
Steel: Simplified Development and Deployment of Edge-Cloud Applications

Shadi A. Noghabi
Univeristy of Illinois (UIUC)

abdolla2@illinois.edu

John Kolb
UC Berkeley

jkolb@berkeley.edu

Peter Bodik, Eduardo Cuervo
Microsoft Research

{peterb,cuervo}@microsoft.com

Abstract
The rapid growth in both the number and variety of
cloud services has led to the emergence of complex ap-
plications using multiple cloud services (typically > 5).
Although building cloud-based applications is relatively
simple, extending them to an edge-cloud environment is
complicated, error-prone, and time-consuming. Effec-
tively using the edge requires dynamic adaptation and
movement of services between edges and the cloud, e.g.,
in presence of failures or load spikes. However, cur-
rent platforms do not support this. We propose Steel,
a high-level abstraction that simplifies development, en-
ables transparent adaptation and migration, and auto-
mates deployment and monitoring across the entire edge-
cloud environment. Additionally, Steel enables modu-
lar and pluggable optimizations, such as placement, load
balancing, and dynamic communication, with minimal
effort. Based on our evaluation, we reduce the initial de-
velopment effort (1.7x – 3.5x reduction in lines of con-
fig), support dynamic moves with minimal changes (∼2
lines of config per move, reducing 95% of the overhead),
and support easy development of optimizations (e.g., a
placement optimizer requires ∼500 lines of code).

1 Introduction
Cloud services have seen a disruptive growth, becoming
the de facto solution for building applications at large
scale. Gartner Inc. estimates that cloud services will
become a $383 Billion market by 2020, a 20% annual
growth rate [11,15]. Simultaneously, there has been con-
tinuous growth in the number and variety of services
provided by all major cloud providers. Azure, Amazon
AWS, and Google currently have more than 170, 130,
and 70 different services, respectively [6, 9, 12]. These
services cover a variety of categories, e.g., compute,
communication, storage, and analytics. There are multi-
ple services within each category, each tailored for a spe-
cific use-case. For example, for analytics alone, Amazon
has Kinesis (streaming), EMR (batch), and seven other
services [6]. New categories also constantly emerge to
cover new domains such as AI and the Internet of Things.

Because of the diverse services and large-scale pro-
cessing capabilities of the cloud, most cloud applica-
tions use multiple cloud services, in various complex
ways. We expect this complexity to grow as cloud ser-
vices become increasingly diverse. One main category of
these applications is data processing applications, where
large quantities of data are piped from one service to an-
other while being transformed at each point. This can
be viewed as a Directed Acyclic Graph (DAG) of ser-

FunctionsDevices

Devices

Devices

DB
Stream

Analytics

Edge

Hub

IoT

Hub
Functions

DB
Stream

Analytics

Edge

Hub
IoT

Hub
Functions

DB
Event

Hub
Functions

Stream

Analytics

IoT

Hub

Edge Cloud

Stream

Analytics
Functions DBDevicesApplication:

filter detect anomaly store

Figure 1: Sample anomaly detector IoT application.

vices. IoT applications, stream processing jobs, and im-
age/video processing are typical examples of such appli-
cations, e.g., a simple monitoring and maintenance IoT
application consists of more than eight different services
(for computation, communication, and storage) [14].

In parallel, there is a growing interest in pushing com-
putation to the edge. Processing on the edge has several
advantages including: reducing end-to-end latency, pro-
viding continuous service despite intermittent connectiv-
ity to the cloud, reducing network bandwidth consump-
tion, and reducing the monetary cost of using cloud ser-
vices [20, 26, 30, 32, 36–39, 42]. This has led to cloud
services offering solutions that can be ported to the edge,
e.g., AWS Greengrass for edge computation, Azure Edge
Hub for edge-cloud communication, or Azure Functions
and AWS Lambda’s extension to the edge [3, 5, 8].

When using the edge, many optimizations, that are
usually optional in the cloud, become crucial, especially
to make applications robust and correct. Examples in-
clude placement, load balancing, and adaptive communi-
cation [34]. Individual edge deployments and their net-
works are heterogeneous and diverse in terms of cost,
performance, availability, etc., generating a large search
space of potential placements. Edges also have lim-
ited resources (for economic and practical reasons) while
workloads are dynamic, and failures are common at the
edge. Thus, the only cost-effective, peak-tolerant op-
tion is to adaptively balance and dynamically move ser-
vices. Furthermore, the connection from the edge is
poor, costly, and intermittent, demanding dynamic batch-
ing and compression [27, 35, 44]. Towards these opti-
mizations, it is essential to be able to readily move ser-
vices back and forth between edges/cloud and dynami-

cally adapt to the environment.

