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AbStI'aCt ; :1[nt maze_solve(maze *mp, cell sc, cell ec)

3 cell c = sc;
Maze solving has been used as an example parallel- g Efilv’i’= 0;
prggramming problem for some years. Suggested s0- 3 maze_try_visit_cell(mp, c, ¢, &n, 1);
lutions are often based on a sequential program, using 8 for (;;) {
work queues to allow multiple threads to explore differ- o e (:"’,‘Ei‘z‘j;f;g‘_l;jg—ne’“-Cen("‘p’ ¢, fm)) {
ent portions of the maze concurrently. This paper ana- 11 return 0;
lyzes such an implementation, but also explores an al- 2 6T mp->visited[vi].c;
ternative implementation based on strategies long used 14 do {
by human maze solvers. This alternative implementa- 12 ifrii‘; ‘;C) t
tion outperforms the conventional approach on average, 17 }
and furthermore exhibits large superlinear speedups. The 12 ) hile (maze_find_any_next_cell(mp, ¢, &n));
paper uses insights into the cause of these superlinear 20 ¢ = mp->visited[vil.c;

21}

speedups to derive a faster sequential algorithm, and fi-
nally considers further implications and future work.

1 Introduction

Labyrinths and mazes have been objects of fascination
for millenia [15], so it should come as no surprise that
they are generated and solved using computers, includ-
ing biological computers [1], GPGPUs [6], and even
discrete hardware [10]. Parallel solution of mazes is
sometimes used as a class project in universities [7, 14]
and as a vehicle to demonstrate the benefits of parallel-
programming frameworks [8].

Common advice is to use a parallel work-queue algo-
rithm (PWQ) [7, 8]. This paper evaluates this advice by
comparing PWQ against a sequential algorithm (SEQ)
and also against an alternative parallel algorithm, in all
cases solving randomly generated square mazes. Sec-
tion 2 discusses PWQ, Section 3 discusses an alternative
parallel algorithm, Section 4 analyzes its anomalous per-
formance, Section 5 derives an improved sequential al-
gorithm from the alternative parallel algorithm, Section 6
makes further performance comparisons, and finally Sec-
tion 7 presents future directions and concluding remarks.

Figure 1: SEQ Pseudocode

2  Work-Queue Parallel Maze Solver

PWQ is based on SEQ, which is shown in Figure 1. The
maze is represented by a 2D array of cells and a linear-
array-based work queue named ->visited.

Line 7 visits the initial cell, and each iteration of
the loop spanning lines 8-21 traverses passages headed
by one cell. The loop spanning lines 9-13 scans the
->visited[] array for a visited cell with an unvisited
neighbor, and the loop spanning lines 14-19 traverses one
fork of the submaze headed by that neighbor. Line 20
initializes for the next pass through the outer loop.

The pseudocode for maze_try_visit_cell() is
shown on lines 1-12 of Figure 2. Line 4 checks to see
if cells ¢ and n are adjacent and connected, while line 5
checks to see if cell n has not yet been visited. The
celladdr () function returns the address of the specified
cell. If either check fails, line 6 returns failure. Line 7
indicates the next cell, line 8 records this cell in the next
slot of the ->visited[] array, line 9 indicates that this



int maze_try_visit_cell(struct maze *mp, cell c, cell t,
cell *n, int d)

1

2

3

4  if ('maze_cells_connected(mp, c, t) ||
5 (*celladdr (mp, t) & VISITED))
6 return O;

7 *n = t;

8 mp->visited[mp->vil = t;

9  mp->vi++;

10  *celladdr(mp, t) |= VISITED | d;
11 return 1;

12 }

13

14 int maze_find_any_next_cell(struct maze *mp, cell c,
15 cell *n)

16 {

17  int d = (*celladdr(mp, c) & DISTANCE) + 1;

19  if (maze_try_visit_cell(mp, c, prevcol(c), n, d))
20 return 1;

21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))
22 return 1;

23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))
24 return 1;

25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))
26 return 1;

27 return O;

Figure 2: SEQ Helper Pseudocode
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Figure 3: Cell-Number Solution Tracking

slot is now full, and line 10 marks this cell as visited and
also records the distance from the maze start. Line 11
then returns success.

The pseudocode for maze_find any next_cell() is
shown on lines 14-28 of the figure. Line 17 picks up
the current cell’s distance plus 1, while lines 19, 21, 23,
and 25 check the cell in each direction, and lines 20,
22, 24, and 26 return true if the corresponding cell is
a candidate next cell. The prevcol(), nextcol(),
prevrow (), and nextrow () each do the specified array-
index-conversion operation. If none of the cells is a can-
didate, line 27 returns false.

