
ViRUS: Virtual Function Replacement Under Stress
Lucas Wanner and Mani Srivastava

Electrical Engineering Department — University of California, Los Angeles
Email: {wanner, mbs}@ucla.edu

Abstract—In this paper we introduce ViRUS: Virtual
function Replacement Under Stress. ViRUS allows the
runtime system to switch between blocks of code that
perform equivalent functionality at different Quality-of-
Service levels when the system is under stress — be
it in the form of scarce energy resources, temperature
emergencies, or various sources of environmental and
process variability — with the ultimate goal of energy
efficiency. We demonstrate ViRUS with a framework for
transparent function replacement in shared libraries and
a polymorphic version of the standard C math library in
Linux. Case studies show how ViRUS can tradeoff upwards
of 4% degradation in application quality for a band of
upwards of 50% savings in energy consumption.

I. INTRODUCTION

Energy efficiency in software is becoming an increas-
ingly dynamic problem, influenced by various sources
of stress including Process, Voltage, and Temperature
variations, remaining battery capacity at any time, and
user behavior patters (e.g. in mobile phone app usage
or charging habits). Any given energy management de-
cision may have a significant positive impact on battery
lifetime under one context, while being innocuous under
different environmental and usage conditions. Energy
management actions should therefore be informed by
device state and context.

In this paper we introduce the concept of ViRUS:
Virtual function Replacement Under Stress. ViRUS is
loosely related to polymorphic engines [14] in that it is
used to transform sections of a program into different
versions with alternate code paths that perform roughly
the same functionality. Polymorphic engines are used
to intercept and modify code transparently, typically for
malicious purposes such as hiding malware functionality
from anti-virus software. In ViRUS, the different code
paths provide varying quality-of-service for different
energy costs. Transformations are triggered by sensing
and adapting to various sources of energy stress. A block
of code may be activated in ViRUS, for example, when
processor temperature reaches a certain threshold. A
second block may be activated when remaining battery
capacity drops below a specified percentage. The differ-
ent code blocks may be either standard library functions
provided by the runtime system or alternative imple-
mentations provided by application programmers. Per-
application configuration files determine when and under
what circumstances transformations are triggered. The
runtime system monitors sensors for energy stress and
transparently triggers adaptation at appropriate times.

We present a realization of ViRUS in the form of
a framework for transparent function replacement in
shared libraries demonstrated with a polymorphic ver-
sion of the standard C math library in Linux. Mi-

crobenchmarks show that the system can monitor hard-
ware and environmental conditions and trigger adapta-
tions with negligible overhead. We show how ViRUS can
help users in developing and analyzing tradeoffs between
accuracy and energy consumption in different contexts
and reduce the energy consumption with user-defined
quality-of-service degradation.

II. RELATED WORK
Alternate code paths, or algorithmic choice have

been explored in the energy-aware software literature.
Petabricks [1] and Eon [12], for example, feature lan-
guage extensions that allow programmers to provide
alternate code paths. The runtime system dynamically
chooses paths based on energy availability. In Petabricks,
multiple versions of object code are created and profiled
for execution time and quality using a sample set of input
data. Paths for an application may be chosen statically or
altered in runtime through accuracy valuations. A similar
process is used in Green [2], where a combination of
a calibration phase and runtime accuracy sampling are
used by the application to define which function to exe-
cute from a set of candidates. In Eon, the runtime system
dynamically chooses paths based on energy availability.
In Levels [7] programmers define multiple versions of a
task, and the run-time chooses the highest quality task
levels that will meet a required battery lifetime.

Algorithms and libraries with multiple implementa-
tions can be matched to underlying hardware configu-
ration to deliver the best performance [6], [8]. Such li-
braries can be leveraged to choose the algorithm that best
tolerates the predicted hardware variation and deliver
a performance satisfying the quality-of-service require-
ment. With support from the OS, the switch to alternative
algorithms may be done in an application-transparent
fashion by re-linking a different implementation of a
standard library function. Similarly, application code
may be optimized for performance and energy with input
from the programmer indicating code regions [5] or
data [3], [11] that may be amenable to approximation.

