
Low-Profile Source-side Deduplication for Virtual Machine Backup
Daniel Agun?, Tao Yang?, and Wei Zhang†

? University of California at Santa Barbara †Pure Storage Inc.

Abstract
This paper presents a source-side backup scheme with

low-resource usage through collaborative deduplication
and approximated lazy deletion when frequent virtual
machine snapshot backup is required in a large-scale
cloud cluster. The key ideas are to orchestrate multi-
round duplicate detection batches among machines in a
partitioned asynchronous manner and remove most un-
referenced content chunks with approximated snapshot
deletion. This paper discusses the challenges, main de-
sign and strategies, and evaluation results.

1 Introduction
Frequent backup of virtual machine (VM) snapshots in-
creases the reliability of VMs hosted in a cloud. For ex-
ample, Aliyun [1], the largest cloud service provider by
Alibaba in China, intends to provide automatic frequent
backup of all VM images [17]. The challenge is the
sheer size of backup data to be transmitted and stored.
Source-side deduplication [15, 14, 7] eliminates dupli-
cates before backup data is transmitted; however, its
computing resource usage can impact other co-located
cloud services. Using a simple dirty-bit method to de-
tect version [4, 15] can identify duplicates among snap-
shots [15, 14, 7]. Still there is a large amount of network
transmission for sending undeduped data. For example,
our experimental data with Alibaba datasets show that
after dirty bit detection each VM can still send over 24%
of raw data chunks to the back end storage. In a cluster
with 100,000 VMs with average size of VM snapshot
size as 40GB, the total amount of dirty data sent over
the network could exceed 0.96 petabyte. Backup prod-
ucts such as ones from NetApp or EMC typically deploy
advanced deduplication techniques [10, 19, 9, 12] at the
target side. These techniques are memory-intensive even
with optimization or approximation [8, 5, 2, 6] and are
not ideal for source-level deduplication.

Since backup is a secondary service, cloud providers
normally do not want it to contend for resources with
other collocated primary services, and it is an open prob-
lem how to exploit aggressive source-side deduplication
without impacting other collocated cloud services. The
focus of this paper is to address this challenge for scal-
able cloud VM backup. Most previous work on
deduplication [19, 2, 5, 9, 8, 12, 17, 16] is an inline ap-
proach which uses relatively extensive resources (e.g. a

few gigabytes of memory per machine) to optimize the
performance of each individual chunk backup operation.
The trade-off we play is to develop a low-cost dedupli-
cation that optimizes the average backup time of a VM
snapshot instead of individual chunk backup operations.

Our previous work on source-side deduplication uses
multi-stage synchronous processing [18] with a key dis-
advantage is that multi-stage synchronization is vulner-
able when some participating machine is abnormally
slow. The slowness can be caused by a failure or load
imbalance due to uneven VM image size distribution.
For example, the VM size distribution of production
clusters at Alibaba is highly skewed. Figure 1 shows two
such clusters, with the left and right clusters having 4200
and 8000 VMs respectively, and skews (Max/Average
VM size) of 20 and 45. The deduplication cost in [16]
depends on the the shared index size and as the num-
ber of VMs increase, the solution can become expen-
sive in terms of memory and CPU usage. Another key
weakness in [18, 16] is that snapshot deletion is not
addressed. When deleting unused snapshots, a grouped
mark-and-sweep approach [8] is effective, but still car-
ries a significant cost in a distributed setting (see Sec-
tion 5). To provide a full low-cost solution, this paper
also addresses the scalable deletion challenge.

0 50 100

0

2

4

VM Size (GB)

Pe
rc

en
to

fV
M

s

0 50 100

0

2

4

VM Size (GB)

Pe
rc

en
to

fV
M

s

Figure 1: Skewed VM size distribution in two production clusters

2 Strategies and Architecture
Figure 2 illustrates a cloud cluster platform targeted by
our scheme. Each server hosts multiple VMs and the
co-located backup service collects and fulfills snapshot
backup requests for VMs every day. The backup data
can be transmitted to a separate secondary storage or to
a distributed storage system in this cluster. While VM
data is stored in a distributed file system, each machine
typically caches actively used virtual images; the backup
service can exploit the cached copy so that reading mod-
ified backup data can be conducted locally.



. . .

Cluster Machine

VM

VM

VM

VM
. . .

Cluster Machine

VM

VM

VM

VM
. . .

