
Discovering Optimistic Data-Structure Oriented Parallelism
Romain Cledat∗

Intel Labs
Santosh Pande

Georgia Institute of Technology

Abstract
The parallelization of algorithms depends in large part on
the understanding of data-access patterns. Regular data-
structures, such as dense arrays, make pattern analysis
easier as data-dependence graphs can be built to clearly
identify computations that can happen in parallel. How-
ever, an important class of algorithms, such as machine
learning and search, rely on “irregular” data-structures
which make heavy use of pointers (trees, sparse graphs
for example). While regular data-structures have well-
defined properties with regards to their layout in mem-
ory, pointers obfuscate this.

In this paper, we argue that structure can also be found
for irregular data-structures but at a different level of ab-
straction: the symbolic one. For example, each step of a
breadth-first traversal of a binary tree on a node ‘n’ will
visit its ‘left’ child pointer, followed by its ‘right’
child pointer. While the relationships between the mem-
ory addresses of ‘n’ and those pointed to by ‘left’ and
‘right’ may not exhibit a pattern, there is a definite re-
lationship between the symbolic names ‘n’, ‘n::left’
and ‘n::right’, where ‘::’ denotes a parent-child re-
lationship. These relationships can be used to compute
data-dependence graphs just in time and therefore be able
to help in determining whether two operations can run in
parallel.

We present a trace-driven approach capable of identi-
fying such relationships and motivate how the informa-
tion could be used, for example, to improve optimistic
parallel execution (such as STMs) as demonstrated by
Cledat et al. in [3].

1 Introduction
Parallelism has moved from its traditional bastion of
high-performance computing (HPC) to desktops, laptops
and even mobile devices; the ARM Cortex-A9 [1] is a
mobile multi-core chip for example. While researchers
have had years to understand and optimize for the paral-
lelism patterns of regular data structures such as dense
arrays which are commonly used in HPC, emerging
areas such as machine learning and search make use
of more irregular data structures. An important charac-
teristic of these algorithms is that the exact elements,
and therefore memory locations, they access are heav-
ily data-dependent and cannot be easily known until run-
time. This cripples potential static analyses such as those
used to efficiently parallelize dense matrix computations.
However, these algorithms can still benefit from paral-
lelization [9] and it is thus important to consider them.

∗This work was done when the author was a PhD student at the
Georgia Institute of Technology.

1.1 Key to parallelism: the computation’s dataspace

A computation can be defined as being composed of i) an
operation and ii) a dataspace which is the memory space
the operation reads or writes. Understanding the datas-
pace of a computation is crucial to determining whether
two computations A and B can execute in parallel be-
cause the extent of the dataspace, or union of all physi-
cal memory locations accessed by the computation, can
lead to the determination of the amount of overlap be-
tween A and B: they can be parallelized if no overlap
exists. Mendez-Lojo et al. understood the importance of
this view in [8] where they stress the importance of a
data-centric view of a computation. They contend that
instead of thinking about dependencies between opera-
tions, one must take a view that encompasses the actions
of the operations on the data.

In dense matrix operations, the extent of an operation’s
dataspace can frequently be computed statically as it is
based on indices. A compiler can sometimes reason di-
rectly about the ranges of indices or a straightforward
runtime function can be evaluated to determine the datas-
pace’s extent.

Approaches for irregular algorithms The memory
layout of irregular data-structures is, by definition, harder
to characterize and this makes determining a computa-
tion’s dataspace difficult. Current approaches punt on the
problem in various ways. In [3], Cledat et al. present a
framework to allow the programmer to directly specify
properties that allow an approximate extent to be com-
puted. In the Galois model [6, 8, 10], an expert program-
mer writes underlying data structures which a program-
mer can use in conjunction with smart design patterns to
reduce the overhead of optimistic parallelism. The Ga-
lois model does not, however, a-priori estimate the extent
of the dataspace although its ‘one-shot’ optimization is
similar since it determines all the reads before doing all
writes together.