While these systems provide valuable design refer-
ences for approximation and algorithmic choice, many
of their assumptions do not hold true in the presence
of dynamic vectors of energy stress. In Petabricks,
execution time is the primary resource usage metric.
Similarly, in Green power is assumed to be a function of
execution time. With variability in active mode power,
the energy cost of a fixed number of CPU cycles varies
across instances and ambient conditions. Both systems
rely on a calibration phase to reduce runtime overhead of
evaluating quality-of-service and cost of different code
paths. With variability, runtime cost of a given code

path will also be variable across nominally identical
devices and across the lifetime of a device, due both
to aging and changes in operating conditions. Levels
triggers chances in run levels based on a history of power
consumption and remaining lifetime of the system. As
with the calibration phase in Petabricks and Green, a
projection of future power consumption based on past
history may lead to overly conservative or optimistic
adaptation decisions due to variations in power consump-
tion across time and due to ambient conditions.

III. SYSTEM DESIGN

We propose ViRUS as an application runtime support
system where the operating system adjusts service qual-
ity according to energy-aware policies. To accomplish
this, we (i) leverage techniques for algorithmic choice,
building this capability into the runtime system; (ii)
allow for adaptation with minimal application inter-
vention (iii) expose service quality information to the
applications, so that developers can configure adaptation
according to application requirements; (iv) build energy-
aware adaptation policies that expose sensor information
to the software stack and drive system adaptation.
A. System-Driven Algorithmic Choice

Several services provided by the operating and runtime
support are amenable to adaptation and may be extended
to support elastic quality levels. These services include
numeric and signal processing services (e.g. with vari-
able numeric precision), multimedia services (e.g. with
variable video encoding and decoding quality), sensing
stack (e.g. the aforementioned location service), and
communication stack (e.g. diversity of communication
channels). Different versions of each of these services
can be provided to applications through a common
interface, or through a wrapper that adapts versions with
different interfaces.

In ViRUS we build a thin wrapper around shared
libraries to provide context-aware algorithmic choice.
This wrapper takes adaptation configuration parameters
from applications (e.g. what functions are sensitive to
sources of stress and amenable to adaptation, bounds
for quality requirements), adapts multiple libraries with
common functionality but different function signatures
into a common interface, and handles messages from
the OS that trigger function replacement.
B. Library Generation

Given multiple implementations f0(· · ·), f1(· · ·), · · · ,
fn(· · ·) of a function featuring the same signature,
ViRUS exposes a single function f(· · ·) to applications.
In our C language implementation, this is accomplished
by declaring f(· · ·) as a function pointer, and dynam-
ically assigning the pointer to the address one of the
fn(· · ·) implementations. Because calls to functions and
function pointers are identical in C, there is no indirec-
tion between a call to the function entry point f and
the function call fn(· · ·). In other words, the function
pointer f(· · ·) is aliased to one of the implementations;
for example, if the function pointer f(· · ·) is assigned

function priority sensor range quality
f 0 temperature [0, 40) {0, 1}
f 0 temperature [40, 100) {2, 3}
g 0 battery [20, 100) {0, 1, 2}
g 0 battery [0, 20) {2}
g 1 temperature [0, 60) {0}
g 1 temperature [60, 100) {1, 2}

TABLE I: ViRUS configuration rules example.

to f1(· · ·), an application call to f(· · ·) translates to the
same sequence of operations as a call to f1(· · ·).

Taking a design reference from [2] and [7], we expose
the multiple implementations of a function as a function
array ordered by quality. For each f , a four-function API
is exposed: f itself, two mutator methods for quality
level (getter/setter), and a method that returns the num-
ber of implementations available. In general, multiple
implementations of a function f may have different type
signatures. For every fn function implementation we
therefore must create a wrapper function that matches the
signature of pointer f . Function wrappers and mutators
are created automatically in ViRUS using a series of C
pre-processor macros. For each function, a constructor
method is automatically generated and executed to set
the default function pointer and quality level when the
library is first loaded This method also registers the
name of the function along with its mutator methods
with the ViRUS controller that handles messages from
the operating system and triggers function adaptation
according to application and system configuration.
C. ViRUS controller

The ViRUS controller monitors hardware and oper-
ating environment for sources of stress and dynami-
cally triggers function adaptation according to system
and application configuration. Each application using a
ViRUS library has its own controller featuring all control
knobs (function mutators), function replacement rules,
and sensor monitors. Each application is associated with
a configuration file listing its function replacement rules.
Each rule in the configuration links a function with a
stress sensitivity vector and a set of acceptable quality
levels. A sensitivity vector is defined as a range of
values for a sensor, for example, temperature between
0 and 40◦C or instant active power between 100 and
500mW. The set of acceptable quality levels is defined
as an integer range from the highest to lowest quality
acceptable for each function while operating under each
sensitivity vector.