Even though the construction of applications from
cloud-only services has become well-established and rel-
atively straightforward, the industry is still in its infancy
in terms of supporting multi-service applications that are

dynamic and movable across the full edge-cloud environ-

ment. There are several challenges in the development,
deployment, monitoring, and optimization of these appli-
cations. First, configuring and connecting various cloud
services is cumbersome and error-prone. Deployment
through a web portal is time-consuming (∼25 minutes
for a simple four-service pipeline) and not repeatable.
Building automated scripts requires specifying several
configurations (typically 100s of lines of config), and in
many cases, these configurations are not properly docu-
mented or maintained over time. The configurations also
change depending on the location of the service (edge or
cloud). Although this overhead can be acceptable as a
one-time effort, the conventional case for cloud-only ap-
plications, it becomes a major barrier to dynamic move-
ment of services between the cloud and the edge.

Furthermore, most cloud services have each developed
organically and independently. Thus, they exhibit wide
diversity and suffer from inter-service compatibility con-
straints, e.g., Azure Stream Analytics cannot connect di-
rectly to Azure Functions. These compatibility issues
can be resolved by adding intermediate glue services.
However, the glue services depend on the location of ser-
vices (edge or cloud). Figure 1 shows a simple anomaly
detector application built using Azure services. This ap-
plication reads sensor data, filters values (Stream Analyt-
ics), detects anomalies (Functions), and writes the results
to a database (Document DB). Depending on the loca-
tion of the different services, the glue services required
(shown in blue) change substantially. Manually configur-
ing these glue services to support migration is intractable
because it is error-prone and cannot be done in real time.
Although the example above is based on Azure, it is a
fundamental problem for other platforms as well.

Finally, the complexities and dynamism of edges re-
quire applying many optimizations, common across dif-
ferent applications. Ideally, these should be pluggable
features. Currently however, application developers have
to manually incorporate these optimizations, without the
ability to reuse them. Besides, many of these optimiza-
tions rely on end-to-end monitoring across services, e.g.,
their performance, cost, and availability, which is not
unified or consistent across the many diverse services.

To bridge this gap and ease the burden of man-
ual, redundant, and error-prone multi-service applica-
tion development, we argue for a high-level abstraction.
This abstraction should support dynamically adapting
and moving services (between edges and cloud) along
with the ability to build pluggable, reusable optimization

modules. The main challenge is finding the right level of
abstraction: it should hide the complexities of building
applications without negatively impacting their flexibil-
ity (i.e., users should be able to build the same applica-
tions they could build before). To reach this sweet spot,
we argue that we only need to abstract the connections

and locations of services. We should not impose any

Steel

Abstraction (Logical Spec)

Compile Deploy Monitor

Placement Communication …

Fabric

Optimization

Modules

Load

Balancing

Applications

Edge-Cloud Ecosystem

Figure 2: High level architecture of Steel, a middle layer

between the applications and edge-cloud environment.

limitations on the internals of each service, e.g., using
a SQL query to build a streaming job.

In this work, we propose Steel, a high-level abstraction
and deployment engine tailored specifically for building
multi-service applications in the emerging edge-cloud
environment. Steel abstracts the logical connection of
services in an application. Based on the location of ser-
vices (edge or cloud), it automatically resolves compat-
ibility constraints by adding required glue components,
builds the detailed deployment scripts/templates, and de-
ploys the application across the entire environment. Steel
provides full flexibility to dynamically adapt and migrate
services while handling any internal complexities. In
addition, Steel provides a framework to build modular,
pluggable and reusable optimizations.

We implemented a prototype version of Steel on top
of Azure, one of the leading cloud service providers. We
evaluate our solution with a number of real-world appli-
cations. Based on our results, we reduce the number of
lines of config (loc) for the initial application develop-
ment by 1.7x–4.8x, and in presence of a change or move,
we reduce the changes to ∼2 loc per move, a >95% re-
duction. We also show how our abstraction is essential
for simplifying and building pluggable optimizations. As
an example, we develop a placement optimizer as a plug-
gable module with ∼500 lines of code.

