us-
ing performance signals. Even though the population of
disks in our study is of similar size, our study differs
in two important dimensions: (1) the disks in our study
are stressed by a real world workload under production
conditions and (2) our statistical models are parametric
(theirs are non-parametric). This is important as in our
models the number of parameters do not increase with
the data. Finally, the study in [7] provides understand-
ing on the statistical properties of disk failures but is not
focused on detection or prediction.

3 Problem Statement

The problem we are solving is the detection of soon-to-
fail (STF) disks. We define disk failure as in in [5]: a
drive is considered to have failed if it was replaced as
part of a repairs procedure. There are several consider-
ations that go into this definition such as the actual time
of failure may not be as accurate as it depends on when
the disk was actually exchanged etc. Still, we agree with
the authors of [5] that this is the ultimate ground truth for
evaluating any predictor/detector. Our proposed solution
is a software based detector, D-FAD, that uses statistical
models to find abnormal behavior. The input to D-FAD
is a single signal from every disk, a time series contain-
ing in each sample the Average Maximum Latency (AML)
over each sample period, and the output is an alarm if the
models in D-FAD decide that the signal presents abnor-
mal behavior.
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The data collection was done via a software interface
provided by the disk vendor. In this interface, all signals
are exposed every 20 minutes. The AML is computed as
follows: the maximum latency of each disk is recorded
every minute, then they are averaged over the 20 minutes
of the reporting period, and finally exposed by the inter-
face. These are non-overlapping averages. Examples of
AML for both healthy and STF disks are depicted in Fig-
ure 1. A list of all the signals exposed by the interface is
presented in Table 3. We couldn’t find any predictor of
STF disks other than the AML (see Section 5).

Besides being restricted by the parameters set by the
vendor, we were constrained by several other factors out-
side of our control. We only had data for a month for
about 2380 disks. We reserved 1190 disks for train-
ing and 1190 for testing the models. All the parameters
of the models described in Section 4, model selection,
and initial estimation of the various rates, were fitted and
computed using the training data. The testing data was
only “seen” once during the evaluation of D-FAD. The
detection and false positive rates reported come from the
evaluation (although we remark that they coincide with
the ones computed during training). We actual detected
disk failures (ground truth) through changes in the serial
number of the disk in the logs. The particular disks we
study come from a cluster of 144 servers. Each server
has 34 drives in an array and drives are 750GB SATA
drives. We had data for 70 of those servers. The data
was collected during December of 2007 from production
disks of a popular 24x7 customer-facing internet service.

With respect to the lead time to failure, that is how
soon will the disk fail, we consider that an imminent fail-
ure is predicted if the alarm is sent between 18 days and
4 hours before the disk is changed. Note that the defi-
nition of false positives is very stringent. If the detector
emits an alarm and the disk has not failed within 18 days,
(or by the end of the month of data available) then this
alarm will be considered as a false positive (even if it is
changed within the period established above).

4 The D-FAD Models

The schematics for D-FAD are shown in Figure 2. The
raw AML goes through two filters in parallel. The filter
on the left compares the (log) odds of the probability that
the data is produced by a STF disk vs. a healthy disk.
It is based on Hidden Markov Models (HMMs) [6] and
is described in Subsection 4.1. The other filter counts
the number of peaks in AML in a 24 hour period (see
Subsection 4.2). The output from these two units is taken
by a final unit that uses a logistic regression model [8] to
decide whether the disk will fail.

These are well understood models, and techniques for
fitting the parameters from data and performing infer-
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Figure 2: Schematic diagram for D-FAD. The AML signal
goes through a model comparison filter (using HMMs) and a
peak counter. The output of these two filters is fused by a lo-
gistic regression model.

ence on new data are well known. The specific combina-
tion and application to this particular problem is new.

4.1 The Hidden Markov Model Unit
From inspection of the difference between the AML sig-
nals of STF and healthy disks (see Figure 1), it is clear
that at least part of the detector must consist of compar-
ing the statistics of healthy and STF disks. We initially
tried comparing running averages and using change point
detection algorithm with very little success. Both de-
tection and the false positive rate were abysmal. Our
next step was to try Hidden Markov Models (HMMs).
These models capture several “modes” of operation for
the disks, and also take into consideration the time de-
pendence inherent in the signal.

