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ABSTRACT
For communication-intensive applications on distributed mem-
ory systems, performance is bounded by remote memory
accesses. Task migration is a potential candidate for reduc-
ing network traffic in such applications, thereby improving
performance. We seek to answer the question: can a run-
time profitably predict when it is better to move the task to
the data than move the data to the task? Using a simple
model where local work is free and data transferred over the
network is costly, we show that a best case task migration
schedule can achieve up to 3.5x less total data transferred
than no migration for some benchmarks. Given this obser-
vation, we develop and evaluate two online task migration
policies: Stream Predictor, which uses only immediate re-
mote access history, and Hindsight Migrate, which tracks
instruction addresses where task migration is predicted to
be beneficial. These predictor policies are able to provide
benefit over execution with no migration for small or mod-
erate size tasks on our tested applications.

1. INTRODUCTION
In high performance computing, to allow for larger prob-
lem sizes and increase total compute power, data and com-
putation are distributed across multiple nodes. For some
applications, tasks must access pieces of data stored on sev-
eral remote nodes. In order to keep tasks fed with data, the
shared network becomes a highly contested resource. There-
fore, minimizing each task’s usage of the network is key to
maximizing overall performance. When a task requires ac-
cess to remote data, there are two choices for how to best
utilize the network: bring the data to the task, or migrate
the task and its execution context to where the data re-
sides. This paper explores a fundamental question for high-
performance computing runtimes: is it possible to profitably
predict whether it is more efficient to move data to the task
or move the task to the data? We answer this question in
two steps.

First, we develop a simplified model of a distributed mem-
ory system where cost is measured by movement of data
over the network. We collect memory traces from shared
memory applications to simulate execution on a distributed
memory system. Using the optimal migration schedule for
an execution, we find the lower bound on cost that task mi-
gration can achieve under our model. Our data shows up
to 3.5x improvement using optimal migration choices over
never migrating, but particular programs, like a graph cen-
trality kernel, benefit very little from migration.

Second, we demonstrate that conceptually simple predictor-
based migration policies can approach the benefit of the opti-
mal policy using only information available at runtime. Em-
pirically, we show that on applications where task migration
is useful, these policies can achieve up to 60% of the benefit
of the optimal policy for small task sizes.

2. SYSTEM MODEL
In order to explore the impact of migration on the total
movement of data over the network, we use a simple model
where the primary metric is the number of bytes transferred
over the network. We believe this model is appropriate for
the applications we study because of their significant com-
munication in a distributed system. Given this assumption,
we represent program execution as a collection of memory
traces, where each entry in the trace is an access to dis-
tributed shared memory. We do not use timing informa-
tion and do not consider the impact of synchronization. We
model the size of task contexts (the data that must be moved
with the task) as a fixed value for an entire execution and
vary it as a parameter to study how well task migration
works with different task sizes.

The model is kept simple to narrow the focus of our study.
Since the model has no concept of timing, our study is not
able to consider network contention or other effects of rela-
tive thread progress such as load imbalance. Our cost func-
tion does not consider message size, and we assume a flat
network topology, so network performance behaviors are not
modeled. With this model we are left with a simple two-
layer locality hierarchy: local and remote. Because network
bandwidth per node is a constraining factor, network usage
captures an important performance property. Our simpli-
fications also allow us to compute theoretical cost bounds
for executions in polynomial time. Computing an optimal
schedule for more complex models, such as those consider-
ing contention or arbitrary levels of locality, would quickly
become an NP-complete problem.

2.1 Data Layout and Initial Placement
We start with shared memory programs, but we need to
map shared data across cluster nodes, so we take the Par-
titioned Global Address Space (PGAS) approach of speci-
fying in the code how data should be distributed to reflect
locality. Data is evenly block-distributed across the nodes
of the cluster. We make an effort to lay out the data to
preserve spatial locality using the annotations described in
Section 3.1.1. There is a potential for there to be hotspots



where data is not optimally distributed or duplicated. If
some piece of shared data is accessed very frequently, then
the node that owns that “hot” data will get a dispropor-
tionate fraction of memory requests in the system. In the
presence of task migration, this situation could lead to ex-
cessive load from too many tasks attempting to run on one
node. A runtime implementing this would need to take into
consideration the amount of work on each node at a particu-
lar time, but our model does not include timing information
so it is not considered here. Exploring optimal data layouts,
data replication, and repartitioning to avoid hotspots is also
beyond the scope of this investigation.

