Parallel Programming for the Web

Stephan Herhut Richard L. Hudson

Tatiana Shpeisman Jaswanth Sreeram

Intel Labs
{stephan.a.herhut, rick.hudson, tatiana.shpeisman, jaswanth.sreeram }@intel.com

Abstract

Parallel hardware is today’s reality and language
extensions that ease exploiting its promised perfor-
mance flourish. For most mainstream languages, one
or more tailored solutions exist that address the spe-
cific needs of the language to access parallel hard-
ware. Yet, one widely used language is still stuck in
the sequential past: JavaScript, the lingua franca of
the web.

Our position is that existing solutions do not trans-
fer well to the world of JavaScript due to differences
in programming models, the additional requirements
of the web, like safety, and to developer expecta-
tions. To address this we propose River Trail, a new
parallel programming API designed specifically for
JavaScript and we show how it satisfies the needs of
the web. To prove that our approach is viable, we
have implemented a prototype JIT compiler in Fire-
fox that shows an order of magnitude performance
improvement for a realistic web application.

1 Introduction

Despite Wired magazine proclaiming the Web dead
two years ago [1], it is alive and well. Browser-based
applications written in HTML and JavaScript con-
tinue to flourish. Moreover, HTML and JavaScript
are also emerging as a popular development platform
for stand-alone applications, especially for smart
phones and tablets [2, 3]. Part of HTML’s popularity
is due to its growing capabilities. 3D graphics, audio,
video, web cam input, geo location, offline storage,
video conferencing - all are features traditionally re-
served for native applications that are proposed for
or will be part of HTML5 [4] or WebGL [9], the up-
coming standards for the next iteration of the web.
One capability, however, remains exclusive to native
application: the ability to take advantage of parallel
hardware.

Parallel hardware is an everyday reality, across all
vendors and form factors. All major processors sup-
port vector instructions and a majority of them come
with multiple cores. Parallel software is also slowly
moving to mainstream, as various parallel program-

ming features and tools are emerging for most popu-
lar programming languages. Yet, JavaScript applica-
tions remain predominately sequential.

This lack of parallel web applications is not due
to the lack of demand for more computing power for
the client side of the web. Many applications, such as
photo and video editing, physics-based games, aug-
mented reality, financial software and data visualiza-
tion could readily benefit from unused compute cy-
cles available in parallel client hardware, as they have
abundant latent data parallelism. The problem lies in
the lack of appropriate parallel programming models.

The web developer community has refused to adopt
traditional multi-threaded shared memory parallel
programming models claiming that such models are
too dangerous for their domain. While delivering
performance, shared memory programming comes to-
gether with classical pitfalls of data races, dead locks
and live locks, all of which can easily lead to hard to
reproduce concurrency bugs - something neither web
developers nor users want as part of the web brows-
ing experience. Web workers [13], the only widely
adopted support for parallel compute in JavaScript
that bring actor style threads to the web, were care-
fully designed to steer around all these issues. While
they achieve their design goal of offloading long run-
ning computations to background threads, they are
not suitable for the development of parallel scalable
compute intense workloads due to high cost of com-
munication and low level of abstraction.

We believe that parallelism should not be reserved
to expert programmers writing in C, C++, or Java.
Web developers should be able to exploit parallel
hardware without fundamentally changing their pro-
gramming style. In particular, they should not need
to learn a new language or adapt to different seman-
tics.

River Trail puts this belief into action. Build-
ing on well known data-parallel programming tech-
niques [6, 5], we have designed an API that makes
expressing parallelism easy, sacrificing performance
for productivity where need be. We have not ex-
tended JavaScript’s semantics, nor introduced funda-
mentally new concepts. The API can be fully imple-
mented in JavaScript, albeit without performance im-
provements. However, River Trail is carefully crafted

so that it can easily be compiled to a broad range
of parallel hardware, from vector units to multi-core
CPUs. We have proven this with an open source pro-
totype, written for the popular Firefox web browser,
that exploits vector instructions and multiple cores
to achieve an order of magnitude speedup on an off-
the-shelf desktop system.

