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Abstract
Common misconceptions about randomness underlie the
design and implementation of randomness sources in pop-
ular operating systems. We debunk these fallacies with
a survey of the “realities of randomness” and derive a
number of new architectural principles for OS random-
ness subsystems.

1 Introduction
Randomness is at the heart of the security of a mod-
ern operating system: cryptographic keys, TLS nonces,
ASLR offsets, password salts, TCP sequence numbers,
and DNS source port numbers all rely on a source of hard-
to-predict random bits. Unfortunately, misuse and abuse
of random numbers and random number generators has
led to a jaw-dropping number of bugs and security holes
of late [9–32, 44, 55].

The blame for many such failures lies not with ap-
plication developers, but with the faulty designs and
error-prone interfaces for randomness common in popu-
lar OSes. The documentation of OS randomness sources
is often misleading or incorrect and serves to spread myths
about randomness (e.g., that a well-seeded randomness
pool can “run out” of random bits), rather than dispel
them. In addition, the special-file interface to the OS ran-
domness subsystem (i.e., /dev/random) makes it diffi-
cult, if not impossible, for applications to safely use ran-
domness under adversarial conditions. Given the state of
randomness sources in popular OSes, it is no surprise that
developers often misunderstand and misuse randomness.

In the first part of this paper, we identify and debunk
a number of common misconceptions about OS random-
ness. Along the way, we point out weaknesses in and at-
tacks against the randomness sources of existing OSes. In
the second part, we outline a new architecture for OS ran-
domness that solves many of the problems with existing
designs. In sum, we attempt to “set the record straight”
on randomness for designers of future OSes, with the hope
that new systems will take a more principled view towards
this important but counter-intuitive piece of the OS.

2 Preliminaries
We first define a few key terms and concepts.

Entropy. For our purposes, entropy is a measure of
an adversary’s uncertainty about the state of a partic-
ular value. To make this notion precise, let S be a
discrete random variable representing, for example, the
state of a cryptographic random number generator. Let
G(S | A’s knowledge) be a random variable representing
the number of guesses required to recover the value of S
given an adversary A’s knowledge of the distribution of
S, following an optimal strategy [48]. We say that the
distribution of the state S has k bits of guessing entropy
(“entropy”) with respect to an adversaryA if the expected
number of guesses E[G(S | A’s knowledge) ] is greater
than or equal to 2k [7, Section 3.2.4]. A value S sampled
uniformly at random from a set of 2k values has just over
k − 1 bits of guessing entropy, since E[G(S)] is equal to
(2k + 1)/2.1 When we say that a particular value “has k
bits of entropy,” we mean that the value is sampled from a
distribution with k bits of entropy from the perspective of
some adversary.

Pseudo-random Bit Generator. A pseudo-random bit
generator (PRG) is a family of deterministic algorithms
mapping short bitstrings (“seeds”) to long bitstrings (“out-
puts”) [6, 49]. To be useful in a cryptographic setting, the
output of a PRG must be indistinguishable from random,
as long as the seed is sampled from a distribution over the
seed space with “enough” entropy.2

One suitable PRG is the AES block cipher instantiated
in counter mode [3]. The seed for the PRG is the AES key
k and the output of the PRG is the concatenation of the
AES encryptions of the bitstrings representing “0,” “1,”
“2,” and so on. As long as the seed for this PRG is sam-
pled from a distribution with many bits of entropy (e.g.,
128 bits) it appears infeasible to distinguish the output of
this PRG from random.

OS Randomness Subsystem. All modern operating
systems implement some sort of randomness pool. The
pool contains a bitstring derived from other values in the
system that are ostensibly difficult for user-level processes
to guess. These values typically include the CPU’s cycle
counter, disk seek times, outputs from a hardware ran-
domness source (e.g., Intel’s RdRand instruction), net-
work packet arrival times, and other fast-changing values

1The guessing entropy of this distribution is not equal to its Shannon
entropy or min entropy [7, Section 3.4].

2To be precise, the seed must be sampled from a distribution with k
bits of entropy such that k has size polynomial in the security parameter.



known to the operating system. The operating system pe-
riodically updates this pool with fresh values.