Table I shows a ViRUS configuration table for a
hypothetical application. Each rule describes a function,
priority, sensor, range for the sensor, and set of accept-
able quality levels. The application is sensitive to battery
level and temperature. Function f may operate in quality
levels 0 or 1 when temperature is between 0 and 40◦C,
and quality levels 2 or 3 when temperature is between
40 and 100◦C. Lower numbers represent higher quality
levels. When multiple sensors may trigger mutations
for the same function, rules are resolved in order of
priority, with lower numbers representing higher priority.

Data: Rules: set of (knob, priority, sensor, range, quality) tuples
RulesToProcess ← Rules;
KnobName ← * ;
while RulesToProcess 6= ∅ do

RulesForKnob
← {r ∈ RulesToProcess : r.knob.name = KnobName};
MatchedRules ← ∅;
forall the rule ∈ RulesForKnob do

sensor ← rule.sensor.value();
rmin ← rule.range.min;
rmax ← rule.range.max;
if rmin ≤ sensor < rmax then

MatchedRules ← MatchedRules ∪ rule;
end

end
QualitySet ← {r.quality ∀r ∈ MatchedRules } ;
forall the rule ∈ MatchedRules ordered by rule.priority do

if (QualitySet ∩ rule.quality) 6= ∅ then
QualitySet ← QualitySet ∩ rule.quality;

end
end
Set quality of functions matching KnobName to
max(QualitySet) ;
RulesToProcess ← RulesToProcess \ RulesForKnob;
KnobName ← rule.knob.name for some rule ∈
RulesToProcess ;

end
Algorithm 1: Function replacement algorithm

Function g may operate in quality levels 0, 1, or 2 when
remaining battery is between 20 and 100%, but only in
quality level 2 when the battery level is below 20%.
A lower priority rule for temperature further refines the
choices to level 0 when temperature is between 0 and
60◦C, and levels 1 and 2 when temperature is between
60 and 100◦C. Due to different priorities, function g
will operate at quality level 2 when battery is below
20% even if temperature is below 60◦C. When rules
are defined for a function with different sensors and the
same priority level, the most energy conservative rule
(i.e., the one with the lowest quality set of alternatives)
is interpreted as having the highest priority. Likewise,
when multiple quality choices are available for a function
after resolving all the rules, the lowest quality version
is chosen. A special function name, *, is used for rules
that apply to all functions. If an application configuration
mixes function specific and wildcard rules, function-
specific rules override wildcard rules.

Stress sensors are exported to the ViRUS controller
by a sensor monitor (described in Section III-D) as
a table of sensor names and a floating point variable
to access current sensor values. The ViRUS controller
is implemented as a library that is linked with each
application. A constructor method parses the rules file
for the application. Each line in the file reflects a line
in Table I. If no configuration file is found for the
application, a default global configuration file is used.

Adaptations are triggered by a message from the
sensor monitor. These can be of a periodic nature or
range-based alarms for sensors, according to application
configuration. The controller library constructor config-
ures alarms and installs a message handler. When a
message is received, we iterate through all the rules to
find replacements for each function using Algorithm 1.

For every unique knob name, we find the corresponding
set of rules, starting with the wildcard (*) rules. For each
of the rules for a knob name, we check current sensor
values against the range for the rule. If the sensor value
is within range, we mark the rule as matched. Starting
with a set of all possible quality levels, we iterate through
matched rules in order of priority to refine the set of
allowable quality levels. Finally we set the quality of
the function associated with the rule (or all functions in
the case of a wildcard rule) to the maximum of the set
of allowable qualities after processing the rules. If this
quality is a higher number than the number of alternate
implementations provided the function will be set to the
lowest quality (highest number) available.
D. Stress Monitor

ViRUS monitors stress vectors for energy usage and
notifies applications to trigger function replacements.
The monitor is built with two components: a system
daemon that monitors sensors and triggers alarms upon
certain conditions, and a small library linked with ap-
plications that registers processes to receive adaptation
triggers and handles notifications from the daemon.