2 JavaScript

JavaScript is the language behind today’s web appli-
cations. It was developed specifically for client side
scripting on the open web, a purpose that has heavily
influenced its design: Safety and portability are two
of the key concerns.

The safety requirement stems from the particulars
of the open web as an application platform. Whereas
traditionally, a user would have to acquire software,
either by download or a physical medium, install it
on his local machine and run it, web applications are
instant on. A single click on a URL suffices to start
an application, and thus run JavaScript code. Even
more, the origin of an application is often not appar-
ent, and thus trust cannot easily be established.

Portability is a requirement for any open platform.
Web applications in particular need to run across de-
vices, spanning different architectures and form fac-
tors. As a consequence, JavaScript is completely
hardware agnostic.

Other than the name suggests, JavaScript is not re-
lated to Java. Both share the above design goals and
they can be categorized as object oriented languages.
Yet, JavaScript is dynamically typed and has no no-
tion of classes. Instead, it employs a form of proto-
type based inheritance in the spirit of Self [11]. This
design is particularly well suited for rapid and iter-
ative application development, a style that is preva-
lent in web applications. Software is released early
and released often, resolving bugs and issues as they
arise.

Until today, JavaScript has remained mostly se-
quential and program execution is fully deterministic.
The latter forces implementations to essentially halt
the world while scripts execute. To avoid unrespon-
sive browsers, typical JavaScript programs there-
fore make heavy use of callbacks and asynchronicity.
Larger tasks, in particular those involving long la-
tency operations, are decomposed into independent
chunks that are executed atomically and only ensure
a consistent state when yielding control. This coop-

erative multi-tasking style has trained programmers
to design concurrent programs while relying on de-
terministic sequential execution.

So in essence, JavaScript can be described as safe,
portable, rapid prototyping friendly and determinis-
tic. A parallel programming extension for JavaScript
thus should strive to maintain these properties.

3 River Trail Design

River Trail builds on well known principles of data-
parallel programming drawing inspiration from [6, 5,
8]. The design is based on three pillars, a type called
ParallelArray that holds data values, several proto-
typical methods of ParallelArray that implement par-
allel constructs like map, and the concept of an ele-
mental function which is passed to the constructs and
typically returns a single data element. In the simple
example below, in and out are two parallel arrays -
in created using new and out computed by invoking
the prototype method map with the elemental func-
tion incl to create a freshly minted ParallelArray
with each element in pa incremented by 1.

function inci(val) {return val + 1.0;};
var in =

new ParallelArray([1.0, 2.0, 3,01);
var out = in.map(incl);

The next example shows a pairwise add of two Par-
allelArrays, pal and pa2. First, the example creates
a function that takes a ParallelArray as an argument
and returns a function that adds the values located at
index i of the this array and the otherPA array. Then
it calls a combine method that produces a new paral-
lel array with each element being a result of invoking
the generated elemental function on the correspond-
ing elements of pal and pa2. Notice how this exam-
ple leverages closures, free variables, and the object-
oriented JavaScript programming style.

function pairwiseAdd(otherPA){
return function(i){
return this[i]+otherPA[i];}
s
out = pal.combine(pairwiseAdd(pa2));

ParallelArray comes with multiple constructors, in-
cluding a comprehension, and the following 5 data
parallel methods: map, combine, scan, filter, and
scatter. When combined with elemental functions

each of these methods creates a freshly minted Par-
allelArray. ParallelArray’s sixth core data parallel
method is reduce which typically returns a scalar
value. We have chosen a small set of constructs that
compose well and can be used to create other data
parallel constructs. For example, gather can be im-
plemented using a comprehension parallel array con-
structor, while sum could be implemented using re-
duce. This approach enables a do few things well
implementation strategy which reduces the complex-
ity of the compiler and increases our confidence in its
correctness while anticipating the creation of useful
libraries and infrastructures.

We now show how our design meets JavaScript’s
properties of safety, portability, rapid prototyping
friendliness, and deterministic execution.