In Unix-like operating systems, user processes inter-
act with the randomness subsystem through a special
file named /dev/random.3 The CryptGenRandom
function serves a similar purpose in recent versions of
Windows. When we say that a process reads random
bytes from the OS, we mean that it requests bytes from
/dev/random or CryptGenRandom. Applications
and kernel threads use randomness to generate crypto-
graphic secrets, run randomized algorithms, and derive
unpredictable values for other purposes (e.g., DNS source
port numbers).

All common flavors of Unix also allow user-space pro-
cesses to write random bytes to the OS by writing to
/dev/random, which mixes the user-provided bits into
the OS randomness pool.

3 Realities of Randomness
We review a number of realities of randomness, which
inform the randomness architecture introduced in the next
section.

3.1 Your Randomness Won’t Run Out
A common misconception is that randomness in the en-
tropy pool can somehow be “used up”—that the OS must
constantly add new hard-to-predict bits to the pool for its
output to remain unpredictable. For example, a post on
the CloudFlare Security Blog about the Linux randomness
pool states:

When random numbers are generated from the pool
the entropy of the pool is diminished (because the
person receiving the random number has some infor-
mation about the pool itself). [53]

This statement is false as long as widespread crypto-
graphic assumptions hold. Once there is enough random-
ness in the pool to seed a pseudo-random generator, the
OS can produce an endless string of random-looking bits.4

Deriving an endless stream of bits from a random-
enough randomness pool is straightforward: use a crypto-
graphic hash function (e.g., SHA-256) to hash the pool’s
contents into the space of PRG seeds (e.g., AES keys).
Then, use the PRG (e.g., AES in counter mode) to expand
the short seed into a long bitstring. Application of the
random-oracle model [4] allows a rigorous analysis of the
security of this extract-then-expand technique [45]. This
procedure leads to the following finding:

3In Linux and Solaris, /dev/random can block, so there is also a
similar, but non-blocking, file called /dev/urandom.

4Well, “endless” at least from the perspective of all polynomial-time
adversaries.

Figure 1: Under unfavorable conditions, the system will
never accumulate enough entropy to generate strong cryp-
tographic keys (using the 128-bit security level).

Reality 1. Once the randomness pool has accumulated
enough entropy to seed a PRG, the pool can never “run
out” of random bits (if the pool implementation is sane).

As we note, Reality 1 is only true as long as the ran-
domness pool uses a “sane” implementation. The extract-
than-expand technique outlined above is an example of a
“sane” implementation [45]. An example of an “insane”
implementation is any one that returns bits of the random-
ness pool state to a user-space processes without running
it through a hash function and cryptographic PRG. Im-
plementations like these may reveal the entire state of the
randomness pool to an adversarial user-space process and
can thus “run out” of entropy.
Corollary. The only time that the randomness pool is vul-
nerable to compromise is in the period before it has accu-
mulated enough entropy to seed a PRG.

Before the randomness pool has enough entropy to seed
a PRG, an adversary who can read random bytes from OS
can learn the internal state of the OS’s randomness pool.
To mount this attack, the adversary first reads a random
bitstring b from the OS, and guesses the state of the ran-
domness pool that would have produced the string b. The
average number of guesses required is bounded above by
2k, where k is the number of bits of entropy in the ran-
domness pool.

Figure 1 graphically depicts this process: the pool starts
out with zero bits of entropy (e.g., after the machine’s first
boot) and the OS harvests 32 bits of entropy from hard-
ware sources in every time unit. If a malicious process
can read several bytes from /dev/random at every time
unit and brute-force through the 232 possible pool states,
the malicious process can always recover the state of the
randomness pool and the system will never accumulate
enough entropy to seed a PRG.

3.2 Entropy Estimation is Hopeless
A tempting way to address the problem depicted in Fig-
ure 1 is to just disallow reads from the OS randomness
source until the pool accumulates enough entropy to seed
a PRG (e.g., 128 bits). Several operating systems—
including Linux, NetBSD, and Solaris—try to estimate



how many bits of entropy are in the randomness pool and
will block /dev/random until there is enough entropy
to prevent the attack of Figure 1. Unfortunately, this strat-
egy is misguided.