The application library interacts with the monitor
through a socket (to register the application), files (to
discover available sensors and to read sensor values),
and signals. When the process receives a signal from the
monitor, the application must read current sensor values
to determine if function mutations should be triggered.
Because the signal itself does not convey information
other than signal number, sensor values are commu-
nicated from the monitor daemon to the application
through a shared file. This file contains the last sample
for each sensor in the same order as they appear in the
sensor descriptor file. Values are parsed and the sensor
table for the application is updated.

In the sensor monitor daemon hardware and software
sensors are abstracted through drivers that expose the
sensor name and current value through a floating point
function. Available sensors depend on the underlying
hardware platform, and are linked with the monitor
system service at compile time. In the future this could
be extended to allow for dynamic discovery of sensors
through a plug-and-play driver architecture. The version
of ViRUS used in our evaluation includes sensors for
temperature, frequency, voltage, and average active and
sleep power.

For each sensor, a user-defined configuration file de-
termines sampling rate in Hz and alarm rules. Four types
of alarm are defined: value greater than, value equal
to, value smaller than, and change in magnitude. The
change in magnitude rule will raise an alarm if the
sensor has changed by the expressed percentage since
the last sample. The four basic alarm types can be
dynamically changed without requiring re-compilation,
but more complex alarm rules must be attached to
sensors through a software module in compile time.

After acquiring a sample, the monitor iterates though

sensor rules to search for a match. If a match is found,
a signal is sent to all processes that registered their
process identifiers (PIDs) with the monitor. If a signal
can’t be sent to a process, that process is assumed to
have finished, and the PID is removed from the list of
registered processes. While alarms are global, function
mutation rules are defined on a per-application basis and
therefore a signal may not lead to a mutation.

IV. EVALUATION

For the results in this section, we built our ViRUS
libraries and applications for the ARM9 architecture and
ran it on a prototype Linux system using the VarEMU
virtual machine emulator [13]. VarEMU provides users
with the means to emulate variations in power con-
sumption and to sense and adapt to these variations in
software. Energy results are normalized across the runs
under comparison, and obtained from a nominal (typical)
instance under nominal voltage and temperature. We use
the -O3 compiler optimization flag for all tests.
A. Memory and Runtime Overheads

The ViRUS controller is implemented as a shared
library that handles: 1) knob registration for multi-
quality functions; 2) parsing of application-dependent
mutation rules; 3) registration and handling of signals
from the sensor monitor and reading of sensor data; and
4) function replacement. Combined, these functions use
a total of approximately 2.8KB of code memory. When
standard library functions needed to perform operations
in the ViRUS controller (e.g., strcmp, connect)
are statically linked with the library in an application,
code memory usage totals approximately 8KB. Internal
variables that keep adaptation knobs (i.e., available func-
tions) and replacement rules add approximately 7KB of
data memory for each application. Code memory used
by the multiple versions of a function depends on the
nature of the function and the implementations, as shown
in Section IV-B.

The runtime overhead of ViRUS can be divided into
one-time and periodic operations. One-time operations
include process and knob registration, sensor discovery,
and rule parsing. Assuming an app with ten knobs and
ten replacement rules, and a processor frequency of 1
GHz, ViRUS adds approximately 0.7 ms to application
initialization. Periodic operations happen every time
there is a signal from the sensor monitor to the ViRUS
handler in the application process. This triggers sensor
reading and rule matching (function replacement) in the
application, and corresponds to approximately 70 µs
under the assumptions above.
B. Variable Quality Math Library

We implemented a ViRUS library for the mathematical
operations of the C standard library declared in the
math.h header file. For this implementation, we use
the standard double and single precision libc func-
tions as quality levels 0 and 1 respectively. For subse-
quent quality levels, we use implementations from the
fastapprox [9] library. This library provides approx-

Function Memory Usage (KBytes) Combined
Quality Qual: 0 1 2 3 Comb. ovhd. (%)

exp 31.2 16.2 3.4 3.1 34.7 11.2
log 40.9 15.8 2.8 2.6 44.0 7.6
pow 43.6 18.8 3.7 3.2 50.1 14.9
sin 70.7 9.8 2.7 2.6 79.9 13.0
cos 70.7 9.8 3.0 2.6 79.9 13.0
tan 79.3 9.7 3.1 3.1 88.5 11.7
asin 67.1 16.0 - - 70.2 4.6
acos 67.1 16.2 - - 70.3 4.8
atan 37.3 3.6 - - 39.8 6.9
sinh 33.4 17.7 3.5 3.2 38.6 15.5
cosh 33.4 17.7 3.5 3.2 38.5 15.4
tanh 4.4 4.3 3.5 3.2 8.1 86.7

lgamma 103.5 19.8 3.1 2.8 110.8 7.1
comb. 227.8 64.8 4.5 4.1 251.8 10.5

TABLE II: ViRUS math library memory usage

imate versions of functions commonly used in machine
learning, including exponential, logarithm, power, cos,
sin, tan, and others.