3.1 Safety

The burden of ensuring safety and security in C/C++
based parallel programming models is placed upon
the programmer. Given the trusted environment and
performance requirements historically found in HPC
environments this is appropriate. For the web en-
vironment, however, safety and security are funda-
mental requirements. River Trail achieves the safety
level of JavaScript by simply expressing all the par-
allel constructs in JavaScript. Because all the paral-
lel code is written in JavaScript it provides exactly
the same safety and security guarantees as sequential
JavaScript code. In fact, the whole API can be im-
plemented as a JavaScript library, although without
the performance benefits of parallel execution. While
seemingly obvious, this approach is in a sharp con-
trast with alternative proposals, such as, WebCL [12]
that suggests incorporating OpenCL with all its se-
curity pitfalls directly into HTML code.

3.2 Portability

ParallelArray methods can successfully execute on
any platform that supports execution of standard
JavaScript. If parallel execution is not possible, el-
emental functions simply execute sequentially using
the provided sequential library. This provides func-
tional portability across all browsers. Performance
portability is a much more difficult problem and we
do not claim to have completely solved it. The strat-
egy and effectiveness of parallel execution will de-
pend on the particular platform, as it is not possi-
ble to write parallel code that will have optimal per-

formance on all forms and factors of available client
devices. Consequently, we have chosen a high-level
data-parallel programming approach [6, 5], featur-
ing well known primitives like map and reduce. This
forces the programmer to express the structure of a
parallel algorithm and leaves platform dependent ex-
ecution strategies to the specific runtime system.

3.3 Rapid Prototyping

River Trail preserves JavaScript friendliness to rapid
prototyping by staying within the boundaries of the
same programming language. ParallelArray is noth-
ing more than a new JavaScript type and it behaves
as the JavaScript programmer expects. An elemental
function is just a JavaScript function; it can be used
both as an argument to a parallel array prototype
method and in any other way legal in JavaScript. We
have not added unfamiliar syntax, low level intrinsics,
nor elements of other programming languages. Our
APIs look like JavaScript and are JavaScript, thus,
allowing JavaScript developers to continue program-
ming in a familiar style and freely move code between
River Trail and non River Trail parts of the applica-
tion.

3.4 Deterministic Execution

JavaScript programmers are used to a sequential
programming model. They understand that events
can fire asynchronously and that the order in which
events are handled may not be deterministic. How-
ever, once inside JavaScript code they expect deter-
ministic execution without concern for race condi-
tions, memory models, locks, or any of the other
devils that plague traditional parallel programming
models.

One source of non-determinism is concurrent mod-
ification of shared state. To ensure deterministic ex-
ecution, River Trail requires elemental functions to
be side effect free, e.g., they may not mutate non-
local variables. An implementation of River Trail
will detect violations of this property, either stati-
cally or dynamically, and raise an exception. The
current prototype detects violations statically during
compilation of the elemental function.

Another source of non-determinism is more diffi-
cult to completely avoid: The execution order in re-
duce and scan operations may influence the result.
Using a fixed execution order limits available im-
plementation strategies. We have chosen a middle

ground. River Trail only guarantees deterministic re-
sults for reduce and scan if the used elemental func-
tion is associative and commutative.

4 Experimental Evaluation

We have prototyped the River Trail compiler and li-
brary as an extension to the Firefox web browser (ver-
sion 9.0.1). The prototype uses a three stage just-in-
time compilation process. First, the JavaScript code
is analyzed and translated to OpenCL. We have only
implemented the bare essentials required for this step,
i.e., type inference, bounds checks elimination, and
static heap management. Our prototype compiler is
independent from the system’s JIT. Further optimi-
sation and integration with the systems JIT remains
future work. In a second step, we then use the Intel
OpenCL SDK (version 1.5) to generate binary code.
In the third step OpenCL runtime executes the code.
OpenCL is responsible for the number of threads cre-
ated, whether vector instructions are used, and other
runtime optimizations. This process is completely
transparent to the web-developer as well as to the
user.

We have ported several programs to the River Trail
API including a dense matrix multiply kernel and a
full-fledged 3D web application, both of which we dis-
cuss below. While we have compiled elemental func-
tions with around one thousand lines, the matrix mul-
tiple elemental function is around ten lines and the
3D web application’s elemental functions are around
one hundred lines. The entire 3D web application is
of course much larger. The complete River Trail sys-
tem as well as these and other programs along with
their input sets are freely available at [10].

