
Delta Compressed and Deduplicated Storage

Using Stream-Informed Locality

Philip Shilane, Grant Wallace, Mark Huang, and Windsor Hsu

Backup Recovery Systems Division

EMC Corporation

Abstract

For backup storage, increasing compression allows

users to protect more data without increasing their costs

or storage footprint. Though removing duplicate re-

gions (deduplication) and traditional compression have

become widespread, further compression is attainable.

We demonstrate how to efficiently add delta compres-

sion to deduplicated storage to compress similar (non-

duplicate) regions. A challenge when adding delta com-

pression is the large number of data regions to be in-

dexed. We observed that stream-informed locality is ef-

fective for delta compression, so an index for delta com-

pression is unnecessary, and we built the first storage sys-

tem prototype to combine delta compression and dedu-

plication with this technology. Beyond demonstrating

extra compression benefits between 1.4-3.5X, we also

investigate throughput and data integrity challenges that

arise.

1 Introduction

Purpose-built backup storage has become widely de-

ployed as a replacement for traditional tape backups.

Deduplication in combination with local compression

such as LZ has made hard drive systems cost competi-

tive and enabled the transition from tape [11].

Further improvements to compression will enable

users to protect more primary data within their backup

storage while minimizing costs, data center space, and

power. A promising technology is to apply delta com-

pression, which compresses relative to similar (non-

identical) regions of files. A key challenge is the large

number of data regions to be indexed, which will not

fit in memory for production systems. Previous work in

delta storage systems assumed version information for

files is known [3, 6] or a similarity index can fit in mem-

ory [1, 5]. Other work used an on-disk index [10] that

requires random I/O for each query.

We observe that as backups change over time, a mod-

ified region is likely similar to the previous correspond-

ing region and will be surrounded by unmodified regions

that are duplicates. Based on these stream properties,

we can load a cache of references, which eliminates the

need for version information and large index structures.

While our previous work investigated stream-informed

locality for replication across the wide area network [9],

that work was limited to low-throughput environments

and did not attempt to store delta encoded chunks.

This project has four key contributions: 1) We present

the first storage implementation of deduplication and

delta compression using stream-informed locality. 2) We

explore new complexities related to data integrity and

cleaning. 3) We report the combination of deduplication

and delta compression across a range of chunk sizes. 4)

We quantify throughput and suggest areas for further im-

provement.

Stream-informed delta compression increases overall

compression but also introduces new challenges that we

begin to investigate. Delta compression is costly in the

sense of requiring extra computation and I/O, but by

applying deduplication first, delta compression on the

remaining bytes becomes feasible. Besides throughput

issues, delta compression introduces new architectural

challenges because of the extra level of indirection. Pro-

tecting user backups is of utmost importance, so validat-

ing the delta encoded filesystem must be efficient. Also,

a garbage collection algorithm must handle indirect ref-

erences correctly. This paper presents these new com-

plexities and initial results.

2 Delta Filesystem

2.1 Architecture

Deduplicating storage systems are used to remove re-

dundant data thus improving storage efficiency [8]. In

general a file is divided into content-defined chunks [7],

which are fingerprinted with a strong hash. Each finger-

print is queried in an index to determine if the system

already stores a copy of the chunk. If a copy exists then

the current chunk need not be stored again and only a

reference to it is recorded in the file recipe.

A primary challenge in deduplicating storage systems

is managing a large index of fingerprints in such a way

that queries are fast. These indexes can be 100’s of

GB in size thus requiring large portions to spill to disk

and requiring effective caching techniques. The key in-

sight of the Data Domain system [11] is that duplicate

chunks appear in roughly the same stream-ordered pat-

terns for backup workloads. In Figure 1, file backup.tar

is initially written and divided into chunks 1-6. If mi-

nor changes occur to backup.tar then, the next time it is

written, the chunks will appear in largely the same order.

This stream-locality can be leveraged for deduplication

purposes by grouping neighboring chunks together as a

cache unit and loading the group’s fingerprints whenever

one of them is queried in the index.