2 Design of Steel

Steel targets data processing applications constructed of
multiple cloud services, connected to each other in form
of a DAG. Manually developing, deploying, and opti-
mizing these multi-service applications is hard, time-
consuming and error-prone. For example, deploying the
anomaly detector application (Figure 1) through the web
portal takes roughly 25 minutes for an expert, and build-
ing a deployment template requires >250 lines of config.

Listing 1 shows a sample Azure template required just
for deploying (without fully connecting) a Document DB
service. The template requires a verbose specification of
the service’s properties, such as its detailed location and
unique name, on lines 1–16. Lines 17–27 specify the out-
put values that should be passed back to the user after the
service is deployed and cannot be generated beforehand,

Listing 1: ”Sample Azure Config for deploying a simple

Document DB service”

1{ ”$schema”: ‘‘ http : // schema.management.azure.com /...’’ ,

2 ‘‘ contentVersion ’’ : ‘‘1.0.0.0’’ ,

3 ‘‘ resources ’’ : [{
4 ‘‘ apiVersion ’’ : ‘‘2015−04−08’’,

5 ‘‘ kind ’’ : ‘‘GlobalDocumentDB’’,

6 ‘‘ type ’’ : ‘‘ Microsoft .DocumentDb/databaseAccounts’’,

7 ‘‘name’’: ‘‘ test −name’’,

8 ‘‘ location ’’ : ‘‘westus’’ ,

9 ‘‘ properties ’’ : {
10 ‘‘databaseAccountOfferType’’ : ‘‘ Standard ’’ ,

11 ‘‘ locations ’’ : [

12 {‘‘ id ’’ : ‘‘ test −id’’ ,

13 ‘‘ failoverPriority ’’ : 0,

14 ‘‘ locationName’’: ‘‘West Us’’}]},

15 ‘‘ tags ’’ : {‘‘ defaultExperience ’’ : ‘‘DocumentDB’’}
16 }] ,

17 ‘‘ outputs ’’ : {
18 ‘‘EndpointUri’’ : {
19 ‘‘ value ’’ : ‘‘ [reference (’...’) .documentEndpoint]’’,

20 ‘‘ type ’’ : ‘‘ string ’’},

21 ‘‘PrimaryKey’’: {‘‘ value ’’ : ‘‘ [listKeys (...) ’] ’ ,

22 ‘‘ type ’’ : ‘‘ string ’’},

23 ‘‘ resourceId ’’ : {
24 ”value”: ‘‘ [concat (’ subscriptions /’ ,

subscription () . subscriptionId , ...’)] ’’ ,

25 ‘‘ type ’’ : ‘‘ string ’’}
26} }

e.g., the unique ID and URI that must be known to appli-
cations and services that will connect to the database.

Steel’s goal is to simplify a) developing multi-service
applications, b) deploying them across the entire envi-
ronment, c) dynamically adapting and moving parts of
them, and d) applying common optimizations to them.
Steel acts as middle layer between application develop-
ers and the edge-cloud, hiding the underlying complexi-
ties. As shown in Figure 2, Steel consists of three main
layers: abstraction, fabric, and optimization modules.

2.1 Abstraction

The abstraction includes: a) the logical DAG of the ap-
plication, i.e., the main services and their connections
excluding the glue services and b) the location of each
service. We argue this information is sufficient to support
adaptable and movable services across the entire environ-
ment. Listing 2 shows the anomaly detector (Figure 1) in
this abstraction. As shown, it provides full flexibility and
extensibility of the internals of each service. Services
can be defined similar to using the typical templates, e.g.,
using a SQL query as a streaming job or setting service
specific configs (e.g., ”Streaming Units”). To move a ser-
vice, simply, the location mapping needs to be updated.

2.2 Fabric

The Fabric materializes the abstraction of an application
into an actual physical deployment. The Fabric compiles

the abstraction, deploys it across the edge-cloud environ-
ment, and monitors it end-to-end.

Compiler: The compiler converts the abstraction to de-
tailed deployment templates, based on the location of

Listing 2: ”Sample Application in Steel’s Abstraction”

1{ ”Name”: ” test job”,

2 ”Services”: [

3 {”Name”: ” filter ” ,

4 ”Type”: ”AsaJob”,

5 ”Query”: ”SELECT ∗ FROM input0 WHERE tmp > 60”},

6 ”Streaming Units”: 10 }
7 ...