Cluster Machine

VM

VM

VM

VM
. . .

Cluster Machine

VM

VM

VM

VM· · ·

Collaborative Source-Side Dedupe Service

Secondary Storage

Figure 2: Targeted cloud cluster architecture

Strategies. For inner-VM deduplication, each ma-
chine can conduct local deduplication using the dirty-bit
method. For the remaining duplicates, cross-VM dedu-
plication is necessary and we adopt the VM-centric strat-
egy [16] which simplifies the cross-VM deduplication
by focusing on top-k popular duplicates. This is be-
cause global deduplication that detects the appearance
of a chunk in any VM requires a substantial resource
for cross-machine fingerprint comparison. Our exper-
imental results show that choosing the top 2-4% most
popular items (called PDS) for cross-VM deduplication
can accomplish close to 98% of deduplication efficiency
compared to full deduplication.

We propose two new strategies to accomplish aggres-
sive source-side deduplication with minimal resource
usage. 1) Distribute the signature index such as PDS in-
dex to a cluster of cloud machines and compare the sig-
natures of candidate chunks with distributed index asyn-
chronously in a multi-round collaborative manner. The
asynchronous elimination is necessary to better tolerate
load imbalance and straggling tasks. Such a scheme re-
quires a significant amount of buffer space and also some
stragglers slow down the entire process and increase the
average VM backup time. We play a trade-off through
multi-round batch scheduling to limit the size of buffer
memory usage and detect the stragglers more aggres-
sively while still allowing a good load balancing.

2) Snapshot deletions can occur frequently since
old snapshots become less useful. To filter out un-
referenced data from shared duplicates, it would require
either maintaining expensive live schemas or conducting
global reference counting [8, 13]. We propose an ap-
proximation strategy and take advantages of separating
popular data chunks from unpopular ones to minimize
resource utilization. For chunks used by different snap-
shots within the same VM, we use a bloom-filter for ap-
proximated reference counting with periodic repair. For
chunks that are shared among VMs as popular items, we
delay reference counting as much as possible, assuming
other VMs still use such chunks.

Software architecture. Fingerprint index for pop-
ular chunks is partitioned and distributed among the
cloud machines that participate in collaborative dedupli-
cation. Each physical machine that hosts a VM reads
dirty chunks, performs inner-VM duplicate detection,

and then sends the signatures of the remaining dirty data
to other machines that host popular signature partitions.
Thus each machine that hosts a VM and a deduplica-
tion service runs the two agents asynchronously. The
backup agent at each machine leverages the dirty-bit
change tracking and inner VM deduplication, and then
runs three concurrent threads. The request thread sched-
ules the backup in batches, and initiates duplicate de-
tection requests for each scheduled VM. It reads the
dirty documents, divides them into chunks, and com-
putes chunk fingerprints [11]. Then it sends a duplicate
detection request for each chunk to a proper machine.
The second thread is to accumulate responses from du-
plicate detection agents, and the third thread performs
the real backup of non-duplicate chunks. The dupli-
cate detection agent manages three threads to accumu-
late detection requests and compares them to local index
data periodically. It also updates the index when new
fingerprints are added the system. The main thread per-
forms multiple rounds of fingerprint comparisons and
the multi-round setting provides a flexibility to handle
the skewed workload so that small VM data backup can
be handled as early as possible.

When some machines fail or respond slowly, a backup
agent sets up a timeout and activates a detection task in
another machine or temporarily considers these unpro-
cessed requests as non-duplicates. The system conducts
global cleanup and removes undetected duplicates peri-
odically (e.g. every few months).

VM
Detection
Request

VM
Detection
Request

VM
Detection
Request

VM
Backup
Output

VM
Backup
Output

VM
Backup
Output

Round 1

Round 2

Round 3

Duplicate Detection

Machine 1 Machine 2 Machine 3

Figure 3: 3-round comparison batches.