A follow-on insight [9] is that non-duplicate chunks in

a stream are often similar to chunks loaded by a neigh-

boring chunk. Again referring to Figure 1, in the sec-

ond version of backup.tar, chunk 4 has been slightly

modified (i.e. chunk 4’ in red) and will be very sim-

ilar to chunk 4 in the cache. This similarity can be

detected using resemblance hashes (hereafter sketches)

which have the property that similar chunks will have

identical sketches [2, 5, 10]. Briefly, a sketch is gener-

ated from maximal values within a chunk that tend to

persist if a chunk is slightly modified. More details are

presented in Shilane et al. [9]. If the new chunk is similar

to an existing chunk, it can be delta encoded relative to

the existing chunk. We call the encoded chunk a ’delta’

and the existing referenced chunk its ’base’. The delta

can then be stored on disk with a reference to its base

chunk for decoding purposes, and this results in com-

pression benefits.

Multi-level Delta

Delta encoding can span multiple levels of indirection.

Chunk C could be encoded as 1-level delta of chunk B,

which might in turn be a 1-level delta of chunk A. This

causes C to be a 2-level delta, and arbitrary levels are

possible.

As the level of delta encoding (n) varies from chunk

to chunk, throughput will vary in unpredictable ways be-

cause n base chunks must be read for decoding [10]. Ear-

lier work [9] investigated the compression differences

between multi-level and 1-level delta encoding and re-

ported an increase of 1.03 - 1.18X additional delta com-

pression when the number of levels is not restricted.

Based on these results, our current prototype implements

1-level delta, though future work could explore the trade-

off between compression and throughput further.

Prototype

We built a prototype storage system by modifying

the deduplication architecture of the Data Domain sys-

tem [11] to compute both fingerprints and sketches,

which are stored together on-disk in caching units called

containers. Thus whenever a container is loaded to

the cache, both its fingerprints and sketches are loaded.

When eviction occurs, based on an LRU policy, a con-

tainer’s fingerprints and sketches are evicted as a group.

We used an 8KB average chunk size and 4.5MB contain-

ers holding chunks, fingerprints, and sketches.

backup.tar

backup.tar'

Content Defined Chunks

Chunk

1

1 week later

Chunk

2

Chunk

3

Chunk

4

Chunk

5

Chunk

6

Chunk

1

Chunk

2

Chunk

3

Chunk

4'

Chunk

5

Chunk

6

File Stream

Chunk

1

Chunk

2

Chunk

3

Chunk

4

Chunk

5

Chunk

6

Chunks stored

together on disk

modified chunk1st chunk

lookup

FP 1

FP 2

FP 3

FP 4

FP 5

FP 6

Sketch 1

Sketch 2

Sketch 3

Sketch 4

Sketch 5

Sketch 6

load cache

Fingerprint & Sketch Cache

Sketch

cache hit

on 4’FP cache

hit on

1,2,3,5,6

Figure 1: Modified chunks tend to be surrounded by

identical chunks, which can be used to load a stream-

informed cache with fingerprints and sketches from a

caching unit called a container.

When a chunk is presented for storage, its fingerprint

is compared against the cache and potentially an on-disk

index for a match. If no fingerprint match is found,

then we check for a similarity match by comparing the

chunk’s sketch against the cached sketches. If a match is

found, then we read in the base chunk, delta encode the

current chunk, compress the delta, and store the result.

By introducing delta compression to the pipeline we are

able to achieve higher total compression than dedupli-

cation and local compression can achieve. Our stream-

informed delta technique does not require an additional

sketch index, but it may miss potential similarity matches

when cache locality degrades.

2.2 Compression Results

Our experiments include four datasets described in Ta-

ble 1 that are 2-5 TB in size and span 4-6 months

of collected backups. These datasets consist of large

tar-type files that consist of many user files concate-

nated together by backup software in a pattern of re-

peated full and incremental backups. Source Code is

backups of a version control repository for source code.

Workstations is backups from 16 software engineers’

desktops. Email is daily full backups from a MS Ex-

change server. System Logs is backups from a server’s

/var directory.

Table 1 reports compression factors as contributed by

deduplication, delta, LZ, total compression, and delta

improvement. Metadata overhead of 30 bytes per chunk

is included in these results. Compression factors are

calculated as input bytes/output bytes for each compres-

sion stage, so values greater than 1 indicate a compres-

sion improvement. Total compression is a multiplication

of the three previous columns since they are independent

factors. A subtle point is that delta and LZ compres-

2

Dataset Size Mon- Dedup. Delta LZ Total Delta

TB ths Impr.