We start each task at the node it references most often. By
doing this we ensure that the minimum amount of data is
transferred for tasks without migration. Placement is done
individually for each task regardless of how many other tasks
begin at a given node.

2.2 Load Imbalance
In the past, task migration has been investigated to help
with dynamic load balancing where tasks on a particular
node take significantly more CPU time to complete than oth-
ers. Because we disregard local computation time and only
attempt to minimize total network transfer, this question of
load imbalance does not factor into our model and therefore
is not explored here. A real scheduler that is optimizing
for performance may need to consider both minimization of
network transfer and balance of processor load.

2.3 Optimal Task Migration
In order to provide a lower bound on how much task mi-
gration can reduce network traffic in our model, we first
compute the best schedule possible. Using knowledge of the
entire memory trace, we pre-compute the optimal task mi-
gration schedule which when simulated gives the minimum
bytes transferred for a given trace. At each remote mem-
ory reference in the trace, the scheduling choice is between
doing a remote memory operation and migrating the task
to the remote node. Since we do not model interactions
between tasks, we can find the best schedule for each task
independently in polynomial time.

We can frame the search as a single source, multiple desti-
nation shortest path problem over a DAG of task location
over time. There is one vertex in this DAG for every place
the task could reside at each logical time. Edges point only
to the next timestep. An edge is weighted by the cost of a
local access, remote access, or task migration, depending on
the location of the memory accessed at that logical timestep.
Figure 1 illustrates an example with three nodes and a se-
quence of four shared memory references.

The shortest path in a DAG can be computed using a dy-
namic programming approach in time linear in the number
of edges by visiting vertices in a topological order. The opti-
mal migration schedule for a task then takes time O(L ∗N)
to compute, where L is the length of the memory trace and
N is the number of nodes in the cluster.
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Figure 1: An example DAG to find the optimal migra-
tion schedule for a single task’s shared memory access trace.
Edge weights are MIG=migration, REM=remote access,
LOC=local access.

3. SIMULATION FRAMEWORK
In order to make use of our model to explore task migra-
tion policies, we developed a system that simulates running
applications with task migrations on a distributed memory
machine. Our system has two stages: generation of a mem-
ory trace for each task in the a multithreaded shared mem-
ory application and simulation of the sequence of memory
accesses as if they were on a distributed system. The devel-
oper marks shared memory allocations in a source program
and gives distribution intents. The trace generator takes
in the annotated binary and runs it, collecting memory ac-
cesses from the execution trace for each task. The simulator
takes as input the generated memory trace output for all
the tasks, a list of all the allocations, the number of nodes
in the cluster it is simulating, and a migration policy. As the
simulator “runs” the traces, it uses the policy to decide when
to migrate the task, and counts up the costs of migrations
and remote accesses it does, outputting totals for analysis.
The rest of this section describes the implementation details
of each stage.

3.1 Memory Trace Generation
We are interested in studying memory access patterns that
occur in actual programs, so we built a tool to collect selec-
tive memory traces from executables. Our simplified model
takes into account only memory operations that, in a dis-
tributed shared memory system, would be distributed across
a number of nodes and shared among tasks. As we record
our traces from single-node shared memory implementations
of the benchmarks, we must specify which accesses are to
shared memory and how the data should be distributed.
Our tool then instruments the program binary to collect
memory accesses, match them to allocations, and save them
for input into the simulator.

3.1.1 Annotating Benchmarks
To communicate which accesses to trace, we provide an in-
terface for annotating memory allocations in the application
source code. Using wrapper functions for malloc() and
free(), the programmer can assert that any accesses to the
allocated region of memory should be recorded. In addi-
tion, we use these functions to express how each allocation
should be distributed in our simulation. Simple distribu-
tions include stride and block which split uniformly-sized
chunks of the allocation across nodes. We also introduce a



more complex owned distribution that maps arbitrary mem-
ory regions to the same node as another piece of data. This
allows programmers to express known locality. For example,
in a graph traversal, a list of outgoing edges can be mapped
to the same node as the vertex they belong to.