3 Scheduling and Resource Control
Each backup agent conducts k rounds of backup batches
and it selects the request initiation of a VM with a
smaller data size first. The objective is to complete the
backup of small VMs first and to shorten the average
backup time per VM. Figure 3 shows an example of
scheduling in which 3 rounds of fingerprint comparison
are triggered at each machine. To control memory
usage, we divide the entire fingerprint index evenly and
distribute to pmachines. For simplicity, we assume each
machine hosts VMs and also participates in collabora-
tive deduplication. Each machine further divides the lo-
cal index to q partitions so that the duplicate detection



agent loads one index partition at a time during com-
parison with a small memory need. The main memory
usage is buffering for communication among machines.
1) Each backup agent uses p request send buffers and
V
p∗k response receive buffers per machine where V is the
total number of VMs hosted in a cluster; 2) Each dupli-
cate detection agent uses p request receive buffers and p
send buffers. The fingerprint comparison thread needs
memory to load one of q on-disk index partitions and
the requests for that partition. The total memory usage
is about D∗Vr∗p [ 1

k∗q + bµ
q + 1

k ] where D is the amount of
modified data per VM that needs backup after inner VM
deduplication; µ is the percentage of unique chunk en-
tries among dirty data accumulated in all snapshots; b is
the average number of snapshot versions maintained for
each VM; r is the ratio of average chunk size over the
index entry size. When the overall index size increases,
the memory cost can still be well controlled by increas-
ing q value. This is a key advantage over [16].

Large k value reduces the overall space significantly,
but it increases the chance of load imbalance, the cost of
synchronization, and also the cost of disk I/O in repeated
reading of signature index data for k-round comparisons.
Our rule is to allocate less than 100MB of memory usage
per machine. The above formula then leads to the esti-
mation of k. For our test data with k=12 which means
9% of VM is handled at a time for each machine.

When a VM is extremely large, special handling is
needed to control memory usage. The backup agent di-
vides this VM into a number of sub-VMs and the size of
each sub-VM is the same as the average VM size in the
cluster. The response accumulation thread buffers the
detection response for a chunk based on its correspond-
ing sub-VM ID. The backup data output thread reads
one sub-VM at a time for this VM, and checks duplicate
status from the corresponding sub-VM response buffer.
The metadata for the VM can then be reconstructed by
appending each sub-VM’s metadata.

For local disk storage usage, cost for buffering mes-
sages and storing distributed fingerprint index is rela-
tively small. In our tested dataset, the total disk over-
head is under 10GB per machine. The CPU usage is
also small, less than 15% of one core during our exper-
iments. The main resource usage in our asynchronous
scheme that may create a resource contention is memory
and disk I/O bandwidth. For disk I/O bandwidth usage,
we set a bandwidth limit with I/O throttling so that other
cloud services are minimally impacted. In our experi-
ment, the limit is 60MB/s, which is about 20% of the
peak local storage bandwidth.

4 Approximated Lazy Snapshot Deletion
For chunks that are shared among VMs as popular items,
we do not need to remove them if other VMs still use the

chunk. The system periodically gathers usage informa-
tion in each index partition, recomputes the top popu-
lar items, and adjusts the deletion decisions since each
machine maintains the usage information of each chunk
per partition. For chunks which are not shared by other
VMs, we need to quickly identify if they are used by
other snapshots of the same VM. Since the VM size is
highly skewed in practice, a large VM may still require a
substantial amount of memory for the mark-and-sweep
process of data chunks used by all snapshots of this VM.
We use a Bloom filter per snapshot to quickly check if
the chunks are still referenced by living snapshots. The
approximate deletion algorithm contains three aspects.

Computation for snapshot reference summary. Ev-
ery time there is a new snapshot created, we compute a
Bloom-filter with z bits as the reference summary vec-
tor for all non-popular chunks used in this snapshot. The
items we put into the summary vector are all the refer-
ences appearing in the metadata of the snapshot.

Fast approximate deletion with summary compar-
ison. To approximately identify if chunks are still used
by other undeleted snapshots, we compare the reference
of deleted chunks with the merged reference summary
vectors of other live snapshots. The merging of live
snapshot Bloom-filter vectors uses the bit-wise OR oper-
ator. Since the number of live snapshots h is limited for
each VM, the time and memory cost of this comparison
is small, linear to the number of chunks to be deleted.
If a chunk’s reference is not found in the merged sum-
mary vector, this chunk is not used by any live snap-
shots. Thus it can be deleted safely. However, among
all the chunks to be deleted, there are a small percentage
of unused chunks which are misjudged as being in use,
resulting in storage leakage.

One advantage of the above fast method is that it can
finish and free storage usage immediately, while other
off-line methods (e.g. [8, 3]) can’t. That is important
for storage accounting as users pay for used storage and
delayed deletion affects the accounting.