Exploiting relationships The previous approaches
discussed attempt to determine the computation’s datas-
pace but rely on programmer knowledge (either predi-
cates in [3] or algebraic properties in [8]. In this pa-
per, we propose a tracing approach that seeks to deter-
mine statistical relationships between program variables.
These relationships are then used to determine key pro-
gram variables from which a computation’s dataspace
can be determined before the computation starts based
on the runtime values of these variables.

Our approach is heuristical in nature and serves to
guide the programmer in understanding the relationships
between variables. One possible use of our approach,

which we detail in this paper, is using the information
generated to impact transaction scheduling in STM-like
systems so as to minimize the probability of conflict.
Correctness is not affected as the STM system will roll-
back in the case of a conflict but performance can be in-
creased as the likelihood of a conflict drops.

An important characteristic of our tracing approach
is that we directly trace relationships between program
variables as opposed to the hard-to-analyze physical
memory addresses.

1.2 Contributions

This paper presents our symbolic1 dataspace tracing
framework and shows how the data gleaned can be an-
alyzed and used to generate functions that can predict
future memory accesses. This allows for the just-in-time
computation of the extent of a computation’s dataspace.
We make the following specific contributions:
• We recognize the need for a more data-centric ap-

proach to concurrency focusing on extracting the rela-
tionships that exist in an operation’s dataspace.
• We propose using the symbolic dataspace of an oper-

ation as opposed to its address dataspace to understand
the relationships.
• We develop a memory tracer in the symbolic datas-

pace.
• We validate our framework on a graph coloring ex-

ample showing how the analyzer is capable of determin-
ing the symbolic dataspace of an operation.
The remainder of this paper is organized as follows.
Section 2 describes the differences between the address
dataspace and the symbolic dataspace. Section 3 details
our framework. Section 4 presents our experimental re-
sults, Section 5 reviews related work, in particular shape
analysis,and we conclude with future work in Section 6.

2 Address dataspace versus symbolic
dataspace

1 f o r (i n t i =0 , e=end ; i < e ; ++ i) {
d a t a A r r a y [i] = copyArray [i + 1 0] ;
}

Figure 1: Example of a simple loop for a dense array
where memory access patterns are fully predictable at the
start of the loop

In dense array computations, data access patterns can
frequently be understood statically at compile time by
analyzing both the indices and the boundary conditions

1Symbolic here refers to tracing program variable names as opposed
to their address

(loop bounds) used to access data. In the simplistic ex-
ample loop shown in Figure 1, a compiler can predict
the exact memory locations that will be accessed at the
start of each loop iteration. These locations are solely de-
termined by: i) the address of dataArray, ii) the ad-
dress of copyArray and iii) the value of i which can
all be determined at the start of each loop iteration. In this
example, the memory locations will be known offsets
off of the addresses of dataArray and copyArray.
Therefore, the entire dataspace of the loop can be pre-
dicted with just the knowledge of dataArray and
copyArray at the start of the loop. Determining if two
such loops can execute in parallel in simply a matter of
comparing these addresses to determine if there is any
overlap.

In irregular programs, this type of analysis is ren-
dered impossible by the heavy use of pointers which
make static offset computations irrelevant. In essence,
the physical layout of memory loses its importance for
irregular programs.

2.1 Reachability and predictability

We seek to be able to predict an operation’s dataspace
before the operation actually executes. In Figure 1, pre-
diction was made possible because all memory locations
accessed were at known offsets from dataArray and
copyArray. We will say that they were reachable from
dataArray and copyArray where we define reach-
able as follows:

Definition An object B is said to be reachable from an-
other object A if knowledge of the address of A gives
knowledge of the address of B at runtime.

Reachability is key to predictability: if data elements
read or written by an operation are all reachable from
another common element R, then knowledge of R en-
ables the determination of the operation’s dataspace. For
regular algorithms, objects are “reachable” from one an-
other through the addition of a fixed offset and these rela-
tionships between objects are still visible in the address
dataspace. Objects in irregular algorithms however are
related to one another through pointers and this informa-
tion is very difficult (if not impossible) to retrieve in the
address dataspace. We seek to re-establish reachability
arguments for irregular algorithms.