4.1 Dense Matrix-Multiply

Dense matrix-multiplication is an important kernel
for many emerging web applications such as 3D ani-
mation, in-browser physics and video processing. We
have implemented the standard O(n®) multiplication
algorithm with the River Trail API using Parallel-
Array objects and, for comparison, in standard se-
quential JavaScript and C using the languages’ re-
spective standard array types.

We also implemented variants of these kernels that
represent the matrices using flat arrays instead of
nested arrays (1D and 2D). Finally, we have created
a JavaScript implementation that relies on typed ar-

10.99

| ®2D ©1D 0.66
8 .|

a

S
® 6 5.42

]

Q
)

4 .|

2.75 2.88
1.73
2 1 1.05
L W |
JS-Array Typed-Array C-Array ParallelArray

Figure 1: Dense Matrix-Multiply performance for
1k x 1k matrices

rays. Typically, arrays in JavaScript are untyped and
thus may contain elements of different types. This
leads to a boxed representation of values which adds
further overheads. Typed arrays are a recent addi-
tion to JavaScript that have semantics similar to C
arrays. In particular, the elements of these arrays all
have to be of a single statically known type, thereby
allowing for an unboxed continuous storage layout.
The reduced overhead is reflected in the speed up
shown in Figure 1.

Experiments were run for 1k x 1k matrices on a ma-
chine with a hyperthreading-enabled 2nd generation
Intel Core 15 dual core (2.5GHz) processor and 4GB
RAM. The Y-axis in this figure indicates the speed up
of the different kernels over the kernel that uses two-
dimensional JavaScript arrays. Without further op-
timisations, the River Trail implementation outper-
forms the JavaScript base case by a factor of 10.9 and
9.6 for 2D and 1D storage layouts, respectively. Even
the best JavaScript implementation is more than 3.5
times slower. The improvements come not only from
parallelization but also from the fact the River Trail
JIT knows the type and shape of its inputs and uses
type inference to deduce the types all variables as
well as the iteration space. This information is com-
parable to what a C compiler has available. Not sur-
prisingly a comparison with the naive C implementa-
tion further shows that our speed up is not only due
to JavaScript overheads: River Trail outperforms se-
quential C by about a factor of two.

Frames/Second

40 -+
30 +
20 I
10 .
0 —f— T T T T T T
1 2 3 4 5 6 7 8

of runtime threads

Figure 2: Frame rates for sequential and River Trail execution of a 3D in-browser particle flocking simulation

4.2 3D Particle Flocking

Apart from small kernels, we have studied full web
applications. We took a large realistic 3D anima-
tion application and ported it to River Trail. This
program implements n-body physics between a set of
bodies (where n is user-defined). Each body exerts a
repulsive/attractive force on all other bodies and the
bulk of the computation in each time step is for cal-
culating the new velocity and position of each body
under these accumulated forces. This computation is
a good fit for the combine primitive. We use an ele-
mental function that computes the cumulative forces
acting on a single body, computes and returns the ve-
locity (and position) of that body. The motion of the
bodies and the scene itself are continuously animated
using WebGL [9]. The application can dynamically
switch between sequential and River Trail execution.

Figure 2 shows the frame rates (Y-axis) using
a hyperthreading-enabled quad-core 2nd generation
Core i7 running at 3.4 GHz with 4GB of usable RAM.
To measure scaling behavior, we have limited the
number of threads (X-axis) employed by River Trail.
Due to a technical limitation in the used OpenCL
stack, we cannot measure single thread performance
of the River Trail implementation. Instead, the left
most bar gives the frames per second rendered by the
sequential JavaScript implementation.

Many factors outside the domain of River Trail in-
fluence system behavior, including the interplay with
WebGL. While the results varied from run to run
they clearly show that River Trail achieves signif-
icant speed up over the sequential case and scales
well with increasing number of cores. We attribute
some of the two thread speed up over the sequen-
tial version to better code generation by our spe-

cialized compiler compared to the code generated by
the browser’s more general purpose just-in-time com-
piler. Also, note that we have used a hyperthreaded
processor, so scalability beyond four threads is lim-
ited. Furthermore, Firefox spawns some additional
threads which leads to scheduling contention.