Reality 2. Building an accurate entropy estimator is in-
feasible.

To see why entropy estimation is infeasible, recall the
definition of entropy: it is a measure of the adversary’s
uncertainty about the value of a certain variable. The
OS generally has no way of knowing what the adversary
knows about the system and thus has no hope of esti-
mating how many bits of entropy are in the randomness
pool [1]. (Of course, in the degenerate case in which no
string has ever been added to the pool, it is clear that there
are zero bits of entropy in the pool.)

For example, OS designers might reason that the low-
order bit of the arrival time of every network packet is a
good source of randomness. An entropy estimator might
then increase the entropy count by one bit upon receipt
of every packet. If an adversary can monitor the ma-
chine’s network connection, however, the packet arrival
times would be a poor source of randomness with respect
to this adversary. Real-world entropy estimators have sim-
ilar weaknesses [33, Lemma 3].

Since the OS cannot ever accurately estimate how many
bits are in the pool, and since the OS should only block
reads to the randomness source when there are “too few”
bits of entropy in the randomness pool, we conclude:

Corollary. Reads to the OS randomness source should
never block.

After booting, the OS should initialize the randomness
subsystem with values from I/O sources as best it can and
then make /dev/random available to user-space pro-
cesses. If the system’s design is sound, the OS’s ran-
domness pools will eventually accumulate entropy, even
if they were not well-seeded initially. FreeBSD and Mac
OS use this strategy to avoid entropy estimation.

3.3 All Bits Should Be Treated Equally
The widespread use of entropy estimation techniques has
given rise to the misconception that the OS should dif-
ferentiate between “trusted” and “untrusted” inputs to the
randomness pool. In Linux, for example, only kernel
threads and administrators can write to the randomness
pools in a way that increases the entropy estimate.

The intuition behind this design is clear: internal en-
tropy sources, like the cycle counter and disk seek times,
are considered “more random” than user-provided bit-
strings, which might be adversarially crafted. However,
there is no need to make such a distinction, since adding
data to the randomness pool should never decrease the
amount of entropy in the pool:

Reality 3. Adding bits to the randomness pool will never
decrease the amount of entropy in the pool, as long as the
implementation is sane.

For an example of a “sane” implementation: let the
state of the randomness pool be an `-bit string and let
Ek(m) be an ideal cipher that encrypts a message m with
a key k, such that m and k are both `-bit strings [5, 52].
We can calculate the new state si+1 of the pool by hash-
ing the (possibly long) input string into a short cipher key
k and computing si+1 ← Ek(si) [45]. Since E defines
a family of permutations (indexed by k), the adversary’s
uncertainty about the value of si+1 is at least as large as
the adversary’s uncertainty about the value of si, no mat-
ter whether the input string is adversarially chosen.
Corollary. The OS should allow any user and any process
to contribute to the randomness pool.

Adding bits to the randomness pool can only increase
the adversary’s uncertainty about the pool contents, so it
can never hurt to allow writes into the pool.

3.4 User-Space is a Danger Zone
Cryptographic folklore, as well as the OpenBSD and
Linux randomness manpages, suggests that applications
needing many random bytes should maintain their own
user-space randomness pools. Many popular cryptogra-
phy libraries (including OpenSSL) follow this advice and
implement their own user-space pools and PRGs.
Reality 4. User-space randomness pools are often un-
safe.

Maintaining a randomness pool in user-space entails a
number of risks:

Fork (un)safety. The implementation must be sure to
reseed the child of a fork() call with fresh randomness
to make sure that the child’s pool differs from its parent’s.
Neglecting to reseed after forking is easy to do and can
lead to dangerous security vulnerabilities [26, 30, 31].

Pool leakage. It is more difficult to maintain the privacy
of the randomness pool state in user-space than it is in
kernel-space. Chow et al. [8] showed that user-space se-
crets can leak through swap and other unexpected sources.