3.1.2 Instrumentation Tool
In order to collect memory traces on our annotated bench-
marks, we use Pin [7], a binary instrumentation library that
uses a dynamic just-in-time compiler to insert instrumenta-
tion calls at various granularities in binary executables while
they are running. Using the Pin API, our tool hooks into
calls to our tracking functions, assigning each allocation a
unique tag. On each memory access in the executing appli-
cation, a callback function looks up the access, and if it is
within a tracked region, saves information about the access
to the memory trace.

3.2 Simulator
Our simulator takes the following inputs:

• Memory traces for each task

• A table of allocations with address ranges and distri-
bution intents

• Number of nodes in the simulated system

• Fixed task size (used as the migration cost)

• A policy that determines when to migrate a task

For each allocation, the simulator uses the given distribution
to map all of the memory addresses across nodes. For owned
allocations, it keeps another table to do a lookup of the
owner address and resolves the owner’s address to a node.
Policies are implemented with a common interface: at each
step, they take a memory address and decide whether or
not to migrate to the node where it resides. Based on the
decision, the simulation incurs a cost: zero for a local access,
the number of bytes for a remote read or write, or the size
of a task for a migration. Given this setup, we can express
and explore migration policies, which we describe next.

4. ONLINE POLICIES
So far we have shown how the Optimal migration schedule
is found. It sets the lower bound on bytes transferred us-
ing full knowledge of the execution; however, a real system
requires policies that can make profitable decisions using
information available at runtime. These “online” policies
have as input only the memory accesses as they arrive and
their own state, and they must decide whether to migrate
at each access. This amounts to predicting upcoming ac-
cesses, which is a problem that has been studied heavily
in computer architecture research in the form of prefetch
predictors. However, instead of guessing the addresses of
upcoming accesses, we are predicting the nodes that the up-
coming accesses will map to. Using this insight, we apply
classic prefetch prediction strategies to the problem of task
migration in two online policies.

4.1 Stream Predictor
One of the core concepts in prefetch predictors is recognizing
a stream of predictable accesses. In the context of prefetch-
ing, if the predictor detects that a number of recent accesses
have been following a consistent pattern (such as a regular

stride), then it guesses that this pattern will continue and
so begins fetching addresses ahead of the stream, following
the pattern [5]. In the case of task migration, a stream of re-
cent accesses to the same node may indicate that subsequent
accesses will continue to go to that node, possibly making
migration worthwhile. Our predictor keeps only a limited
window of the most recent accesses. If there are greater than
some threshold number of accesses to a given node within
the window, this is judged as a stream. When a stream to
a node is detected, the predictor chooses to perform a mi-
gration to that node. The threshold makes the predictor
tolerant to other node accesses being mixed in, and the lim-
ited history prevents earlier accesses from forever influencing
decisions.

We refer to this as the Stream Predictor (SP) policy. Given a
window size and threshold as parameters, it essentially uses
recent history to predict the immediate future. Therefore
the success of this policy’s migration requires that a sequence
of accesses to a particular node are correlated with having
many more accesses to the same node, as in the case where
a task does a stream of accesses to contiguous data.

4.2 Hindsight Migrate
One of the weaknesses of SP is that it only tracks local his-
tory and does not have a way to take advantage of patterns
that have appeared before. Therefore, every time it comes
across a region with many accesses to the same node, it must
wait until it counts up to the threshold, paying the cost for
each remote access, until it can finally migrate. Prefetch
predictors solve this problem by keeping track of instruction
addresses for which they have recognized patterns before.
Note: we will use “PC” interchangeably with “instruction
address” in this discussion. If a particular load instruction
was consistently followed by another load to an adjacent ad-
dress, then the predictor would store the PC of the first load
with the difference between the addresses (“offset”). When
that instruction is executed again with a potentially differ-
ent data address, it can immediately fire off the second load
plus the predicted offset [2].

We can apply this same concept to our own migration pre-
dictor. The intuition is that the same structure of references
will occur following a certain PC, such as the first instruc-
tion in a loop, assuming data is organized in a consistent
way. As an example, consider a graph that is distributed
such that vertices are stored with their edge lists. In some
traversal of the graph, visiting a vertex might involve a se-
quence of iterations that read the weights of outgoing edges
of the vertex. For each vertex, the pattern of accesses to ver-
tex and edge data should look the same, so it would make
sense to migrate to the node where the vertex lies whenever
execution came to the top of that loop.