5 Related Work

Web workers [13], an API that extends the web plat-
form with actor-style concurrency primitives, is cur-
rently being standardized. Compared to River Trail,
web workers provide lower level concurrency con-
structs aimed at a differnt level of granularity. River
Trail uses a fine grained data-parallel model and on
purpose avoids the concept of threads and related
issues like mapping and scheduling. Although gener-
ally possible, an implementation of River Trail using
web workers would have to address those issues and
bridge the granularity gap.

WebCL[12], a JavaScript wrapper around OpenCL
[8], is closer related to River Trail’s programming
model but less tailored to the web. WebCL is less
structured than River Trail, i.e., it does not provide
data-parallel primitives like reduce or scatter. In-
stead, it essentially provides a parallel for loop with-
out guarantees on side effects or determinism. Com-
putations are expressed in C and many safety aspects
of JavaScript do not apply.

Google’s NaCl [7] addresses the problem at a even
lower level than web workers. It allows slightly instru-
mented machine code to run in the browser. The use
of static analyses and code instrumentation ensures
safe execution. As in web workers, message passing is
used to communicate between NaCl and JavaScript,

thus decoupling the two worlds and ensuring deter-
ministic execution of the JavaScript. However, by
using machine code as interchange format, NaCl ap-
plications are limited to a specific platform.

6 Conclusion

River Trail shows that a data parallel programming
API and a data parallel programming model can live
comfortable in JavaScript. We have shown how River
Trail’s approach meets the four requirements of the
web programmer: the requirement to provide safety
and security, the requirement of deterministic exe-
cution, the requirement of maintaining a single pro-
gramming model to preserve rapid prototyping, and
finally the requirement of portability. The River Trail
prototype shows that the API is feasible and can be
efficiently implemented.

References

[1] “The Web is Dead. Long Live the Inter-
net.“ Chris Anderson, in Wired Magazine,
http://www.wired.com/magazine/2010/08/ff _
webrip/all/1

[2] “Boot To Gecko.” https://wiki.mozilla.org/
B2G

[3] “Project Spartan: Facebook’s Hush-Hush Plan
to Take On Apple On Their Own Turf: i0S.”
Mig Siegler, http://techcrunch.com/2011/06/
16/facebook-project-spartan/

[4] “HTML5. A vocabulary and associated APIs
for HTML and XHTML”. http://dev.w3.org/
html5/spec/Overview.html

[5] “Data parallel algorithms” W. Daniel Hillis, Guy
L. Steele, Jr., in Communications of the ACM Vol-
ume 29 Issue 12, December 1986.

[6] “NESL: A Nested Data-Parallel Language”, Guy
E. Blelloch, Carnegie Mellon, Technical Report
CMU-CS-95-170, September 1995.

[7] “Language-Independent Sandboxing of Just-In-
Time Compilation and Self-Modifying Code”, Ja-
son Ansel, Petr Marchenko, Ifar Erlingsson, Elijah
Taylor, Brad Chen, Derek Schuff, David Sehr, Cliff

L. Biffle, Bennet S. Yee, ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI), 2011.

[8] “The OpenCL Specification”, Khronos
OpenCL Working Group, Aaftab Munshi,
http://www.khronos.org/registry/cl/specs/
opencl-1.0.29.pdf

[9] “The WebGL Specification”, Khronos OpenCL
Working Group, Chris Marrin, http://https://
www.khronos.org/registry/webgl/specs/1.0/

[10] “River Trail prototype implementation” www.
github.com/rivertrail/rivertrail/wiki

[11] “The Design and Implementation of the SELF
Compiler, an Optimizing Compiler for Object-
Oriented Programming Languages”, Craig Cham-
bers Ph. D. dissertation, Computer Science De-
partment, Stanford University, March 1992.

[12] “WebCL - Heterogeneous parallel computing
in HTML5 web browsers”, http://www.khronos.
org/webcl/

[13] “Web Workers” W3C Working Draft 01 Septem-
ber 2011, Ian Hickson, http://dev.w3.org/
html5/workers/