HMMs are statistical state space models [6] used in
applications ranging from speech processing to time se-
ries prediction. These models assume that the signal is
sampled at regular intervals (our case) and therefore time
is discrete. An HMM consists of two sets of variables.
The first set is the hidden part of the model representing
a disk state. In our case the different states emit either
low, medium, or high values of the AML signal. We will
use Si to denote these variables where the index i rep-
resents a particular instance in time in the time series.
The second set of variables, denoted by Yi, is the ob-
servable part which is continuous and is used to model
the actual values of the AML signal. We will use upper
case letters for the variables, and lowercase letters for
their values. Given a sequence of values y1,y2, . . . ,yn the
model assumes that the disk is in one state at each time
s1,s2, . . . ,sn and the value y observed at time i is a (prob-
abilistic) function of the state s of the disk. In order to
have a complete specification of the model, we need the
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probability functions relating the hidden states to the ob-
servables, and the transition between the states. Thus we
have: (1) P(Si+1|Si), the probability that the disk is in a
particular state Si+1 = s′ given that it was in state Si = s
in the previous time instance; (2) P(Yi|Si) a set of condi-
tional distributions modeling the probability of the values
observed given the state of the disk; and (3) a probability
for the initial state namely P(S1). The parameterization
of these probability functions in this paper is as follows:
P(Yi|Si) is considered to be a Gaussian distribution with
mean µs and variance σs. P(Si|Si−1) is considered to be
multinomial (as S is a discrete random variable). The fi-
nal parameter is an integer denoting the number of states
|S|. These parameters are automatically fitted from sam-
ples of the AML signal. In this paper we used maximum
likelihood estimators using well known algorithms de-
scribed in [6] (rather than Bayesian techniques [8]).

The problem of fitting the number of states |S| is
what is known a model selection problem. For this
paper we relied on the Bayesian Information Crite-
ria (BIC) [8] which scores the a model based on the
goodness of fit to the training data, and the number
of parameters (complexity) of the model. Given that
we expect to have no more than a handful of states,
the problem of model selection proceeds as a linear
search: we start with |S| = 2 and incrementing by 1
until BIC decreases. In our case |S| = 3. Once we
fit these parameters the model is completely specified
and we can compute the probability of any sequence
of observations y1,y2, . . . ,yn, using P(y1, . . . ,yn) =

∑S1,...,Sn P(y1|S1) . . .P(yn|Sn)P(Sn|Sn−1) . . .P(S1). We
are now ready to explain the inner workings of the model
comparison box in Figure 2. We first train (fit param-
eters offline) an HMM model using data coming from
healthy disks. Let’s denote that probability model by PH .
We do the same using data from an STF disk and ob-
tain an HMM model for STF disks. Let PST F denote that
model. Given data D coming from a disk in operation,
we compute PH(D), PST F(D) (using the equation above),
and then the ratio log(PST F(D)/PH(D)) (the log-odds be-
tween the models). This ratio, which we denote by LO is
the output of the model comparison box. If this ratio is
bigger than zero then it is more likely that D comes from
a STF disk. This is one of the two pieces of evidence that
the logistic regression unit considers in making a final
decision regarding an alarm.

4.2 The Peak Counter Unit

In our initial experiments with the training data, the out-
put LO (i.e. the comparison between HMM’s) was not
enough to decrease the false positive rate while main-
taining the detection rate. Thus we introduced an ad-
ditional filter to provide another piece of evidence. We

found that AML signals from ST F disks have peaks that
are over 7 standard deviations away from AML signals
coming from healthy disks (see Figure 1). Running sim-
ple statistics we found that a threshold of 2 seconds was
over four standard deviations from the signal of healthy
disks. This unit returns the number of times that the AML
signal peaks over 2 seconds in a period of 24 hours. We
will use PC to denote this count.

4.3 The Logistic Regression Unit
Now we have two signals, the LO and the PC, and we
need to make a decision on whether the disk is STF or
healthy. We use a logistic regression model for this task.
A logistic regression model is the simplest model with
the least assumptions about the probabilistic models of
these two signals which still helps in making a decision
in a principled way. Let P(A) = P(ST F |LO,PC) denote
the probability that the disk is an STF disk. Then the lo-
gistic regression computes log( P(A)

1−P(A) ) = β0+β1×LO+

β2×PC. Fitting the parameters, β0,β1 and β2 from data
is a standard statistical problem [1]. The final output
of D-FAD comes from this equation: the more positive
log( P(A)

1−P(A) ) is, the more evidence according to the mod-
els for sending an alarm. The threshold T for determin-
ing when to send an alarm will be fitted by balancing the
trade-off between detection and false positives.