Periodic repair of leakage. Leakage repair is con-
ducted periodically to fix the above approximation error
by comparing the live chunks for each VM with what
are truly used in snapshot recipes. Since it is a VM-
specific procedure, the space cost is proportional to the
number of chunks within each VM. This is much less ex-
pensive than the VM-oblivious mark-and-sweep which
scans snapshot chunks from all VMs, even with opti-
mization [8]. We have conducted an analysis to estimate
on how often leak repair should be conducted. Assume
that a VM keeps h snapshots in backup storage, creates
and deletes one snapshot every day. Let u be the num-
ber of chunks brought by initial backup for a VM, ∆u
be the average number of additional chunks added from
one version to next snapshot version. ε is the misjudg-



ment rate of being in use caused by the merged Bloom
filter. Each Bloom filter vector has z bits for each snap-
shot and let j be the number of hash functions used by
the Bloom filter. Then ε = (1 − (1 − 1

z )jU )j where
U = u + (h − 1)∆u. The number of snapshot dele-
tions when reaching a storage leakage ratio τ can be de-
rived as: τε ×

u+(h−1)∆u
∆u . For the test data in Section 5,

h = 10, ∆u/u = 2.5%. To control the leakage under
the desired threshold τ = 0.1, leak repair is needed ev-
ery 19.6 days following the above formula.

5 Evaluation
We have evaluated our prototype implementation on a
Linux cluster with 8-core 3.1GHz AMD FX-8120using
a production dataset from Alibaba Aliyun’s cloud plat-
form [1]. There are 2500 VMs running on 100 physical
machines, each machine hosts up to 25 VMs, and each
VM keeps 10 snapshots in backup storage. Each VM has
about 40GB of storage data on average. The fingerprint
for variable-sized chunks is computed using their SHA-1
hash. We have also included some synthetic traces based
on VM size distributions from larger Alibaba clusters
(see Figure 1). We compare three source-side dedupli-
cation schemes. 1) Pure dirty-bit detection. All data
are divided into 2MB fix-sized segments and only dirty
segments are sent to backup storage. 2) Synchronous
multi-stage scheme [18]. 3) Asynchronous scheme.

Resource usage. Table 1 compares resource con-
sumption. Column 2 shows the memory required dur-
ing deduplication and backup per physical machine.
Fingerprint comparison does need more memory than
the pure dirty-bit method. The multi-round collabora-
tive scheme uses concurrent thread processing and thus
requires more memory than the synchronous scheme.
However we limit its memory usage to 90MB, which
is a small fraction of the available memory on a server.
Column 3 of Table 1 shows the total size of local disk IO
required. Our scheme reads backup data twice, thus dou-
bling the I/O size. The collaborative scheme does incur
slightly more I/O than the synchronous one because of
k rounds of fingerprint comparison. Column 4 lists the
final size of output data sent to the backup storage for
2500 VMs with p = 100. The dirty-bit method reduces
the data size by 75.86%. The final data after our collab-
orative deduplication is 4.55x smaller. Column 5 shows
the network communication size including backup data
transmission, and inter-machine deduplication message
exchange. The pure dirty-bit approach does not have
inter-machine deduplication, but communicates 4x more
data because of more undetected duplicates.

Processing time. Table 2 shows the total job
time (job span in hours) in Column 2 for a synthetic
2500 VM dataset with a skewed VM size distribution
(max/average=20) following Figure 1. Columns 3 is the

Algorithm Mem Local IO Storage Network
(MB) (GB) (GB) (GB)

Dirty Bit <10 220 22000 22000
Synchronous 40 453 4840 5500
Collaborative 90 491 4840 5500

Table 1: Resource usage comparison per snapshot. Local disk IO and mem-
ory costs are per machine. Storage and network cost are for 100 physical ma-
chines after deduplication.

Hours Job span Backup time Backup time
per VM (even) per VM (skew)

Dirty Bit 1.25 0.05 0.05
Synchronous 50.40 2.75 50.40
Collaborative 2.36 0.23 0.23
Table 2: Job span and average per-VM backup time

average per-VM backup time for this dataset with a rel-
atively even size distribution. Column 4 shows the per-
VM time when VM size is skewed. Our scheme reads
VM data twice, and thus doubles the job span. Collabo-
rative processing uses 12 rounds and is much faster than
the synchronous scheme. In the skewed case, backup
time per VM is very high for the synchronous scheme
because all VMs must wait for the completion of large
VMs at each synchronized stage.