Workstations 2.3 4 5.0 4.2 1.6 33.6 3.5

Email 2.5 5 4.9 2.6 2.1 26.8 2.1

Source Code 4.5 6 16.7 3.6 2.5 150.3 1.4

System Logs 5.3 4 25.2 3.3 1.8 149.7 1.5

Table 1: Compression factors for backup datasets.

sion overlap because delta encoding removes redundan-

cies within a chunk itself [9], so the listed LZ compres-

sion value is lower than when delta is disabled. The delta

improvement column factors in the change in LZ com-

pression to show the true improvement of adding delta

compression is between 1.4X to 3.5X beyond a baseline

of deduplication with LZ.

These delta compression values are the result of our

stream-informed sketch cache, which has been shown to

produce compression comparable to a full sketch index

without the additional data structures [9].

3 Practical Considerations

While delta compression can add significant storage sav-

ings, there are numerous practical issues that must be

resolved to build a production system. We investigate

throughput, garbage collection, the impact of varying

chunk size, and data integrity.

3.1 Throughput

Delta compression adds extra compression at the cost

of extra computation and I/O as discussed in earlier

work [9, 10]. There is extra computation to create

sketches, lookup sketches in a cache, and perform delta

encoding. As CPU cores continue to increase, computa-

tion may become less of a concern.

There is also extra I/O required to read in a chunk from

disk to serve as a base, so write throughput is limited by

the underlying I/O performance of the system. Chunks

are typically stored compressed so a read must also de-

compress the data, and if larger regions are read together,

good locality can amortize the I/O time.

Results

We performed an experiment writing the four datasets

both with and without delta compression enabled. Dur-

ing the first full backup, the throughput was 74% (std.

deviation 14%) of the deduplicated storage system with

the decrease likely related to sketching and some extra

disk I/O and computation. After the first full backup,

delta compression increases because there is sufficient

previous data to compress against, and throughput de-

creased to 53% (std. deviation 18%) of the deduplicated

storage baseline.

We further investigated throughput bottlenecks in Ta-

ble 2, which shows single-stream timing for each stage

of the delta algorithm. We should emphasize that this is

an unoptimized prototype running on a system with Intel

Dataset

Read alternatives

Sketch Lookup Encode HDD SSD

MB/s MB/s MB/s MB/s MB/s

Workst. 47 1,528 94 5 400

Email 49 1,441 69 1 80

Src. Code 30 30 31 2 160

Sys. Logs 30 70 50 2 160

Table 2: Timing by delta stage including alternatives for

reading base chunks.

dual quad-core Xeon 2.6Ghz processors. Our research

suggests that optimization will likely improve the lookup

and read stages as discussed below.

Looking for matches in the sketch cache takes place

at 30 MB/s - 1.5 GB/s, which is highly variable. We de-

termined that Source Code and System Logs had very

long chains of identical sketch matches in the cache. A

50X difference in speed is attributable to traversing 50X

more links in a hashtable, so limiting duplicate sketches

in the cache would likely improve this stage.

Next, reading back a base chunk from disk is clearly

the bottleneck in processing because the prototype did

synchronous single-stream reads. Throughputs as low

as 1 MB/s correspond to ∼10 ms disk seeks for each

8KB chunk synchronously, and higher throughputs are

related to caching data. One solution is to move from

hard drives to SSD type storage with faster I/O charac-

teristics. We derived throughput results for the SSD case

assuming the same memory caching properties from the

actual read experiment and an access latency of 100 us.

For 8KB chunks, with no caching, this corresponds to a

throughput of about 80 MB/s. However, there is an order

of magnitude increase in cost associated with moving to

SSD storage.

Aggregate throughput is higher than these per-stage

numbers indicate for multiple reasons. Importantly,

deduplication takes place before delta encoding and ef-

fectively applies a multiplier to the throughput. Also,

only about 2/3 of post-deduplication chunks have a sim-

ilarity match and require base reads and encoding. Fi-

nally, multi-threading and asynchronous reads across

multiple disks would give significant benefit.