4.4 Parameter Fitting
To fit the parameters of the HMM’s, we used 24 hours of
data from 60 disks. We selected 12 of (17) failed disks,
and 48 healthy disks from the same arrays as the failed
disks. This selection from the same array guarantees that
we control for common factors (i.e. workload) that may
affect the whole array. The period of 24 hours was se-
lected from the point of disk change for the failed disks
to avoid daily cyclic confounder factors in the data (the
disks do not fail at the same time). Thus PST F was fit-
ted from data coming from 24 hours prior to the failure
of 12 disks and PH was fitted from data coming from 60
healthy disks (in the same period). Given that we will be
substituting the parameters of maximum likelihood (and
not integrating over them as in the Bayesian methodol-
ogy) we need to take care that the models are comparable
in the number of parameters. This is determined entirely
by the number of states |S| which must be equal in both
models. In our case the BIC score decreased for |S| > 3
in the model for STF disks. Thus we set |S| = 3. We
then used a set of 200 disks (which includes the 60 disks
above) to fit the parameters (βi) of the logistic regression
model. Finally, we used an additional 700 disks to con-
tinue testing the models and for setting the the threshold
T for the decision on an alarm. We increased T until we
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Life Ref Time Reset Ref Time Perf Collection Interval 

Life Sectors Read Reset Sectors Read Perf Read Requests 

Life Hard Reads Reset Hard Reads Perf Write Requests 

Life Retry Reads Reset Retry Reads Perf Max Queue Depth 

Life ECC Reads Reset ECC Reads Perf Average Latency 

Life Sectors Written Reset Sectors Written Perf Maximum Latency 

Life Hard Writes Reset Hard Writes Perf Maximum Wait Time 

Life Retry Writes Reset Retry Writes Error Log Total Errors 

Life Used Reallocs Reset Used Reallocs SMART Reallocated Sectors 

Life Timeouts Reset Timeouts SMART Pending Reallocs 

Life Pred Fail Reset Pred Fail SMART ECC Errors 

Figure 3: List of signals available to us from each disk.

decreased the rate of false positives without impacting
the detection rate.

We performed all these operations only on the train-
ing data. The test data was not touched or inspected, so
there is no risk of overfitting. We were satisfied with a
false positive rate of 2.54% which is similar to the one
obtained on the test data later.

5 Results

As specified above, we used half of the population of
2380 disks for training and the other half for testing. The
1190 disks in the testing data were unseen by the algo-
rithms until the evaluation. The evaluation proceeded as
follows: D-FAD went over the month of data for each
disk, taking 24 hours of AML data at a time with a slid-
ing window of 4 hours. Thus, every 4 hours, D-FAD
makes a decision on the disk of whether to classify it as
STF or healthy. If during the month a disk is classified
once as STF and it is changed within 4 hours to 18 days
from the alarm, then it counts as a predicted failure. We
found that 8 disks were predicted with over 10 days of
lead time and the rest between 5 days and 8 hours. Oth-
erwise it is counted as a false positive. The results were
88.2% detection (15 out of the 17 changed disks during
the month) with 2.56% false positives (30 disks). It is
reasuring that these numbers are almost identical to the
ones in the training set.

It is interesting to note that we couldn’t find in the
data anything particularly salient on the two disks that
were not detected. Also, we couldn’t find any correla-
tion between the AML and any of the other signals that
were collected from the disks (see Table 3). The work-
loads (both read and write) were not affected, nor were
any other error related indicators. We used several tech-
niques to search for those correlations. First we fitted
a logistic regression standard regressions to AML as the

predicted signal and all the other signals as regressors,
using state of the art feature finding techniques such as
L1 regularization with no success [1, 4]. This lack of
correlation may be a result of the level at which the sig-
nals were collected, the architecture of the service, or
just that more sophisticated analyses are required. An-
other hypothesis is there are many ways in which the disk
may fail and we need a larger population of failed disks
to find reliable correlations between the AML signal and
the different (error) signals behind the different types of
failures. Further research is needed but we are comforted
by the fact that [5] also reports on the lack of correlation
for prediction with SMART error signals.

6 Conclusions

We have described a detector capable of predicting disks
that are soon to fail, and we have evaluated the detec-
tor on real data from disks used in a 24x7 customer-
facing internet service. The results, 88.2% detection rate
and 2.56 false positive rate, are encouraging and provide
a significant reduction in the initial state of uncertainty
about disks failure.

The decision to deploy D-FAD is a trade-off between
the cost of false positives and the loss of service quality
for not performing preventive actions. Nevertheless the
reported results and the advantages of the methodology
provide evidence that this is a fruitful avenue of research
to pursue.
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