The Hindsight Migrate (HM) policy uses previous access
patterns to predict when to migrate in the future. Unlike
SP, a task does not need to pay the cost of extra remote
accesses to establish a pattern—on encountering an instruc-
tion that has been determined to have locality, it can imme-
diately migrate and take full advantage of the locality. Like
SP, the implementation uses a history window of memory
accesses. A counter for each node keeps track of the number
of accesses to memory on that node within the window.
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Figure 2: Example showing the dynamic trace of a task
being simulated. When PC=4 is at the back of the window,
the HM policy will see that it would have been good to migrate
there, so it gets added to the global migrate table. The second
time PC=4, the task chooses to migrate immediately.

We describe how the predictor works: let NodeFront be
the node referenced by the current memory instruction and
NodeBack be the node referenced by the memory instruction
at the back of the window. As the window advances, three
things must happen. 1) The oldest memory instruction is
popped off, and the predictor decides whether a migration
(to NodeBack) at that PC would have been beneficial. If so,
then the PC is added to the migrating set. 2) If the current
memory access PC is in the migrating set, then the predic-
tor performs a migration to NodeFront. 3) The predictor
updates the access counters for NodeFront and NodeBack.
Critically, when an address is added to the set, the history is
cleared up to the point where the task would have made up
for the cost of migrating. This prevents a second migration
from happening too soon. An example of the operation of
HM is shown in Figure 2.

5. EVALUATION
To determine whether dynamic task migration could be ben-
eficial for reducing network usage, we evaluate task migra-
tion policies with the following three questions. 1) Does task
migration produce lower-cost executions under our model?
2) Do our predictors, having only knowledge of past memory
accesses, reach a reasonable fraction of the maximum ben-
efit? 3) What predictor decisions are made and how many
are successful? The first two are explored together, mea-
suring cost for varying task size. To explore the third, we
devise a simple metric, recoup rate, that measures whether a
task migration was useful; we also look at which code points
produce migrations under each policy.

For this evaluation, we annotated and ran three existing
benchmarks in our simulator framework. Our study of task
migration for data locality assumes the existence of a large
amount of memory shared globally among tasks. For this
reason, we chose to consider applications that contain a large

amount of shared data but differ in the nature of their data
and access patterns. SSCA is the betweenness centrality
kernel of the SSCA#2 benchmark, which traverses a graph,
finding all shortest paths from each vertex, resulting in an
irregular access pattern. FluidAnimate, from PARSEC, has
unpredictable locality based on an imbalance of work. Bi-
enia, et al. [1] observe that several PARSEC workloads, in-
cluding that of FluidAnimate, will be most limited by off-
chip bandwidth as they scale to larger problem sizes and
greater numbers of processors. IntSort is a bucket sort from
NAS Parallel Benchmarks which has a very regular access
pattern.

In our experiments we explored task migration sizes up to 4
kB. Any data that is part of the global shared address space
would not be included in this. The only data that must be
transferred as part of each individual task is live register
values, the part of the stack unique to each task (which in
many cases might only be parts of the topmost frames), and
any local heap values that may be used in subsequent com-
putations within the task. In this study we do not consider
how to implement these determinations, but we believe that
with reasonable optimization, many interesting applications,
including the three we consider below, would have task sizes
within the range we consider.

5.1 Bytes Transferred
The size of a task determines how much benefit a migration
must produce to make up for its cost. For policies that can
take task size into account to make a decision, the number
of migrations will fall as task size increases. We measured
total bytes transferred for the benchmarks for various fixed
task sizes.

5.1.1 SSCA
Figure 3a shows the result for SSCA#2 betweenness central-
ity. The Optimal policy gains only about a 25% improve-
ment over Never Migrate, and for moderate size tasks does
almost no migrations. This kernel is not a good candidate
for improvement with task migration because of its irreg-
ular access pattern. Iterating through a vertex’s edge list
provides spatial locality on a node; however, vertex updates
when traversing the edge list cause several random accesses
between accessing each edge. This results in task migrations
providing very little profit, especially for large tasks.