8] ,

9 ”Connections”: [

10 {”From”: ” filter ” , ”To”: ”anomaly detector ”},

11 {”From”: ”anomaly detector” , ”To”: ”anomaly db”}] ,

12 ”Locations”: {
13 ” filter ”: {”Type”: ”edge”,”Id”: ”dev1”},

14 ”anomaly detector ”: {”Type”: ”cloud”, ”Id”: ”westus”},

15 ”anomaly db”: {”Type”: ”cloud”,”Id”: ”westus”}
16} }

each service. First, it verifies the location settings are
valid. Some services cannot move to the edge or cloud,
e.g, a permanent storage on the edge, and there can be
user-specified constrains, e.g., service A and B should
be placed together. Second, glue services are added to
fix the compatibility constraints across services. Figure
1 shows a simple 3-service application, and how the glue
components (shown in blue) change based on the loca-
tion settings. Finally, the routes and connections are con-
figured to connect services, including glue services, and
the actual deployable templates are built. These template
differ based on whether they are targeted for the edge or
the cloud, where the compiler masks these complexities.

Deployer: The deployer deploys the templates across the
entire environment. Using the application’s DAG of ser-
vices, it automatically detects dependencies among ser-
vices, and deploys them stage-by-stage, with multiple
parallel deployments within each stage. For example, an
Functions instance connected to a Document DB needs
to know the endpoint URI of the DB service (which
is only available once the DB has been deployed), and
therefore, must be instantiated in a stage after the DB.

Monitoring: Similar to cloud-based tools [1, 2, 7, 16,
31], the monitoring gathers real-time metrics for per-
formance, resource usage, and cost, but across the en-
tire edge-cloud environment. It digests and unifies the
metrics in an end-to-end application level, rather than
per service. The monitoring hides the diversity of cloud
services (with their own metrics and models), and het-
erogeneity of the edge devices. For example, it masks
pricing structures diversities such as the different metrics
(bytes, CPU, IO), granularities, reserve costs, etc. Mon-
itoring is crucial for checking the health of the program,
and also a major piece for further analysis such as for
bottleneck detection, allocation and placement optimiza-
tions, load balancing, adaptive communication, etc.

2.3 Optimization Modules

Inherently, the edge comes with many complexities such
as increased chances/causes of failures, poor and variable
network links, extreme heterogeneity among resources,

and unbalanced distribution of workloads over space and
time. These complexities rise the need for additional, but
common, optimizations. Steel’s design enables the mod-
ular, pluggable, and extensible implementation of these
optimization which manipulate the logical DAG repre-
sentation (Section 2.1). Below, we list a few of the com-
mon optimizations, and how they benefit from Steel’s
Fabric, abstraction, and design.

Placement: At the edge, the search space of potential
placements grows significantly. Edges are heterogeneous
(from Raspberry Pi to multi-GPU machines), large in
number (∼ 1000s in a typical factory), and with diverse
network bandwidths. The optimal placement depends on
the workload, available capacity, cost of bandwidth, etc.
Manually deciding the placement is tedious. In presence
of a change (e.g., a new application), the procedure has to
be repeated. Thus, a common optimization is automated
placement. Decoupling an application and its location,
along with the end-to-end monitoring provided by Steel,
is essential to make placement automated and smart.

Load balancing: Edges decentralize computation across
a spatial area, where ideally each edge processes work-
loads closest to it. However, in practice, workloads and
edges are not uniformly distributed across the area, e.g.,
a cluster of sensors close to one edge, machines and links
fail, and the load changes over time. Since edges do not
have the luxury of gathering and distributing data in a
centralized location, as in the cloud, they need to dynam-
ically divert load and move services to other locations (or
bring them back). The ability to transparently and easily
move services provided by Steel, is an important feature
for load balancing.

Communication: Edges are often characterized by lim-
ited bandwidth or intermittent connectivity to the larger
Internet, making the network a critical factor for perfor-
mance. Also, both the network and the entry point at the
cloud have a high cost, e.g., charging per message/Byte.
To this end, it is common to optimize the communication
by using smart batching, compression, and compaction.
Steel’s connection abstraction enables these optimiza-
tions to be done behind the scene, in a pluggable and
configurable manner, and its unified monitoring enables
intelligent optimizations for both cost and performance.