Table II shows total code memory usage for significant
methods in the ViRUS math library. To measure code
size of each function, we compare the size of the .text
segment of a statically linked application binary where
the application calls only one of the multiple versions
and prints the result with an application that prints a
constant number. Because the multiple quality methods
may share portions of code, the combined memory usage
of the multiple versions of a function is typically smaller
than the summation of memory usage for each of the
individual versions. Likewise, the combined total for
all library functions is less than the summation of the
individual functions.

The rightmost column in Table II shows the overhead
of the combined multiple quality methods compared to
the single highest quality (double precision) method. The
overhead of providing multiple versions of a function
over providing only its double precision version averaged
16% and ranged from 5% to 86%. The combined mem-
ory usage of all methods on the table was approximately
252 KB, compared to 228 KB for all the methods in
double precision only—an increase of 10%.
C. Application case studies

In this section we show how ViRUS can use polymor-
phic libraries to adjust application quality and energy
consumption to counteract system stress from process
and environmental variability. The potential energy ben-
efits of ViRUS are limited by the fraction of time
and energy that an application spends using the poly-
morphic library functions provided by the system—
standard math library functions in our case studies. In
cases where applications do not use significant runtime
support system functions, ViRUS may still be useful in
managing application-level adaptation. Developers can
register multiple versions of a function as knobs by using
and linking with the ViRUS controller applications. This
modality of application-driven algorithmic choice has
been explored in the literature, e.g. in [2], [7], [1]. In our
evaluation, we show examples of benchmark applications
where library functions represent a significant fraction

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

 p
er

 it
er

at
io

n
(a

.u
.)

Number of iterations (#)

Quality 0
Quality 1
Quality 2
Quality 3

Fig. 1: Energy for whestone

of application energy and time cost and library imple-
mentation impacts application quality: the whetstone
benchmark, and the blackscholes and swaptions
applications from the Parsec suite [4] .

1) whetstone : We modified the Netlib implementa-
tion [10] of Whestone to use the ViRUS math library, and
profiled energy consumption when each of the different
quality levels was used. Energy numbers were obtained
by running a nominal instance of VarEMU [13] under
nominal operating conditions (voltage, frequency, and
temperature). For each run, a global destructor in the
application is called upon termination and prints out
total accumulated energy as determined by the VarEMU
virtual machine monitor. ViRUS configuration files pro-
vide rules that lead to immediate switching to a desired
quality level upon application initialization. No variation
alarms are generated for the run. Energy results are
normalized to highest energy cost per iteration (highest
quality, smallest number of iterations).

Figure 1 shows normalized energy consumption for
whetstone under different quality levels and across a
variable number of iterations for each run. The greatest
benefit in energy consumption results from switching
from the double precision (highest quality) versions to
the single precision versions, which leads to an average
45% reduction in energy consumption. There is a further
relative benefit of 8% when going from the single
precision version to the first approximate version, and
15% when going from the first approximate version to
the lowest quality approximate version. Going from the
highest to the lowest quality version results in a 57%
reduction in energy consumption.

2) blackscholes: We modified the blackscholes
application [4] to use the ViRUS math library and
profiled its energy consumption as described for
whestone. Table III shows normalized energy con-
sumption and output quality for blackscholes under
different quality levels. We use two metrics to ana-
lyze output quality: normalized root mean square error
(NRMSE) and mean absolute percentage error (MAPE).
Going across approximate levels in blackscholes
increases errors by 2–4 orders of magnitude for each
step. Going from quality level 0 (double precision) to
1 (single precision) led to a 25% reduction in energy

Quality Normalized Energy NRMSE (%) MAPE (%)
0 1 — —
1 0.74 0.000005 0.00002
2 0.6 0.003 0.1
3 0.48 4.3 39.7

TABLE III: Energy and quality for blackscholes
Quality Normalized Energy NRMSE (%) MAPE (%)

0 1 — —
1 0.85 0.0000004 0.000002
2 0.76 0.002 0.02
3 0.69 0.57 3.8

TABLE IV: Energy and quality for swaptions

consumption. Going from level 1 to 2 (first approximate
version) resulted in a further 18% reduction in energy.
From the first to the second approximate version (quality
level 2 to 3), there is a 20% energy benefit. Across the
board, from the highest to lowest quality version, there
is a 52% energy consumption band.