The margin for improvement using migration is so thin that
the two predictor policies cannot give benefit. SP still pre-
dicts migrations as long as there are enough accesses to a
node. HM depends on the assumption that a given mem-
ory access instruction will be followed by a similar pattern
of accesses. This assumption does not apply well in SSCA
because of the irregular structure of the graph: if neigh-
bor vertices pointed to by one edge list happen to reside in
the same node, this implies nothing about other edge lists.
Tasks sizes any larger would show fewer migrations for the
optimal case.

5.1.2 FluidAnimate
Figure 3b shows the result for FluidAnimate. The Optimal
migration performs about 3.5x better than no migration for
small to medium size tasks and still performs well for 1-



policy_id task_size Min. total_bytes
Hindsight 32 1,602,360
Hindsight 48 1,703,568
Hindsight 64 1,889,496
Hindsight 96 2,151,064
Hindsight 128 2,162,136
Hindsight 256 3,248,784
Hindsight 512 2,313,104
Never 32 1,578,896
Never 48 1,578,896
Never 64 1,578,896
Never 96 1,578,896
Never 128 1,578,896
Never 256 1,578,896
Never 512 1,578,896
Optimal 32 1,148,488
Optimal 48 1,236,912
Optimal 64 1,300,632
Optimal 96 1,385,584
Optimal 128 1,438,304
Optimal 256 1,541,640
Optimal 512 1,578,296
Stream 32 1,504,800
Stream 48 1,701,344
Stream 64 1,897,888
Stream 96 2,290,976
Stream 128 2,689,592
Stream 256 4,257,472
Stream 512 7,401,120

Task Size Never Optimal Stream Hindsight
32 1 0.72739939806042 0.95307100657675 1.01486101681175
48 1 0.78340308671375 1.0775529230551 1.07896150221421
64 1 0.82376039967167 1.20203483953345 1.19671973328199
96 1 0.87756508345072 1.45099867249014 1.36238485625399

128 1 0.9109555030857 1.70346368601859 1.36939735106049
256 1 0.97640376566918 2.69648665903264 2.05763014156727
512 1 0.99961998763693 4.68752850092723 1.46501352844013
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(a) Betweenness centrality kernel with
8 extra references per vertex; 32 tasks
on 16 nodes. Normalized to 2.852 MB.

policy_id task_size Min. total_bytes
Hindsight 32 1,878,776
Hindsight 48 2,130,136
Hindsight 64 2,505,888
Hindsight 96 3,456,416
Hindsight 128 3,873,640
Hindsight 256 5,172,104
Hindsight 512 7,065,296
Hindsight 1024 10,330,016
Never 32 3,429,720
Never 48 3,429,720
Never 64 3,429,720
Never 96 3,429,720
Never 128 3,429,720
Never 256 3,429,720
Never 512 3,429,720
Never 1024 3,429,720
Optimal 32 992,128
Optimal 48 1,059,352
Optimal 64 1,126,552
Optimal 96 1,260,952
Optimal 128 1,394,648
Optimal 256 1,864,960
Optimal 512 2,430,968
Optimal 1024 2,668,776
Stream 32 1,727,984
Stream 48 1,887,504
Stream 64 1,588,160
Stream 96 2,366,064
Stream 128 2,685,104
Stream 256 3,961,264
Stream 512 6,513,584
Stream 1024 11,618,224

Task Size Never Optimal Stream Hindsight
32 1 0.28927375995708 0.5038265514386 0.54779282273772
48 1 0.30887419381174 0.55033763689164 0.62108160432922
64 1 0.32846763001061 0.46305820883337 0.73063923585599
96 1 0.36765450240836 0.68987089325076 1.0077837257852

128 1 0.4066361102364 0.78289306415684 1.12943330650899
256 1 0.54376450555731 1.15498174778116 1.50802514490979
512 1 0.70879488704617 1.8991591150298 2.06002122622255

1024 1 0.7781323256709 3.38751384952708 3.01191234269853
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(b) 64 tasks on 16 nodes. Online poli-
cies still find streams to migrate on but
the cost of migrating goes way up. Nor-
malized to 3.430 MB.