2.2 The symbolic dataspace

We define the symbolic dataspace of a program as fol-
lows:

Definition The symbolic dataspace of a program is a
mapping between program variables and textual repre-
sentations for these variables. In its simplest form, the
program name of a variable can be used as its textual
representation.

In the symbolic dataspace, variables are thus associ-
ated with a programmer specified textual representation
whereas in the address dataspace, they are associated
with their address. Given that the textual representation
is not arbitrary, it is possible to use it to encode relation-
ships between variables in a way that includes relation-
ships expressed through pointers.

We use the separator ‘::’ to indicate a ‘reachable’
relationship. In other words, the textual representa-
tion ‘n::left’ means that the memory location of
‘n::left’ can be known from that of ‘n’. It does not
matter if the relationship is through a fixed offset or a
pointer as this is irrelevant from the point of view of
reachability. The tracer we propose in this paper is capa-
ble of determining the symbolic names associated with
every load and store in a program thereby making the
‘reachable’ relationships—which were lost at the mem-
ory level— visible. Note that the relationship between
program variables and textual representations is not a
one-to-one relationship due to aliasing (ie: the same vari-
able may be accessed through various pointer indirec-
tion). The framework we develop can list all textual rep-
resentations for a given program variable2.

2.2.1 Motivating example

Consider the sample code in Figure 2. The presence of

s t r u c t Node {
2 i n t d a t a ;

Node ∗ l e f t , ∗ r i g h t ;
} ;
v e c t o r<Node∗> nodes ;
/∗ nodes i s i n i t i a l i z e d t o c o n t a i n some

Nodes ∗ /
7 f o r (i n t i =0 , e= nodes . s i z e () , i<e ; ++ i) {

Node ∗n = nodes [i] ;
i f (n−> l e f t && n−>r i g h t)
n−>d a t a = n−>l e f t −>d a t a +

n−>r i g h t−>d a t a ;
e l s e

12 n−>d a t a = 0 ;
}

Figure 2: Example of a simple loop for a tree-like struc-
ture where memory access patterns are not obvious at the
beginning of each iteration

the pointers ‘left’ and ‘right’ makes the addresses
of ‘n->left->data’ and ‘n->right->data’ im-
possible to predict. In particular, there is no fixed
offset between the addresses of ‘n->data’ and
‘n->left->data’.

2The framework accounts for recursion and will properly list all
representations that are non-recursive in nature.

In the symbolic dataspace, however, the access
patterns are predictable and consistent: each itera-
tion will access ‘n::data’, ‘n::left::data’ and
‘n::right::data’. The textual representation in the
symbolic dataspace therefore allows for the same type of
analysis as the ones possible in the address dataspace for
regular computations.

The tracing approach we will detail in the following
section coupled with analysis, will make explicit these
relationships and therefore give the programmer infor-
mation similar to that enjoyed for regular programs.

3 Symbolic dataspace analysis
Section 2 revealed the usefulness of describing access
patterns in the symbolic dataspace. This section details
a framework capable of tracing memory accesses in that
dataspace. Our tracer is very similar to a traditional mem-
ory tracer which indicates the memory locations that are
touched except that it outputs enough information for
an analyzer to be able to interpret those memory loca-
tions in terms of symbolic names instead of memory ad-
dresses. For a given memory access, the analyzer will
be able to determine the set of names that refer to that
memory address. Note that a location may have multiple
names due to pointer aliasing. Since the names implic-
itly express reachability, it will then be possible to esti-
mate the ‘root’ variables that predict the dataspace (sim-
ilar to dataArray and copyArray in Figure 1. Note
also that our analyzer deals with cycles by “unrolling”
the cycle as much as it can (ie: without forming a cycle).
The analyzer will therefore always output a complete but
bounded set of names for each memory location.