3 Implementation

The main challenge in building Steel is extending sys-
tems originally designed for static configurations to dy-
namic and automated ones. We implemented a prototype
of Steel on top of Azure, a leading cloud service provider.
To enable edge-cloud communication, we use the Edge
Hub [5] on the edge and IoT Hub [4] in the cloud (as an
entry point). Services deployed on the edge talk with the
Edge Hub, which in turn talks to the IoT Hub, that then
routes data to other cloud services. We use the IoT Hub
because of its ease of use. However, other entry points,

0

20

40

60

80

100

0

50

100

150

200

250

300

0 100 200 300 400 500

R
es

o
u
rc

e
U

ti
li

za
ti

o
n
 %

C
o
st

 i
n
 $

 p
er

 m
o
n
th

Time (s)

Cost ($) CPU (%)

Figure 3: Over time reduction of price and improvement

of edge resource utilization via the placement optimizer.

such as a publish-subscribe queue, can be used as well.

The prototype compiles an application (in Steel’s ab-
straction) to edge and cloud templates (based on loca-
tions), and in parallel deploys them across the entire en-
vironment. At the edge, for portability, we use Docker
[10] and containerized versions of the services (sup-
ported by the services [8]). Next, the prototype sets the
routes in the Edge Hub and IoT Hub for the data to flow
through accordingly. Finally, it starts monitoring and
publishing metrics to a unified source. Metrics are gath-
ered from multiple sources: existent service metrics, re-
source metrics, and our additional instrumented metrics.

3.1 Prototype Placement Optimizer

To demonstrate Steel’s extensibility at adding optimiza-
tions, we implemented a basic placement optimizer. The
optimizer automatically decides service placements with
the goal of a) reducing the cost of running services in the
cloud, and b) increasing the resource utilization at the
edge. The optimizer starts with a config where all ser-
vices are deployed in the cloud. Then, in a greedy fash-
ion, it finds the most expensive services on the boundary
of the edge and the cloud. It tries moving these services;
ensures the moves do not hurt performance; and contin-
ues this loop until the edge capacities are full.

We implemented this optimizer on top of the Fabric,
as a pluggable module, with only ∼500 lines of C# code.
Building the optimizer with such low development ef-
fort was only possible due to the movable abstraction
and readily available monitoring provided by Steel. Fig-
ure 3 shows a sample run of a multi-stage IoT applica-
tion. At each iteration, the overall cost is reduced as ser-
vices move from the cloud to the edge. Concurrently, the
edge’s resource utilization increases from 10% to 75%.

4 Experimental Evaluation

The main promise of Steel is ease of development, and
adaption of services. To compare our abstraction (Steel)
to conventional templates/scripts currently required by
Azure to deploy applications (current), we implement
real world applications in both systems on top of Azure.
We measure the development effort in terms of lines of
config (loc), i.e., number of configs required by Azure/S-
teel. We evaluate both the initial development and the
changes required for moving services.

We chose 6 diverse applications from a combination

A B C D E

…

1

2

3

4

5

6

Figure 4: DAG of studied applications. Dotted and full

circles show the data source and services, respectively.

of common and pre-configured applications [17]. Figure
4 shows the logical DAG (without glue services) of the
applications: 1. a simple data persisting application (two
stores, raw and filtered), 2. a predictive maintenance ap-
plication using machine learning, 3. Bluetooth sensor
connector and analyzer (convert format, add meta-data,
filter, average, and store), 4. a factory remote monitoring
and alert generator, 5. a campus-wide statistics genera-
tor (aggregate locally, join globally, build statistics, and
store), and 6. an anomaly detector (Figure 1)

Initial Development We compare the initial develop-
ment effort in terms of loc in both Steel and the cur-
rent cloud environments. Figure 5-a shows the results
for the 6 chosen applications. Our abstraction reduces
the loc between 1.7x to 4.8x across the different applica-
tions compared to the current system. This improvement
is due to two main factors: 1. the hidden glue services
added automatically by the system, and 2. the substan-
tially reduced configurations (≈ 1–2 loc) required for
connecting services. Our abstraction works best when
there are multiple services per location. For examples,
Application 5 is spread across many edges, each edge
performing one service and the cloud joining the results
(followed by additional computation). Since the edge
part is simple (single stage), there is little improvement
there, and the improvement mostly comes from the cloud
part, resulting in an overall smaller improvement (1.7x).