policy_id task_size Min. total_bytes
Hindsight 32 3,199,456
Hindsight 48 3,197,656
Hindsight 64 3,275,008
Hindsight 96 3,345,904
Hindsight 128 3,395,504
Hindsight 256 3,551,896
Hindsight 512 3,872,528
Hindsight 1024 4,471,664
Hindsight 2048 4,739,288
Hindsight 3072 5,111,976
Hindsight 4096 5,220,128
Never 32 5,436,008
Never 48 5,436,008
Never 64 5,436,008
Never 96 5,436,008
Never 128 5,436,008
Never 256 5,436,008
Never 512 5,436,008
Optimal 32 2,249,208
Optimal 48 2,269,432
Optimal 64 2,289,656
Optimal 96 2,330,104
Optimal 128 2,370,552
Optimal 256 2,532,248
Optimal 512 2,855,576
Optimal 1024 3,436,704
Optimal 2048 3,679,440
Optimal 3072 3,909,928
Optimal 4096 4,130,472
Stream 32 4,071,440
Stream 48 4,063,592
Stream 64 4,326,112
Stream 96 4,119,224
Stream 128 4,226,592
Stream 256 4,421,736
Stream 512 4,519,512
Stream 1024 4,587,496
Stream 2048 4,723,696
Stream 3072 4,859,880
Stream 4096 4,996,072

Task Size Never Optimal Stream Hindsight
32 1 0.41376098048421 0.74897608686374 0.5885671985766
48 1 0.41748135764333 0.74753238037913 0.5882360732361
64 1 0.42120173480245 0.79582517170689 0.60246563286883
96 1 0.42864248912069 0.75776636090307 0.61550755628027

128 1 0.43608324343894 0.77751761954729 0.62463189899647
256 1 0.46582860069374 0.81341602146281 0.65340154024792
512 1 0.52530754185792 0.83140274995916 0.71238452923542

1024 1 0.63221099012364 0.84390898615307 0.82260070257439
2048 1 0.67686434604217 0.86896413691812 0.871832418201
3072 1 0.71926457797707 0.89401634434681 0.94039155203598
4096 1 0.7598355263642 0.91907002344367 0.96028703416183
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(c) 64 tasks on 16 nodes. Online poli-
cies are able to find streams but incur
extra cost establishing when to migrate.
Normalized to 5.436 MB.

Figure 3: Varying Task Size: Bytes transferred normalized to Never Migrate. The Optimal policy provides the lower bound.

kByte tasks. With larger tasks, the Optimal policy will ap-
proach the Never Migrate policy and meet it when the task
size becomes large enough that migrating can never pay off.
Under the Optimal policy, most migrations occur at one
point in a loop over the shared cell array. Particles are dis-
tributed randomly to different cells, and the more particles
in a given cell, the more locality there is for migration to
take advantage of. For larger task sizes, more spatial local-
ity is needed to migrate, but the number of particles stays
constant, so fewer migrations should occur.

HM is able to find the same instruction addresses as Opti-
mal. However, because of the imbalance of particles in each
cell, some tasks perform migrations where it is not actually
profitable (i.e. there are too few particles in a cell). Be-
cause it is still able to find some cells with many particles,
HM continues to migrate too often, so it worsens proportion-
ally with task size. On the other hand, SP does better for
medium size tasks because it is able to adapt immediately
to a smaller number of particles on a single node rather than
performing a predicted migration. We expect the two on-
line policies to do more poorly with larger task sizes because
mispredictions become increasingly costly.

5.1.3 IntSort
Figure 3c shows the result for IntSort. The Optimal sched-
ule does relatively few migrations (about 1 per 700 shared
memory references) and the number of migrations stays con-
stant across task sizes of 32-512 bytes. This means there is
enough benefit from migrating that even large tasks pay off,
and because there are so few migrations, the gap between
Optimal and Never Migrate closes slowly. With a window
size of 1.5∗task size, HM does fairly well, and is about 40%
away from Optimal. The difference is caused by a relatively
small number of extra migrations that actually cause more
remote memory accesses. HM gets slightly closer to optimal
as task size increases and does slightly fewer migrations.
SP performs best with a threshold size close to the size of
the task. It cannot outperform HM because it needs to re-
learn when to migrate at every stream and so migrates later
and gets less benefit, whereas HM may just need to learn the
first time. Increasing task size further could be expected to
follow the trend of the other experiments where the Optimal

policy eventually decides never to migrate, and the online
policies are similarly unable to find good opportunities to
migrate.