3) swaptions: Table III shows normalized energy
consumption and output quality for swaptions [4]
under different quality levels. Going across approximate
levels in swaptions increases errors by 2–5 orders of
magnitude for each step. Acceptable results are produced
for all quality levels. In the lowest quality level, MAPE
is approximately 4%. Going from quality level 0 (double
precision) to 1 (single precision) led to a 15% reduction
in energy consumption. Going from level 1 to 2 (first
approximate version) resulted in a further 11% reduction
in energy. From the first to the second approximate
version (quality level 2 to 3), there is a 9% energy
benefit. Across the board, from the highest to lowest
quality version, there is a 30% energy consumption band.

V. CONCLUSION

We introduced ViRUS (Virtual function Replacement
Under Stress), an application runtime support system
where the operating system adjusts service quality
according to energy-aware policies. We demonstrated
ViRUS with a framework for transparent function re-
placement in shared libraries and a polymorphic version
of the standard C math library in Linux. The ViRUS
control framework uses less than 3KB of RAM, and the
polymorphic math library adds 10% memory overhead
to its comparable single choice, high precision version.
Application case studies using the polymorphic math
library showed how ViRUS can tradeoff upwards of 4%
degradation in application quality for a band of upwards
of 50% savings in energy.

One implicit assumption in ViRUS is that alternate
implementations of a function may be ordered by quality
and energy cost. Higher cost functions are assumed to
produce higher quality results. For certain applications
and functions, quality and cost may be input dependent,
and hence this ordering may change dynamically. In
future work we intend to explore enhanced cost/quality
profilers that could assign or suggest rules for application
adaptation.

REFERENCES

[1] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin
Zhao, Alan Edelman, and Saman Amarasinghe. Petabricks: a
language and compiler for algorithmic choice. SIGPLAN Not.,
44:38–49, 2009.

[2] Woongki Baek and Trishul M. Chilimbi. Green: a framework
for supporting energy-conscious programming using controlled
approximation. SIGPLAN Not., 45:198–209, June 2010.

[3] Kenneth C. Barr and Krste Asanović. Energy-aware lossless data
compression. ACM Trans. Comput. Syst., 24(3):250–291, August
2006.

[4] Christian Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[5] H. Esmaeilzadeh, A Sampson, L. Ceze, and D. Burger. Neural
acceleration for general-purpose approximate programs. In 2012
45th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 449–460, Dec 2012.

[6] Matteo Frigo and Steven G. Johnson. The design and implemen-
tation of FFTW3. Proc. IEEE, 93(2):216–231, 2005.

[7] Andreas Lachenmann, Pedro José Marrón, Daniel Minder, and
Kurt Rothermel. Meeting lifetime goals with energy levels. In
SenSys, 2007.

[8] X. Li, M.J. Garzaran, and D. Padua. Optimizing sorting with
machine learning algorithms. In IPDPS, 2007.

[9] Paul Mineiro. fastapprox software library. [Online] Available:
https://code.google.com/p/fastapprox/, 2014.

[10] ”Netlib Repository”. Benchmark programs and reports. [Online]
Available: http://www.netlib.org/benchmark/, 2014.

[11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen
Gnanapragasam, Luis Ceze, and Dan Grossman. Enerj: Approx-
imate data types for safe and general low-power computation.
SIGPLAN Not., 46(6):164–174, June 2011.

[12] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew
Brennan, Mark D. Corner, and Emery D. Berger. Eon: a language
and runtime system for perpetual systems. In SenSys, 2007.

[13] Lucas Wanner, Salma Elmalaki, Liangzhen Lai, Puneet Gupta,
and Mani Srivastava. VarEMU: An emulation testbed for
variability-aware software. In CODES+ISSS, 2013.

[14] T. Yetiser. Polymorphic viruses: Implementation, detection, and
protection. Technical report, VDS Advanced Research Group,
1993.