Reseeding required. If the user-space randomness pool
seeds itself from /dev/random soon after boot, the
OS’s pool may not yet have enough entropy to provide
a strong seed. Even if the amount of entropy in the
kernel pool eventually increases, the amount of entropy
in the user-space pool will not increase unless the user-
space implementation periodically reseeds itself from
/dev/random. Many libraries, including OpenSSL, do
not reseed themselves automatically.

There are legitimate reasons for maintaining a user-
space randomness pool: it avoids the system-call over-
head of reading a special file and it allows an application



(a) Today’s OSes use a single
entropy pool shared amongst
all processes.

(b) A single malicious process
can prevent entropy accumu-
lation indefinitely.

Figure 2: Today’s OS randomness subsystems.

to use a different PRG than the one the kernel supports.
Even so, the risks of maintaining a user-space pool are
much greater than the benefits in many cases.

3.5 Use a System Call, Not a Special File
Most OSes limit the number of open file descriptors, so
if either the per-user or global file descriptor limit is
reached, no process can access system randomness via
/dev/random. In this case, applications have to choose
between two bad alternatives: (a) fail and halt, or (b) pro-
ceed without randomness from the OS.

An attack. Most applications we have inspected choose
option (b) above, which opens them up to a file descrip-
tor denial-of-service attack: a coalition of malicious users
opens enough files to exceed the system’s global file de-
scriptor limit. When an honest user subsequently tries
to generate a cryptographic secret key, the cryptography
library may produce a non-random (and thus vulnera-
ble) key [27, 28]. Many components of OpenSSL, in-
cluding SSL/TLS pre-master secret generation and RSA
key generation, are vulnerable to this attack, as is the
arc4random function used for cryptographic random-
ness in FreeBSD, OpenBSD, and Mac OS.
Reality 5. Special-file interfaces for randomness are of-
ten unsafe.

The special-file interface for randomness allows mali-
cious processes to starve honest processes of randomness
under certain circumstances. To prevent these attacks,
OSes should provide a system-call interface to the OS
randomness subsystem and security-critical applications
running on OSes without a system-call interface should
“fail closed” when they cannot read /dev/random. The
latest versions of Windows, Linux, and OpenBSD offer a
system call for randomness, but FreeBSD, Mac OS X, and
Solaris do not.

4 Improving OS Randomness

Our proposed architecture for OS randomness uses per-
process randomness pools to ensure entropy accumula-
tion, even under adversarial conditions. The design does

not require entropy estimation and eliminates the distinc-
tion between “trusted” and “untrusted” inputs to the pools.

The corollary to Reality 1 indicates that the system’s
randomness pool is vulnerable only in the time before the
pool has accumulated enough entropy to seed a PRG. The
focus of the randomness subsystem, then, is to ensure that
eventually there is enough entropy in the pool to seed a
PRG, even in the presence of many adversarial processes.

To our knowledge, no current OS provides this prop-
erty. Existing OSes use a single common entropy pool
shared amongst all processes, as shown in Figure 2. If the
system starts out in a known state (e.g., after first boot),
the hardware supplies only a few bits of entropy per time
unit, and an adversarial process can read a few bits of OS-
supplied randomness in every time unit, then the adver-
sary will always know the contents of the entropy pool
via a brute-force guessing attack (Figure 1) [32–34]. In
these conditions, benign processes will not ever be able to
generate strong cryptographic secrets.

To prevent this failure case, our design allocates sepa-
rate entropy pools to each process in the system. By lim-
iting the number of pools from which an adversarial pro-
cess can read, we minimize the number of pools that an
adversary can attack. This ensures that benign processes
eventually accumulate enough entropy to generate strong
cryptographic keys (though, by Reality 2 we will never
know precisely when this has happened).

In our architecture (Figure 3), the OS maintains two
randomness pools for each process in the system: one for
generating random values for the process itself and an-
other for initializing the pools of forked child processes.
When a process asks the OS for random bits, the OS de-
rives these bits from the first pool, the “self” pool. When a
process forks a child process, the OS initializes the child’s
two randomness pools using bits derived from the parent’s
“fork” pool. The OS feeds new input bits into all active
pools in the system on a round-robin schedule. Under the
minimal assumption that the random input bits are not per-
fectly correlated with each other, all non-adversarial pools
in the system will eventually accumulate enough entropy
to seed a PRG.