5.2 Recoup Rate
We would like to determine whether the migrations chosen
by a migration policy turn out to be worth the cost. A mea-
sure which we refer to as “recoup rate” allows us to evaluate
the efficacy of policies based on the number of local accesses
made after migrating (i.e. whether it recouped the cost of
migrating to the node). If the task chooses to migrate again
before local accesses have added up to the size of the task
then it would have been better not to migrate. Recoup rate
is simply the fraction of all migrations that recoup the mi-
gration cost before migrating again. This simple measure is
useful because network costs between nodes are uniform, so
the location of a task only matters insofar as it is (or is not)
at the same node as an access. It is worth noting that by
definition, the Optimal policy will never contain a migration
that does not pay off. This is clear from the shortest-path
formulation of the policy, so Optimal is guaranteed to always
have a recoup rate of 1.0.

Evaluating the two online policies, SP and HM, we vary task
size to explore their ability to make smart migration deci-
sions given different migration costs. In Figure 4 we show
results for SSCA and FluidAnimate. As expected based on
the poor performance in 3a, the online policies do not re-
coup the cost of migration very well for SSCA. However,
both SP and HM do relatively well for FluidAnimate, hov-
ering above 75% until task size gets to be too large for the
available locality. IntSort is not included in the chart be-
cause both online policies are above 95% due to the high
regularity of accesses.

6. RELATED WORK
A large amount of previous work has studied task migra-
tion for managing the use of resources and load balancing.
Recently, Hanumaiah et al.[4] studied task migration as one
strategy for thermal management. MAUI [3] uses task mi-
gration between mobile phones and the cloud to preserve
battery power while running intensive applications. Work



policy_id task_size Recoup
Hindsight 32 0.7923000
Hindsight 48 0.7630000
Hindsight 64 0.7096000
Hindsight 96 0.5760000
Hindsight 128 0.4709000
Hindsight 256 0.6762000
Hindsight 512 0.9919000
Always 32 0.3836000
Always 48 0.0349000
Always 64 0.0216000
Always 96 0.0191000
Always 128 0.0128000
Always 256 0.0011000
Always 512 0.0011000
Optimal 32 1.0000000
Optimal 48 1.0000000
Optimal 64 1.0000000
Optimal 96 1.0000000
Optimal 128 1.0000000
Optimal 256 1.0000000
Optimal 512 1.0000000
Stream 32 0.8751000
Stream 48 0.8113000
Stream 64 0.7731000
Stream 96 0.7308000
Stream 128 0.7096000
Stream 256 0.0192000
Stream 512 0.0110000

Number of 
Nodes

Optimal SSCA-Stream SSCA-Hindsight FA-Stream FA-Hindsight

32 1 0.6955896990 0.54187429300 0.98283402300 1.00000000000
48 1 0.4164736730 0.57000886400 0.97649159200 1.00000000000
64 1 0.3144514080 0.45603650900 0.95768849800 0.84363631300
96 1 0.2112444970 0.39093386700 0.90163317600 0.79219464800

128 1 0.1537626590 0.33629469500 0.89927035900 0.80022073300
256 1 0.0552292690 0.20474426200 0.90086086700 0.69536501700
512 1 0.0145219880 0.42758529100 0.64196352800 0.73126163400
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policy_id task_size Max. 
migrationRec

oupRate

Min. 
total_bytes

4
4 32 0.982834023 1,457,056
4 48 0.976491592 1,476,960
4 64 0.957688498 1,665,096
4 96 0.901633176 1,822,120
4 128 0.899270359 2,215,720
4 256 0.900860867 2,623,320
4 512 0.641963528 3,834,336
4 1024 0.933042827 3,581,392

6
6 32 1 1,721,152
6 48 1 1,894,792
6 64 0.843636313 2,402,056
6 96 0.792194648 3,091,032
6 128 0.800220733 3,828,080
6 256 0.695365017 5,155,080
6 512 0.731261634 6,895,104
6 1024 0.797899005 9,791,736

policy_id task_size Avg. 
migrationRec

oupRate
4

4 32 0.695589699
4 48 0.416473673
4 64 0.314451408
4 96 0.211244497
4 128 0.153762659
4 256 0.055229269
4 512 0.014521988