The path is recorded in the maze by counting the num-
ber of cells from the starting point, as shown in Figure 3,
where the starting cell is in the upper left and the end-
ing cell is in the lower right. Starting at the ending cell
and following consecutively decreasing cell numbers tra-
verses the solution.

The parallel work-queue solver is a straightforward
parallelization of the algorithm shown in Figures 1 and
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Figure 4: CDF of Solution Times For SEQ and PWQ

2. Line 10 of Figure 1 must use fetch-and-add, and
the local variable vi must be shared among the various
threads. Lines 5 and 10 of Figure 2 must be combined
into a CAS loop, with CAS failure indicating a loop in
the maze. Lines 8-9 of this figure must use fetch-and-
add to arbitrate concurrent attempts to record cells in the
->visited[] array.

This approach does provide significant speedups on
a dual-CPU Lenovo = W500 running at 2.53GHz, as
shown in Figure 4, which shows the cumulative distri-
bution functions (CDFs) for the solution times of the two
algorithms, based on the solution of 500 different square
500-by-500 randomly generated mazes. The substantial
overlap of the projection of the CDFs onto the x-axis will
be addressed in Section 4.

Interestingly enough, the sequential solution-path
tracking works unchanged for the parallel algorithm.
However, this uncovers a significant weakness in the
parallel algorithm: At most one thread may be making
progress along the solution path at any given time. This
weakness is addressed in the next section.

3 Alternative Parallel Maze Solver

Youthful maze solvers are often urged to start at both
ends, and this advice has been repeated more recently
in the context of automated maze solving [14]. This ad-
vice amounts to partitioning, which has been a power-
ful parallelization strategy in the context of parallel pro-
gramming for both operating-system kernels [3, 9] and
applications [13]. This section applies this strategy, us-
ing two child threads that start at opposite ends of the
solution path, and takes a brief look at the performance
and scalability consequences.

The partitioned parallel algorithm (PART), shown in
Figure 5, is similar to SEQ, but has a few important dif-
ferences. First, each child thread has its own visited



1 int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {

3 cell c;

4 cell n;

5 int vi = 0;

6

7 myvisited = visited; myvi = &vi;

8 ¢ = visited[vil;

9 do {
10 while (!maze_find_any_next_cell(mp, c, &n)) {
11 if (visited[++vi].row < 0)

12 return 0;

13 if (ACCESS_ONCE(mp->done))
14 return 1;
15 c = visited[vi];
16 ¥

17 do {

18 if (ACCESS_ONCE(mp->done))
19 return 1;
20 c = n;
21 } while (maze_find_any_next_cell(mp, c, &n));
22 c = visited[vil;

23 } while (!ACCESS_ONCE(mp->done));
24 return 1;
25 }

Figure 5: Partitioned Parallel Solver Pseudocode

array, passed in by the parent as shown on line 1, which
must be initialized to all [-1,-1]. Line 7 stores a pointer
to this array into the per-thread variable myvisited to
allow access by helper functions, and similarly stores a
pointer to the local visit index. Second, the parent visits
the first cell on each child’s behalf, which the child re-
trieves on line 8. Third, the maze is solved as soon as
one child locates a cell that has been visited by the other
child. When maze try visit_cell() detects this, it
sets a —>done field in the maze structure. Fourth, each
child must therefore periodically check the ->done field,
as shown on lines 13, 18, and 23. The ACCESS_ONCE ()
primitive must disable any compiler optimizations that
might combine consecutive loads or that might reload the
value. A C++1x volatile relaxed load suffices [4]. Fi-
nally, the maze_find_any next_cell() function must
use compare-and-swap to mark a cell as visited, however
no constraints on ordering are required beyond those pro-
vided by thread creation and join.

The pseudocode for maze_find any next_cell() is
identical to that shown in Figure 2, but the pseudocode
for maze_try_visit_cell() differs, and is shown in
Figure 6. Lines 8-9 check to see if the cells are con-
nected, returning failure if not. The loop spanning
lines 11-18 attempts to mark the new cell visited. Line 13
checks to see if it has already been visited, in which case
line 16 returns failure, but only after line 14 checks to
see if we have encountered the other thread, in which
case line 15 indicates that the solution has been located.
Line 19 updates to the new cell, lines 20 and 21 update
this thread’s visited array, and line 22 returns success.