Modifications Being able to dynamically move services
is a crucial feature when going to the edge. We evaluate
the changes required when making a move. We start with
an all-cloud deployment of Application 3 (the longest
chain), and move its services {A,B,C,D} one by one to
the edge. We measure the loc changes (add, modify, or
delete) required at each step, compared to the all-cloud
deployment. As shown in Figure 5-b, Steel provides a
constant and small over head of around 2 loc per change
of a service location, as only the location map needs to be
updated (in Figure 2.1). However, current systems need
100s of loc changes, between 260–360 loc for Applica-
tion 3, both to add glue components and to reconnect the
services. Steel reduces over 95% of this overhead.

5 Related Work

Abstractions: Mobile fog [29], Beam [41], and [13]
propose abstractions to hide the complexities and hetero-
geneity of the edge. General purpose abstractions [21],
have also emerged for building large-scale, elastic, and
reliable applications. However, none integrate with ex-
isting cloud services (despite the need for doing so [18]).

0

100

200

300

400

L
in

es
 o

f
C

o
n

fi
g

s

Steel current

(a) Initial Development

2 4 6 8
0

50

100

150

200

Steel current

(b) Movement of App3

Figure 5: Comparison of lines of config required in Steel

and current systems for a) developing applications, and

b) moving a service {A,B,C,D} within an application.

Edge-Cloud Frameworks: To leverage the edge, many
end-to-end edge-cloud frameworks have emerged, e.g.,
FarmBeats for agricultural IoT, Race, and GigaSight
[22, 40, 43]. Although these systems handle abstraction,
deployment, and optimizations, they are each tailored for
a specific usecase (e.g, remote agriculture fields), and do
not generalize to custom data-processing applications.

Edge Deployment: Dynamic and inter-operable deploy-
ment across heterogeneous devices is essential for the
edge. Micro-cloud, Cloudlets, Openstack++, and oth-
ers [13, 19, 25, 28, 30, 33, 38] have proposed portable and
dynamic infrastructures using either containers or virtual
machines. However, this is orthogonal to the need of
simplifying the development of edge-cloud applications.

Migration and Placement: Dynamically placing and
moving computation is not a new concept. Maui and
CloneCloud [23, 24] have explored this with mobiles as
the edge. MigCEP [35], VM Handoff [27], and [44]
optimize the dynamic migration between edges, based
on different constraints, e.g., latency. While these ap-
proaches can be added as optimizations modules to Steel,
they do not support current cloud services.

6 Conclusion

This paper describes Steel, a high-level framework de-
signed specifically for building complex data processing
applications in the emerging edge-cloud environment.
We design Steel to hide the complexities of developing,
deploying, and monitoring data processing applications
using many cloud services, and to support dynamically
adapting and easily moving services back and forth be-
tween the edge and the cloud. Steel is an extensible
framework where common but crucial optimizations for
the edge (e.g., placement, load balancing, communica-
tion) can be built as pluggable and configurable modules.

As part of future work, we plan to further investi-
gate optimizations and requirements in an edge-cloud
environment, including supporting security/privacy, and
develop efficient edge-oriented solutions as pluggable
modules in Steel. Moreover, we are working on extend-
ing the abstraction to incorporate both resource alloca-
tions, ideally being set automatically by Steel, and ser-
vice level agreements for building better optimizations.

References
[1] Amazon CloudWatch. https://aws.amazon.com/

cloudwatch/. Accessed: 08/2017.

[2] Applciation Insights. https://azure.microsoft.

com/en-us/services/application-insights/.

Accessed: 08/2017.

[3] AWS Greengrass. https://aws.amazon.com/

greengrass/. Accessed: 08/2017.

[4] Azure Internet of Things. https://azure.microsoft.

com/en-us/suites/iot-suite/. Accessed: 02/2018.

[5] Azure IoT Edge. https://azure.microsoft.com/

en-us/services/iot-edge/. Accessed: 08/2017.

[6] Cloud Products & Services - Amazon Web Services

(AWS). https://aws.amazon.com/products/. Ac-

cessed: 02/2018.

[7] Datadog – Modern monitoring & analytics. https://

www.datadoghq.com/. Accessed: 08/2017.

[8] Deploy Azure Function as an IoT Edge module - pre-

view. https://docs.microsoft.com/en-us/azure/

iot-edge/tutorial-deploy-function. Accessed:

08/2017.