3.1 Components of the tracer

We define the following terms:
• The focus area is a section of code that the program-

mer wishes to analyze in terms of access patterns. Typ-
ically, a focus area will be a transaction (in STM lan-
guage). The goal of the framework is to be able to deter-
mine the variables that can be used to predict the focus
area’s memory footprint at the start.
• The location name is a programmer-defined name

associated with a physical memory location. Multiple
names may be associated with the same location (due to
aliasing) and the association may change over time.
• The semantic memory map is the mapping be-

tween a set of location names and physical memory ad-
dresses. In other words, it is a mapping between the
semantic dataspace and the address dataspace. We will
denote it SMi where i is an instruction count as this
mapping changes over time. Note that this mapping is
only valid inside a single thread as instruction counts are
not synchronized across threads. This is, however, suffi-
cient for our analysis as we are interested in determin-

ing the dataspace of a computation before that compu-
tation starts based on the values and addresses of vari-
ables known at the start of the computation. We there-
fore only need to extract relationships between variables
within the same thread. The ranges of addresses deter-
mined for each computation to launch in parallel can then
be compared, at runtime, to determine if there is any pos-
sible overlap.

The framework is divided into three parts:
• C++ template wrappers are provided to the pro-

grammer to associate a name with program variables that
he wants to track. These variables are typically the ones
that are accessed in parallel regions of code and are there-
fore potentially shared. An automated way to associate
names with variables could also be devised. The C++
API also provides mechanisms to identify the operations
that are of interest to the programmer, typically the trans-
actions themselves (in STM terminology).
• A tracing compilation pass is responsible for

adding tracing annotations to the application. This is
done in LLVM. When running, the application will dump
a tracer file which is analyzed by the analyzer.
• An analyzer takes as input the information dumped

during the application’s execution and builds the map-
ping between physical memory and semantic names dur-
ing the execution of the program. The current analyzer
provides an interactive environment to give the program-
mer insight into the symbolic dataspace access patterns;
it is currently not fast enough to be used JIT.

The role of the tracing pass is therefore to collect
enough information so that the analyzer can correctly
build and maintain SMi∀i.

3.2 Operating principle

The tracer will collect information that affects SM as
well as the addresses of loads and stores. During anal-
ysis, the addresses of the loads and stores can be mapped
back to a set of names using SM. Note that the names
associated with each memory location are dynamically
constructed. For example, suppose a variable of type
‘Node’ has a child pointer ‘left’; at compile time, the
exact name of the node may not be known but at run-
time, it can be determined (say to be ‘n1’) and therefore
the name of the memory location pointed to by ‘left’
will be named ‘n1::left’.

The tracer will track:
• Malloc/New as they create a mapping between a

physical location and a name.
• Free/Delete as they remove such a mapping.
• Pointer arithmetic as they modify a mapping by as-

sociating a name with a different physical location
• Other memory operations such as memmove or
memcpy as they also alter the mapping.

Note that to minimize the tracing overhead, information
is only collected on operations on the variables wrapped
with the C++ API. In particular, only those loads and
stores that may be relevant to the wrapped variables are
traced.

s t r u c t Node {
2 TRACKED(i n t da ta , ‘ ‘ : : d a t a ’ ’) ;

TRACKED PTR(Node ∗ l e f t , ‘ ‘ : : l e f t ’ ’) ;
TRACKED PTR(Node ∗ r i g h t , ‘ ‘ : : r i g h t ’ ’) ;
} ;