3.2 Garbage Collection

To have a complete backup storage system, removing

deleted files and the underlying chunks is a necessary

feature unlike in some archival systems [10]. When im-

plementing a cleaning algorithm, the first concern is al-

ways data integrity. Because of deduplication and delta

compression, there are numerous references to stored

chunks, and we implemented a background deletion pro-

cess called garbage collection (GC).

Our filesystem is log-structured, so cleaning involves

copying live chunks forward. There are two standard

3

techniques for tracking live chunks: reference counts

and mark-and-sweep. Reference counts are updated as

fingerprint and delta base references are added and re-

moved from the system, but reference counts have known

resiliency issues in a dynamic system that may experi-

ence complicated failure cases. The other alternative is to

record live chunks in the GC mark stage and copy those

chunks forward during the sweep stage.

Duplicates and Similar Chunks

A deduplicated storage system might choose to write

occasional duplicates because of memory constraints or

to improve performance [4]. In combination with delta

compression, complicated data patterns may result in

chains of delta encodings.

For example, suppose chunk A is stored and chunk B

is stored as a delta of A since it is similar. At a later time,

chunks B and A are written again. While they could be

identified as duplicates of their earlier versions, suppose

instead that B is written normally (a duplicate). When A

is written the second time, it could be written as a delta

of the base version of B.

This leads to multiple possible paths for reading

chunks A and B. One path involves reading the version

of A that is delta of B, which requires reading B, which

could be the version that is in turn a delta of the stan-

dard version of A. These cases become complicated, and

improper handling can result in reference loops and data

loss.

Results

An issue specific to stream-informed delta compres-

sion is that as chunks are copied forward, we are effec-

tively changing data locality and combining chunks from

different regions into containers. Since we do not have

a sketch index, we may miss out on potential delta com-

pression because of degraded locality.

We measured the amount of incremental delta com-

pression each week without GC as our baseline. We then

reran the test using a four week retention policy, ran GC

to free deleted chunks, and measured delta compression

each week.

Figure 2 shows how much delta compression was

achieved when GC ran relative to the baseline without

GC. For Email and Source Code, delta compression

was nearly 100% of the no-GC case with a standard de-

viation near zero. Workstations achieved 80% of the

baseline compression with a standard deviation of 18.

Relocating chunks during GC can affect locality for

loading the sketch cache, but we are also changing the

amount of total data available as base chunks. In future

work, we would like to further investigate the relation-

ship between these two concerns These results indicate

some impact of GC, but the delta compression achieved

is still a significant benefit.

 0

 20

 40

 60

 80

 100

Workstations Email Source CodeD
e
lt
a
 C

o
m

p
re

s
s
io

n
 %

Figure 2: Garbage collection has a modest impact on

delta compression.

3.3 Compression vs. Chunk Size

Increasing the chunk size has the potential to improve

throughput because of larger read/write units, and it may

ease memory pressures related to tracking references per

chunk, but there is a risk of losing compression with

larger chunks.

For this experiment, we designed a simulator that can

more easily handle a configurable chunk size than our

prototype. Figure 3 shows compression for deduplica-

tion, delta, LZ, and total compression across chunks sizes

from 1KB to 1MB (x-axis). Logscale is used so that

small values for delta and LZ are observable. Note that

we used 8-10 full backups for these experiments as com-

pared to the full datasets in earlier experiments. Meta-

data overhead was included and has the largest impact

on small chunks.

For comparison, we show the amount of total com-

pression achieved without delta. Note that LZ con-

tributes somewhat higher compression in this case be-

cause delta does not remove similar regions as discussed

in Section 2.2.

Deduplication is highest with small chunk sizes and

decreases steadily as the chunk size increases. Delta

compression starts off slightly above 1 (no extra com-

pression) and grows steadily as the chunk size increases

because it finds compression that deduplication is now

missing. Total compression reaches its peak at approx-

imately 8KB average chunk size but is generally flat in

that region largely due to delta compression offsetting

decreased deduplication.

These results indicate that delta compression adds

significantly increased compression across chunk sizes.

Also, we could increase the chunk size to 64KB while

maintaining compression similar to our typical 8KB sys-

tem. We leave performance evaluations across chunk

size as future work.