[9] Directory of Azure Cloud Services. https:

//azure.microsoft.com/en-us/services/. Ac-

cessed: 02/2018.

[10] Docker. https://www.docker.com/. Accessed:

08/2017.

[11] Gartner Forecasts Worldwide Public Cloud Services

Revenue to Reach $260 Billion in 2017. https:

//www.gartner.com/newsroom/id/3815165. Ac-

cessed: 02/2018.

[12] Google Cloud Platform – Products & Services.

https://cloud.google.com/products/. Accessed:

02/2018.

[13] Multi-access Edge Computing. http://www.etsi.

org/technologies-clusters/technologies/

multi-access-edge-computing. Accessed: 08/2017.

[14] Predictive maintenance preconfigured so-

lution walkthrough. https://docs.

microsoft.com/en-us/azure/iot-suite/

iot-suite-predictive-walkthrough. Accessed:

08/2017.

[15] Roundup Of Cloud Computing Fore-

casts, 2017. https://www.forbes.

com/sites/louiscolumbus/2017/04/29/

roundup-of-cloud-computing-forecasts-2017/.

Accessed: 02/2018.

[16] Stackdriver Monitoring. https://cloud.google.

com/monitoring/. Accessed: 08/2017.

[17] What is Azure IoT Suite. https://docs.

microsoft.com/en-us/azure/iot-suite/

iot-suite-what-are-preconfigured-solutions.

Accessed: 08/2017.

[18] BAHL, P., HAN, R. Y., LI, L. E., AND SATYA-

NARAYANAN, M. Advancing the state of mobile cloud

computing. In Proceedings of the third ACM workshop

on Mobile cloud computing and services (2012), ACM,

pp. 21–28.

[19] BHARDWAJ, K., SREEPATHY, S., GAVRILOVSKA, A.,

AND SCHWAN, K. Ecc: Edge cloud composites. In

Proceedings of the International Conference on Mobile

Cloud Computing, Services, and Engineering (Mobile-

Cloud) (2014), IEEE.

[20] BONOMI, F., MILITO, R., ZHU, J., AND ADDEPALLI,

S. Fog computing and its role in the internet of things. In

Proceedings of the first edition of the MCC workshop on

Mobile cloud computing (2012), ACM.

[21] BYKOV, S., GELLER, A., KLIOT, G., LARUS, J. R.,

PANDYA, R., AND THELIN, J. Orleans: cloud computing

for everyone. In Proceedings of the Symposium on Cloud

Computing (SoCC) (2011), ACM.

[22] CHANDRAMOULI, B., CLAESSENS, J., NATH, S., SAN-

TOS, I., AND ZHOU, W. Race: Real-time applications

over cloud-edge. In Proceedings of the International

Conference on Management of Data SIGMOD) (2012),

ACM.

[23] CHUN, B.-G., IHM, S., MANIATIS, P., NAIK, M., AND

PATTI, A. Clonecloud: elastic execution between mobile

device and cloud. In Proceedings of the conference on

Computer systems (2011), ACM.

[24] CUERVO, E., BALASUBRAMANIAN, A., CHO, D.-K.,

WOLMAN, A., SAROIU, S., CHANDRA, R., AND BAHL,

P. Maui: making smartphones last longer with code

offload. In Proceedings of the international conference

on Mobile systems, applications, and services (MobiSys)

(2010), ACM.

[25] ELKHATIB, Y., PORTER, B., RIBEIRO, H. B., ZHANI,

M. F., QADIR, J., AND RIVIÈRE, E. On using micro-

clouds to deliver the fog. Internet Computing 21, 2

(2017).

[26] GARCIA LOPEZ, P., MONTRESOR, A., EPEMA, D.,

DATTA, A., HIGASHINO, T., IAMNITCHI, A., BARCEL-

LOS, M., FELBER, P., AND RIVIERE, E. Edge-centric

computing: Vision and challenges. SIGCOMM Computer

Communication Review 45, 5 (2015).

[27] HA, K., ABE, Y., CHEN, Z., HU, W., AMOS, B., PIL-

LAI, P., AND SATYANARAYANAN, M. Adaptive vm

handoff across cloudlets. Technical Report CMU-CS-15–

113, CMU School of Computer Science (2015).