7 TRACKED(Node n , ‘ ‘ n ’ ’) ;
TRACKED(Node n2 , ‘ ‘ n2 ’ ’) ;
n−> l e f t = &n2 ;

Figure 4: Sample code segment

Illustration Consider the code segment3 in Figure 4
to illustrate how SM is constructed. SM at the end of
the code segment is shown in Figure 3 The association
of the name ‘n’ with the memory region [0x10; 0x24]
is caused by Line 7 and the association of ‘n2’ with
[0xA0, 0xB4] by Line 8 4. The names of the children
fields of ‘Node’ are given at Lines 2 through 4. Note that
the use of the leading ‘::’ indicates that the name of the
parent should be dynamically determined at runtime. We
see here two types of notions of reachability: ‘data’ is
reachable through an offset from the address of its par-
ent and ‘right’ is reachable through pointer indirec-
tion. The former also present in regular data-structures
while the latter is specific to irregular ones. Line 9 cre-
ates the relationship between ‘n::left’ and ‘n2’. The
names associated with memory address 0xA0 are thus
‘n2::data’ and ‘n1::left::data’ which express
that the address 0xA0 can be reached from ‘n2’ using
one “hop” and from ‘n1’ using two “hops”.

3.3 Using the analyzer

Our analyzer currently allows the programmer to interac-
tively view SMi and in particular to determine the names
at the beginning of each focus area from which all other
memory accesses are reachable. Using this information,
the programmer can then devise functions that can be run
at the start of the operation to determine the extent of the
operation’s dataspace. In particular, this would allow the
automatic generation of the isDisjoint functions as
defined by Cledat et al. in [3].

3This is a faithful representation of the way the C code would look
in our framework.

4Memory addresses were chosen arbitrarily.

0x10 0x24 0xA0 0xB4

data *left *right

{ { n2n

data *left *right

Figure 3: Memory map constructed by the analyzer at Line 9 of the code segment shown in Figure 4

4 Experimental validation
We validated our framework on a simple computation: a
graph coloring example. Although this example is well
known and no novel information will be gleaned from
the analyzer, it allows us to validate our concepts and
prove that the information collected is correct. Note that
our framework is still not mature enough to be used in a
JIT manner; the experimental validation presented here
serves to illustrate our concepts.

4.1 Graph coloring

In graph coloring, each node of a graph must be “col-
ored” in such a way that no two adjacent nodes are of
the same color. This is commonly used for register al-
location for example where the “colors” represent the
various physical registers available and the nodes rep-
resent the virtual registers. An edge between two virtual
registers means that they are live at the same time (and
thus cannot be assigned to the same physical register).
The workhorse function of the algorithm tries to assign
a color to a node by looking at the colors of all adja-
cent nodes. This code is shown in Figure 5. Not shown
in this code segment is the fact that each input node to
the function is dynamically associated with the name
‘input node’. Given the simplicity of the code, it is
apparent that knowledge of ‘input node’ allows the
full determination of the memory dataspace of the func-
tion5. Furthermore, there is only one write access which
is to ‘input node::color’ For more complex codes
however, this information may not be readily visible to
the programmer.

4.2 Analyzer results

Running the tracer with a random graph of 10 nodes pro-
duces 5663 events (loads and stores as well as events re-
lated to building SM). Feeding this trace to the analyzer
then opens an interactive environment which allows the
programmer to set “weight” functions to rank location
names based on their predictive power of future memory
accesses. Several parameters can enter this formula but
two in particular are of interest to us:

5‘graph’ is also used only to read in its size.

1 void processNode (Node∗ node , Graph∗
graph) {

/ / The used v e c t o r c o n t a i n s which
c o l o r s are used .

v e c t o r<bool> used (graph−>nodes−>s i z e () ,
f a l s e) ;

f o r (unsigned i n t j = 0 ; j <
node−>a d j a c e n t t o−>s i z e () ; ++ j) {

i n t c o l o r =
∗ (node−>a d j a c e n t t o [j]−> c o l o r) ;

6 i f (c o l o r != −1) used [c o l o r] = t rue ;
}
unsigned i n t s m a l l e s t c o l o r = 0 ;
whi le (s m a l l e s t c o l o r <

graph−>nodes−>s i z e () &&
used [s m a l l e s t c o l o r] == t rue)

++ s m a l l e s t c o l o r ;
11 node−>c o l o r = s m a l l e s t c o l o r ;
}

Figure 5: Graph coloring code to process each graph
node

• The type of memory access: whether it is a read or
a write. This is important as concurrent reads are fre-
quently permissible in parallel sections of code. In the
formulas given later, r takes the value of 1 for read ac-
cesses and 0 otherwise. w similarly takes the value 1 for
write accesses and 0 otherwise.
• The number of “hops” required to determine the ad-

dress of the accessed location from the location name.
This is important as the cost of determining the datas-
pace will be in part determined by how much pointer
hopping is required. The variable d represents this num-
ber of “hops”.