3.4 Data Integrity

Our delta filesystem is targeted for backup storage, and

the integrity of user data is the highest priority. Be-

sides RAID at the storage layer, it is necessary to add

end-to-end checks that files can be read back correctly.

This means confirming that all chunks referenced by file

recipes exist and that every chunk is valid.

4

 1

 10

 100

1KB 4KB 16KB 64KB 256KB 1MB

C
o
m

p
re

s
s
io

n
 F

a
c
to

r

Chunk size

Workstations (10 weeks)

 1

 10

 100

1KB 4KB 16KB 64KB 256KB 1MB

C
o
m

p
re

s
s
io

n
 F

a
c
to

r

Chunk size

Email (8 weeks)

Deduplication
Delta

LZ
Total

Total w/o Delta

 1

 10

 100

1KB 4KB 16KB 64KB 256KB 1MB

C
o
m

p
re

s
s
io

n
 F

a
c
to

r

Chunk size

Source Code (10 weeks)

 1

 10

 100

1KB 4KB 16KB 64KB 256KB 1MB
C

o
m

p
re

s
s
io

n
 F

a
c
to

r
Chunk size

System Logs (8 weeks)

Figure 3: As chunk size increases, deduplication decreases and delta compression increases to compensate.

It is important to validate that there is no corruption

either in the delta encoding or in the decoded chunk.

Confirming the validity of the delta encoding can be han-

dled with a checksum. However, validating the decoded

chunk adds a level of complexity, which requires a read

for the base chunk adding significant overhead. We have

begun to address data integrity issues but leave a detailed

discussion for future work.

4 Conclusion and Future Work

In this paper, we present a delta compressed and dedupli-

cated storage prototype, which demonstrates that stream-

informed locality enables both efficient deduplication

and delta compression. Delta compression adds an addi-

tional 1.4X-3.5X compression beyond deduplication and

local compression and would allow users to protect more

data within a storage system.

We also explore challenges introduced by adding delta

compression to the storage system such as throughput

bottlenecks, cleaning, and ensuring data validity. Our

analysis shows large I/O overheads when reading base

chunks, which could be addressed by replacing hard

drives with SSDs. There are new complexities when

cleaning deleted chunks, and we present results indicat-

ing that the stream-informed cache necessary for delta

compression is mildly affected. We also demonstrate that

delta compression adds significant compression across

chunk size, though the impact on throughput is left as

future work.

This prototype is an effective demonstration, and fu-

ture research could improve and simplify techniques for

increasing throughput, cleaning, validating data.

References

[1] L. Aronovich, R. Asher, E. Bachmat, H. Bitner,
M. Hirsch, and S. T. Klein. The design of a similarity
based deduplication system. In SYSTOR, 2009.

[2] A. Broder. On the resemblance and containment of doc-
uments. In Compression and Complexity of Sequences,
1997.

[3] R. C. Burns and D. D. E. Long. Efficient distributed
backup with delta compression. In Workshop on I/O in
parallel and distributed systems, 1997.

[4] F. Guo and P. Efstathopoulos. Building a high-
performance deduplication system. In USENIX Annual
Technical Conference, 2011.

[5] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Re-
dundancy elimination within large collections of files. In
USENIX Annual Technical Conference, 2004.

[6] J. MacDonald. File system support for delta compres-
sion. Master’s thesis, Dept. of Electrical Engineering and
Computer Science, Univ. of California at Berkeley, 2000.

[7] U. Manber. Finding similar files in a large file system. In
USENIX Winter Technical Conference, 1994.

[8] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Conference on File and Storage Tech-
nologies, 2002.

[9] P. Shilane, M. Huang, G. Wallace, and W. Hsu. WAN
optimized replication of backup datasets using stream-
informed delta compression. In Conference on File and
Storage Technologies, 2012.

[10] L. You, K. Pollack, D. D. E. Long, and K. Gopinath. Pre-
sidio: A framework for efficient archival data storage.
ACM Transactions on Storage, 7(2), July 2011.

[11] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bot-
tleneck in the Data Domain deduplication file system. In
Conference on File and Storage Technologies, 2008.

5