[28] HA, K., AND SATYANARAYANAN, M. Openstack++

for cloudlet deployment. School of Computer Science

Carnegie Mellon University Pittsburgh (2015).

[29] HONG, K., LILLETHUN, D., RAMACHANDRAN, U.,

OTTENWÄLDER, B., AND KOLDEHOFE, B. Mobile fog:

A programming model for large-scale applications on the

internet of things. In Proceedings of the SIGCOMM

workshop on Mobile cloud computing (2013), ACM.

[30] HU, Y. C., PATEL, M., SABELLA, D., SPRECHER, N.,

AND YOUNG, V. Mobile edge computing—a key tech-

nology towards 5g. ETSI white paper 11, 11 (2015).

[31] KALDOR, J., MACE, J., BEJDA, M., GAO, E.,

KUROPATWA, W., O’NEILL, J., ONG, K. W.,

SCHALLER, B., SHAN, P., VISCOMI, B., ET AL.

Canopy: An end-to-end performance tracing and analysis

system. In Proceedings of the Symposium on Operating

Systems Principles (SOSP) (2017), ACM.

[32] KALIM, F., NOGHABI, S. A., AND VERMA, S. To edge

or not to edge? In Proceedings of the Symposium on

Cloud Computing (SoCC) (2017), ACM.

[33] LEE, E. A., HARTMANN, B., KUBIATOWICZ, J., ROS-

ING, T. S., WAWRZYNEK, J., WESSEL, D., RABAEY,

J., PISTER, K., SANGIOVANNI-VINCENTELLI, A., SE-

SHIA, S. A., ET AL. The swarm at the edge of the cloud.

Design & Test 31, 3 (2014).

[34] NOGHABI, S. A., KOLB, J., BODIK, P., AND CUERVO,

E. Unified management and optimization of edge-cloud

iot applications. arXiv preprint arXiv:1805.02305 (2018).

[35] OTTENWÄLDER, B., KOLDEHOFE, B., ROTHERMEL,

K., AND RAMACHANDRAN, U. Migcep: operator mi-

gration for mobility driven distributed complex event pro-

cessing. In Proceedings of the international conference

on Distributed event-based systems (2013), ACM.

[36] RYDEN, M., OH, K., CHANDRA, A., AND WEISSMAN,

J. Nebula: Distributed edge cloud for data intensive com-

puting. In Proceedings of the International Conference

on Cloud Engineering (IC2E) (2014), IEEE.

[37] SATYANARAYANAN, M. The emergence of edge com-

puting. Computer 50, 1 (2017).

[38] SATYANARAYANAN, M., BAHL, P., CACERES, R., AND

DAVIES, N. The case for vm-based cloudlets in mobile

computing. Pervasive Computing 8, 4 (2009).

[39] SATYANARAYANAN, M., LEWIS, G., MORRIS, E.,

SIMANTA, S., BOLENG, J., AND HA, K. The role of

cloudlets in hostile environments. Pervasive Computing

12, 4 (2013).

[40] SATYANARAYANAN, M., SIMOENS, P., XIAO, Y., PIL-

LAI, P., CHEN, Z., HA, K., HU, W., AND AMOS, B.

Edge analytics in the internet of things. Pervasive Com-

puting 14, 2 (2015).

[41] SHEN, C., SINGH, R. P., PHANISHAYEE, A., KANSAL,

A., AND MAHAJAN, R. Beam: Ending monolithic ap-

plications for connected devices. In Proceedings of the

Annual Technical Conference (ATC) (2016), USENIX,

pp. 143–157.

[42] SHI, W., CAO, J., ZHANG, Q., LI, Y., AND XU, L. Edge

computing: Vision and challenges. Internet of Things

Journal 3, 5 (2016).

[43] VASISHT, D., KAPETANOVIC, Z., WON, J., JIN, X.,

CHANDRA, R., SINHA, S. N., KAPOOR, A., SUDAR-

SHAN, M., AND STRATMAN, S. FarmBeats: An iot plat-

form for data-driven agriculture. In Proceedings of the

Symposium on Networked Systems Design and Implemen-

tation (NSDI) (2017), USENIX.

[44] WANG, S., URGAONKAR, R., ZAFER, M., HE, T.,

CHAN, K., AND LEUNG, K. K. Dynamic service mi-

gration in mobile edge-clouds. In Proceedings of the IFIP

Networking Conference (IFIP Networking) (2015), IEEE.