The interactive environment therefore allows the pro-
grammer to determine which location names allow for
maximum prediction of the operation’s dataspace at the
start of the operation. This information can be used
by the programmer to devise functions to execute be-
fore scheduling a processNode computation to de-
termine the potential for overlap with other running
processNode computations.

Determining write accesses Setting the formula to
w

d∗1000+1—which instructs the analyzer to only count
write accesses and strongly favor location names that re-
quire few hops—returns that the only consistent write
access across all ten iterations (one iteration per node)
of the operation is ‘input node::color’. For each
individual iteration, the analyzer also properly identifies
the specific node whose ‘color’ field is accessed. With
this information, the programmer could easily generate a
function to run at the beginning of each iteration to de-
termine the extent of the write dataspace; this function
would simply compute the address of ‘node->color’.
Note again that while this is trivial in this simple exam-
ple, the tool would be just as useful for a complex pro-
gram.

Determining read accesses Similarly, if the formula
is set to r

d∗1000+1 which only counts read accesses sim-
ilarly favoring location names that require few hops, the
analyzer reports that most of the read accesses are acces-
sible from ‘input node::neighbors’ followed by
‘graph::nodes’. This corroborates what is expected
in the sense that the function reads the color field of all of
the neighbors of ‘input node’ as well as the size field
of ‘graph::nodes’.

5 Related work
The work we propose is similar to other areas of research
which we describe here.

5.1 Shape analysis

Shape analysis [4] aims to determine more accurate
“points-to” information. In doing so, shape analysis also
employs notions such as “reachability” [12] and “ac-
cess paths” [7] which are very similar to the notions we
present in this paper. In [5], Ghiya et al. even used shape
analysis in a manner similar to ours to detect three com-
mon types of parallelism.

Our work, while similar to these works and others,
differs in that our approach is based on a combination
of static analysis and tracing as opposed to solely be-
ing based on static analysis. As a result, our approach is
potentially less accurate (as it may not “see” certain ac-
cesses during its tracing) but also faster and potentially
more precise as its analysis is only based on actual mem-
ory accesses. Our approach is thus not appropriate when
a conservatively exact data footprint is required but is
applicable for systems where a fast but potentially un-
safe approximation of the footprint is allowed (such as
STM-like systems).

We also believe that combining advanced static anal-
ysis techniques such as shape analysis and the symbolic
tracing approach we describe in this work could lead to
more precise estimations of data footprints.

5.2 Concolic execution

Concolic execution (which interleaves both concrete exe-
cution and symbolic execution) is a software verification
technique that also considers program variables in a sym-
bolic space. [13, 14] are examples of this where concrete
inputs are computed so as to maximize code coverage.

5.3 Auto-parallelization methods

Much work has also gone into determining whether two
sections of code are parallelizable [11, 2, 8, 10] among
others, but our analysis is novel in its tracing approach
and in mapping actual memory accesses with names
which express relationships between variables. We are
not aware of work that similarly tries to extract mem-
ory access patterns from names. We believe that our ap-
proach could enhance previous approaches.