Performance testing revealed a surprising anomaly,
shown in Figure 7. The median solution time for PART

1 int maze_try_visit_cell(struct maze *mp, int c, int t,
2 int *n, int d)

34

4 cell_t t;

5 cell_t *tp;

6 int vi;

7

8 if (!maze_cells_connected(mp, c, t))
9 return 0;

10  tp = celladdr(mp, t);

11 do {

12 t = ACCESS_ONCE(*tp);

13 if (t & VISITED) {

14 if ((t & TID) != mytid)

15 mp->done = 1;

16 return O;

17 }

18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;

20 vi = (kmyvi)++;

21  myvisited[vil = t;

22 return 1;

Figure 6: Partitioned Parallel Helper Pseudocode
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Figure 7: CDF of Solution Times For SEQ, PWQ, and
PART

(17 milliseconds) is more than four times faster than that
of SEQ (79 milliseconds), despite running on only two
threads. The next section analyzes this anomaly.

4 Performance Comparison I

The first reaction to a performance anomaly is to check
for bugs. Although the algorithms were in fact finding
valid solutions, the plot of CDFs in Figure 7 assumes
independent data points. This is not the case: The per-
formance tests randomly generate a maze, and then run
all solvers on that maze. It therefore makes sense to plot
the CDF of the ratios of solution times for each generated
maze, as shown in Figure 8, greatly reducing the CDFs’
overlap. This plot reveals that for some mazes, PART is
more than forty times faster than SEQ. In contrast, PWQ
is never more than about two times faster than SEQ. A
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Figure 9: Reason for Small Visit Percentages

forty-times speedup on two threads demands explana-
tion. After all, this is not merely embarrassingly paral-
lel, where partitionability means that adding threads does
not increase the overall computational cost. It is instead
humiliatingly parallel: Adding threads significantly re-
duces the overall computational cost, resulting in large
algorithmic superlinear speedups.

Further investigation showed that PART sometimes
visited fewer than 2% of the maze’s cells, while SEQ and
PWQ never visited fewer than about 9%. The reason for
this difference is shown by Figure 9. If the thread travers-
ing the solution from the upper left reaches the circle, the
other thread cannot reach the upper-right portion of the
maze. Similarly, if the other thread reaches the square,
the first thread cannot reach the lower-left portion of the
maze. Therefore, PART will likely visit a small fraction
of the non-solution-path cells. In short, the superlinear
speedups are due to threads getting in each others’ way.
This is a sharp contrast with decades of experience with
parallel programming, where workers have struggled to
keep threads out of each others’ way.

Figure 10 confirms a strong correlation between cells
visited and solution time for all three methods. The slope
of PART’s scatterplot is smaller than that of SEQ, indi-
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Figure 10: Correlation Between Visit Percentage and So-
lution Time
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cating that PART’s pair of threads visits a given fraction
of the maze faster than can SEQ’s single thread. PART’s
scatterplot is also weighted toward small visit percent-
ages, confirming that PART does less total work, hence
the observed humiliating parallelism.

The fraction of cells visited by PWQ is similar to that
of SEQ. In addition, PWQ’s solution time is greater than
that of PART, even for equal visit fractions. The reason
for this is shown in Figure 11, which has a red circle
on each cell with more than two neighbors. Each such
cell can result in contention in PWQ, because one thread
can enter but two threads can exit, which hurts perfor-
mance [11]. In contrast, PART can incur such contention
but once, namely when the solution is located. Of course,
SEQ never contends.

Although PART’s speedup is impressive, we should
not neglect sequential optimizations. Figure 12 shows
that SEQ, when compiled with -O3, is about twice as
fast as unoptimized PWQ, approaching the performance
of unoptimized PART. Compiling all three algorithms
with -O3 gives results similar to (albeit faster than) those

shown in Figure 8, except that PWQ provides almost no
speedup compared to SEQ, in keeping with Amdahl’s
Law [2]. However, if the goal is to double performance
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Figure 12: Effect of Compiler Optimization (-O3)
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Figure 13: Partitioned Coroutines

compared to unoptimized SEQ, as opposed to achieving
optimality, compiler optimizations are quite attractive.

Cache alignment and padding often improves per-
formance by reducing false sharing. However, for
these maze-solution algorithms, aligning and padding the
maze-cell array degrades performance by up to 42% for
1000x1000 mazes. Cache locality is more important
than avoiding false sharing, especially for large mazes.
For smaller 20-by-20 or 50-by-50 mazes, aligning and
padding can produce up to a 40% performance improve-
ment for PART, but for these small sizes, SEQ performs
better anyway because there is insufficient time for PART
to make up for the overhead of thread creation and de-
struction.