The use of two separate pools per process provides pro-
tection in scenarios in which the pool of a parent process
contains few bits of entropy and an adversary can repeat-
edly read from the randomness pools of the parent’s re-
cently forked child processes. For example, if the parent
is an (honest) forking TLS server, an adversarial client can
learn the state of the parent’s randomness pool by con-
necting to a forked child server process and inspecting the
nonces in the child process’ TLS messages. If the parent’s
pool started out with few bits of entropy, the adversary
will be able to learn the state of the parent’s pool and will
keep the parent’s pool from ever accumulating entropy.



(a) Children of fork()s
have pools seeded from the
parent’s fork pool.

(b) The OS replenishes all
pools in the system in a round-
robin fashion.

(c) An evil child might ini-
tially be able to learn the state
of other pools.

(d) However, the parent’s
other children can eventually
accumulate entropy (recover).

Figure 3: A system using our pool-per-process design can accumulate entropy in the presence of a malicious process.

By having a separate forking pool, we ensure that the
child processes cannot read from the parent’s “self” pool
and thus the child cannot recover the state of the parent’s
“self” pool. This allows the parent’s “self” pool to even-
tually accumulate entropy with respect to the adversarial
client, even though the parent’s “fork” pool never will.

Instead of having a separate “fork” pool, we could just
initialize the child’s randomness pools to all zeros and let
the child’s pool accumulate entropy over time from input
sources. This addresses the forking attack above, but in-
troduces a more serious problem: a child will not have
any access to randomness immediately after forking, even
if the parent’s pool has many bits of entropy. In the case
of a forking TLS server, in which a child needs to gener-
ate cryptographic secrets immediately after forking, zero-
initializing the child’s pool is unsatisfactory.

The downside of having separate randomness pools is
that the system as a whole will accumulate entropy more
slowly than today’s systems do—2P times more slowly,
where P is the number of active processes.

To increase the rate of accumulation, the system could
have a single global randomness pool in addition to the
per-process pools described above. The OS would insert
half of the input bits into the global pool and the other
half into the hierarchy of per-process pools. When a pro-
cess requests random bits, the OS would derive these bits
from both the process’ “self” pool and from the global
pool. In the absence of a malicious process, the system
would accumulate entropy almost as quickly as it would
with today’s designs. In the presence of many malicious
processes, the honest processes’ pools would be still able
to accumulate entropy eventually (albeit at a slower rate).
There are many possible combinations of global, local,
and intermediate pools, but we leave a full investigation
of these ideas to future work.

5 Related Work

There is a long and fruitful line of work investigat-
ing randomness failures in Debian [19, 55], Java [40],
Linux [39,41], Netscape [38], Windows [35]. Weak hard-

ware entropy sources [42, 47] and use of virtual machine
snapshotting [36,37,51] have also led to randomness fail-
ures in the past. Lazar et al. investigate the source of bugs
in cryptographic software, including cases involving mis-
use of randomness [46].

Another line of work has proposed techniques to pro-
tect against weak randomness. Barak and Halevi [1] and
Dodis et al. [33, 34] rigorously analyze random number
generators as used in operating systems and offer im-
proved constructions. Mowery et al. conjecture that even
embedded devices have potentially rich sources of entropy
at boot time [50]. Hedged public-key cryptography, devel-
oped by Bellare et al. [2, 51], allow for a graceful degra-
dation of security in the face of bad randomness.

Many of the arguments of Section 3 are in the folklore
and some have been discussed in prior work [1, 43, 54].
To our knowledge, no one has proposed using per-process
randomness pools as we do in Section 4.

6 Conclusion

We have debunked a number of common misconceptions
about randomness in the OS. From the counter-intuitive
realities of randomness, we derive a number of straight-
forward design principles for the OS’s randomness sub-
system. We also make the unorthodox recommendation
that OSes maintain two separate randomness pools for ev-
ery process. We hope that our paper will encourage OS
designers to question common myths about randomness
and to rethink how they provide randomness to users.
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