5
5 32 1
5 48 1
5 64 1
5 96 1
5 128 1
5 256 1
5 512 1

6
6 32 0.541874293
6 48 0.570008864
6 64 0.456036509
6 96 0.390933867
6 128 0.336294695
6 256 0.204744262
6 512 0.427585291

Optimal
FA-Stream

FA-Hindsight

SSCA-Hindsight

SSCA-Stream

Figure 4: Recoup rate: the fraction of migrations that make
up for the cost of migration. This metric echoes the results
for total bytes transferred.

in data consolidation in grid networks [6] involves schedul-
ing movement of a task and its required data to where the
computation will take place, which differs from the PGAS
model we consider where data placement is relatively static.

Murphy’s “traveling threads” execution model [8] involves
executing streams of instructions in a dataflow fashion on
a processor-in-memory machine. One might see this as an
extreme in the spectrum of data vs. computation movement,
where data remains stationary and tasks always move.

Previous work by Song et al. [9] computed thread schedules
using memory traces. Using full memory traces, they use
a hierarchical shared cache model to find an optimal fixed
placement for threads. Their optimization is NP-hard, forc-
ing them to use a greedy approximation. Their work can be
seen as the inverse of ours, where data is moved around in
caches and tasks stay in place.

7. FUTURE WORK
In this section we describe a couple potential ways that our
model and simulation could be extended in future work.

7.1 Additional Online Policies
Hybrid predictor. Modern branch predictors often have a
couple predictors compete to decide when to migrate be-
cause different predictors are often better at predicting cer-
tain kinds of branch patterns. We observed this phenomenon
between SP and HM, so a hybrid predictor could try both
policies and determine which one had a higher recoup rate
for a particular phase of a program.

Neural network predictor. Another branch predictor that
has been explored is a simple neural network-based pre-
dictor. Perceptrons are extremely simple artificial neural
networks that essentially compute a line dividing a deci-
sion space between two choices. One of the limitations of
perceptrons for branch predictors is that they are relatively
expensive to compute, so it is difficult to implement at the
time scale needed for branch prediction. However, for task
migration, we can afford to take more time to make a good
calculation, so it is likely that more complicated neural net-
works could be used to recognize patterns.

7.2 Extensions to the Model
Clearly the more information available to a migration pol-
icy, the better predictions it will be able to make. In our
simulations, the policy only had knowledge up to the current
memory reference, but more information could be available.
In execution on out-of-order processors, multiple memory
instructions are in flight at once. Static analyses or hints
from the programmer could sometimes provide more infor-
mation about upcoming memory references. Online migra-
tion policies could use this additional information to make
more informed decisions.

A network model relating message size and bandwidth would
make the cost model useful for comparing task migration
to other techniques for increasing network performance of
communication-bound shared memory programs, such as
message aggregation, remote memory operations, and caching.
Additional insight could be gained by modeling more diverse
locality hierarchies, without making the optimization prob-
lem unreasonably difficult to solve. Many large distributed
systems have non-uniform costs between nodes, which could
be approximated in our model with a fully connected weighted
graph, expanding the optimization state space but not fun-
damentally changing the problem.

8. CONCLUSION
In this paper we have explored whether a system can make
profitable task migration decisions based on data locality.
For applications with large shared data, where communica-
tion is a performance limitation, we considered task migra-
tion as a way to reduce usage of the network.

We used a simple communication-focused performance model
to assess the cost of an execution. Using the optimal task
migration schedule for a program execution, our simulations
show that for some applications there is significant poten-
tial for improvement over not migrating at all. Codes with
irregular access patterns, such as SSCA’s betweenness cen-
trality kernel, show less benefit from task migration. We
developed two branch predictor-inspired policies that rely
on a constrained history of past shared memory accesses to
make migration decisions. These policies empirically show
up to 60% of the maximum possible benefit for task migra-
tion under our model.

This investigation suggests that it is possible for policies
for migrating tasks based on data locality to make good
enough predictions to enable better total network utiliza-
tion by shared memory applications on distributed memory
systems.
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