6 Conclusion
We presented a tool aimed at memory tracing in the sym-
bolic dataspace. We showed how this could be useful in
determining a computation’s dataspace for irregular al-
gorithms. We believe that memory tracing in the sym-
bolic dataspace, which makes relationships between vari-
ables explicit, could have more uses in parallel comput-
ing as well as in other areas of of computing. The patterns
that are made visible in the symbolic dataspace could, for
example, be used to classify algorithms and match them
to well-known parallelism constructs. The current ver-
sion of our tool is limited in the size of the program it
can analyze due to the high memory consumption of the
analyzer. We plan to couple the analyzer with a database
backend to be able to quickly store and retrieve relevant
patterns and relieve memory pressure. We then plan to
release the tool to the community. Another possible ex-
tension of our work is to make it fast enough to be able
to execute at runtime which would allow an optimistic
just-in-time parallelization of code.

Acknowledgment
The authors would like to thank the anonymous review-
ers for their comments which improved this paper. This
research was done when Romain Cledat was a PhD stu-
dent at the Georgia Institute of Technology and the au-
thors would like to gratefully acknowledge the support
of NSF grants CCF-1018544 and CCF-0916962 which
supported this research.

References
[1] ARM. Cortex-a9 processor. http:

//www.arm.com/products/processors/
cortex-a/cortex-a9.php.

[2] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Sim-
mons, H. Sung, and M. Vakilian. A type and effect

system for deterministic parallel java. In OOPSLA
’09, pages 97–116, New York, NY, USA, 2009.
ACM.

[3] R. Cledat, K. Ravichandran, and S. Pande. Leverag-
ing data-structure semantics for efficient algorith-
mic parallelism. In Proceedings of the 8th ACM
International Conference on Computing Frontiers,
CF ’11, pages 28:1–28:10, New York, NY, USA,
2011. ACM.

[4] A. Deutsch. Interprocedural may-alias analysis for
pointers: beyond k-limiting. In Proceedings of the
ACM SIGPLAN 1994 conference on Programming
language design and implementation, PLDI ’94,
pages 230–241, New York, NY, USA, 1994. ACM.

[5] R. Ghiya, L. Hendren, and Y. Zhu. Detecting paral-
lelism in c programs with recursive data structures.
IEEE Transactions on Parallel and Distributed Sys-
tems, 1:35–47, 1998.

[6] M. Kulkarni, K. Pingali, B. Walter, G. Rama-
narayanan, K. Bala, and L. P. Chew. Optimistic par-
allelism requires abstractions. In PLDI ’07, pages
211–222, 2007.

[7] W. Landi and B. G. Ryder. A safe approximate al-
gorithm for interprocedural aliasing. In Proceed-
ings of the ACM SIGPLAN 1992 conference on Pro-
gramming language design and implementation,
PLDI ’92, pages 235–248, New York, NY, USA,
1992. ACM.

[8] M. Mendez-Lojo, D. Nguyen, D. Prountzos, X. Sui,
M. A. Hassan, M. Kulkarni, M. Burtscher, and
K. Pingali. Structure-driven optimization for amor-
phous data-parallel programs. In PPoPP ’10, New
York, NY, USA, 2010. ACM.

[9] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R.
Larus, A. Rogers, and J. Saltz. Efficient support for
irregular applications on distributed-memory ma-
chines. In PPOPP ’95, pages 68–79, New York,
NY, USA, 1995. ACM.

[10] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos, and
X. Sui. The tao of parallelism in algorithms. In Pro-
ceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementa-
tion, PLDI ’11, pages 12–25, New York, NY, USA,
2011. ACM.

[11] M. C. Rinard and M. S. Lam. The design, imple-
mentation, and evaluation of jade. ACM Trans. Pro-
gram. Lang. Syst., 20(3):483–545, 1998.

[12] M. Sagiv, T. Reps, and R. Wilhelm. Parametric
shape analysis via 3-valued logic. In Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’99,
pages 105–118, New York, NY, USA, 1999. ACM.

[13] K. Sen. Concolic testing. In Proceedings of
the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, ASE ’07,
pages 571–572, New York, NY, USA, 2007. ACM.

[14] K. Sen, D. Marinov, and G. Agha. Cute: a con-
colic unit testing engine for c. In Proceedings of
the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineer-
ing, ESEC/FSE-13, pages 263–272, New York, NY,
USA, 2005. ACM.