In short, the partitioned parallel maze solver is an in-
teresting example of an algorithmic superlinear speedup.
If “algorithmic superlinear speedup” causes cognitive
dissonance, please proceed to the next section.
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Figure 14: Varying Maze Size vs. SEQ
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Figure 15: Varying Maze Size vs. COPART

5 Alternative Sequential Maze Solver

The presence of algorithmic superlinear speedups sug-
gests simulating parallelism via co-routines, for exam-
ple, manually switching context between threads on each
pass through the main do-while loop in Figure 5. This
context switching is straightforward because the context
consists only of the variables ¢ and vi: Of the numerous
ways to achieve the effect, this is a good tradeoff between
context-switch overhead and visit percentage. As can be
seen in Figure 13, this coroutine algorithm (COPART) is
quite effective, with the performance on one thread being
within about 30% of PART on two threads.

6 Performance Comparison II

Figures 14 and 15 show the effects of varying maze size,
comparing both PWQ and PART running on two threads
against either SEQ or COPART, respectively, with 90%-
confidence error bars. PART shows superlinear scalabil-
ity against SEQ and modest scalability against COPART
for 100-by-100 and larger mazes. PART exceeds the-
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oretical energy-efficiency breakeven against COPART at
roughly the 200-by-200 maze size, given that power con-
sumption rises as roughly the square of the frequency for
high frequencies [12], so that 1.4x scaling on two threads
consumes the same energy as a single thread at equal so-
lution speeds. In contrast, PWQ shows poor scalabil-
ity against both SEQ and COPART unless unoptimized:
Figures 14 and 15 were generated using -O3.

Figure 16 shows the performance of PWQ and PART
relative to COPART. For PART runs with more than two
threads, the additional threads were started evenly spaced
along the diagonal connecting the starting and ending
cells. Simplified link-state routing [5] was used to de-
tect early termination on PART runs with more than
two threads (the solution is flagged when a thread is
connected to both beginning and end). PWQ performs
quite poorly, but PART hits breakeven at two threads and
again at five threads, achieving modest speedups beyond
five threads. Theoretical energy efficiency breakeven is
within the 90% confidence interval for seven and eight
threads. The reasons for the peak at two threads are (1)
the lower complexity of termination detection in the two-
thread case and (2) the fact that there is a lower proba-
bility of the third and subsequent threads making useful
forward progress: Only the first two threads are guar-
anteed to start on the solution line. This disappointing
performance compared to results in Figure 15 is due to
the less-tightly integrated hardware available in the larger
and older Xeon®system running at 2.66GHz.

7 Future Directions and Conclusions

Much future work remains. First, this paper applied only
one technique used by human maze solvers. Others in-
clude following walls to exclude portions of the maze
and choosing internal starting points based on the lo-

cations of previously traversed paths. Second, different
choices of starting and ending points might favor differ-
ent algorithms. Third, although placement of the PART
algorithm’s first two threads is straightforward, there are
any number of placement schemes for the remaining
threads. Optimal placement might well depend on the
starting and ending points. Fourth, study of unsolvable
mazes and cyclic mazes is likely to produce interesting
results. Fifth, the lightweight C++11 atomic operations
might improve performance. Finally, for mazes, humil-
iating parallelism indicated a more-efficient sequential
implementation using coroutines. Do humiliatingly par-
allel algorithms always lead to more-efficient sequential
implementations, or are there inherently humiliatingly
parallel algorithms for which coroutine context-switch
overhead overwhelms the speedups?

This paper demonstrated and analyzed parallelization
of maze-solution algorithms. A conventional work-
queue-based algorithm did well only when compiler op-
timizations were disabled, suggesting that some prior re-
sults obtained using high-level/overhead languages will
be invalidated by advances in optimization.

This paper gave a clear example where approaching
parallelism as a first-class optimization technique rather
than as a derivative of a sequential algorithm paves the
way for an improved sequential algorithm. High-level
design-time application of parallelism is likely to be a
fruitful field of study. This paper took the problem of
solving mazes from mildly scalable to humiliatingly par-
allel and back again. It is hoped that this experience will
motivate work on parallelism as a first-class design-time
whole-application optimization technique, rather than as
a grossly suboptimal after-the-fact micro-optimization to
be retrofitted into existing programs.
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