Impact of k rounds. Figure 4 shows the average
backup time per VM and job span in the asynchronous
scheme. As k increases, the average backup reduces be-
cause a large k value provides more opportunities for
earlier VM output and the job span increases slightly be-
cause more multi-round processing overhead.

0 10 20
0

1

2

k (rounds)

Ti
m

e
(h

rs
)

Total Job span
Average VM backup

Figure 4: Job span and average per-VM backup time

Effectiveness of Approximate Deletion. Table 3 lists
a comparison of processing time and memory usage us-
ing the four deletion methods when the number of phys-
ical machines p = 100 and p = 50. These four methods
are 1) the standard mark-and-sweep method. 2) Grouped
mark-and-sweep [8]. 3) local without using summary
vectors (Row 4). 4) approximate local with summary
vectors. Last row of Table 3 is the cost of the leakage
repair for local with summary vectors. The mark-and-
sweep process requires all machines read snapshot meta-
data for usage comparison. The I/O read speed for the
backend distributed file system is about 50MB/second
and there is some throughput contention when all ma-
chines read data simultaneously: the speed drops to
about 30MB/second when p = 50 and 25MB/s with



Time p=50 Time p=100 Memory
(hours) (hours) (GB)

Mark&sweep 35.9 84.3 1.2–3
Grouped 18.6 43.6 1.2–3

mark&sweep
Local w/o sum. 0.7 0.82 0.05 – 1.96
Approx. local 0.012 0.014 0.015

Leak repair 0.7 0.82 0.05 – 1.96

Table 3: Processing time and per-machine memory usage of
four deletion methods

p = 100. We explain the results for p = 100 below.
The explanation for p = 50 is similar and the result dif-
ference for p = 100 and p = 50 shows our deletion
method scales well when p increases.

For the mark-and-sweep method (Row 2 of Table 3)
on p = 100, we conduct p phases of the mark-and-sweep
process. At each phase, a physical machine reads 1/p of
the non-deduplicated chunk metadata and keeps a refer-
ence table in the memory. Then all machines read the
meta data of snapshots in parallel and mark the used
chunks in the above reference table. The above phase
is repeated 100 times (one for for each physical ma-
chine). The memory allocated at each physical machine
is for the chunk reference table at each phase. the aver-
age size is 1.2GB and the maximum is 3GB due to data
skew. There is a trade-off between memory usage of a
reference table in terms of the size and the total process-
ing time. If we reduce the size of the reference table
at each phase, then there are more phases to mark all
data and the whole process will take more time. For the
grouped mark-and-sweep (Row 3), about 50% of snap-
shot metadata reading can be avoided by actively track-
ing the reference usage of non-duplicate chunks. Thus
it takes 50% less time, which is about 43 hours, but the
memory requirement does not decrease. Notice that in
our setting because snapshot deletion occurs frequently,
the grouped mark-and-sweep approach becomes less ef-
fective in reducing metadata I/O.

For the local deletion without summary vectors (Row
4 of Table 3), all physical machines conduct the mark-
and-sweep process in parallel, but each machine only
handles one VM at time and the scope of meta data
comparison is controlled within the single VM. Popu-
lar chunks are excluded. The average memory usage is
the index size of non-deduplicated VM chunks, which is
about 50MB on average and the largest size is 1.96GB.
For approximate deletion with summary vectors (Row
5), each physical machine loads the VM snapshots and
only needs to compare with the summary vectors. The
memory usage is controlled around 15MB for hosting
the summary vectors and small buffers. The deletion
time is reduced to less than 1 minute. The periodic leak-
age repair (Row 6) still takes about 0.83 hours while us-
ing an average of 50MB memory. For few big VMs due
to data skew, their repair uses upto 1.9GB memory and
lasts about 1 minute. Such a repair does not occur often

Deletions 1 3 5 7 9
Estimated .02% .06% .10% .14% .18%
Measured .01% .055% .09% .12% .15%

Table 4: Accumulated storage leakage by approximate
snapshot deletions (∆u/u = 0.025)
(e.g. every 19.6 days).

Table 4 shows percentage of unused storage space per
VM misjudged as “in use” due to approximate dele-
tion. In this experiment, we select 105 VMs and let
all the VMs accumulate 10 snapshot versions, then start
to delete those snapshots one by one in reverse order.
Row 1 in Table 4 is the number of snapshot versions
deleted. Entry value 3 in this row means that snapshot
versions of all VMs from 1 to 3 are deleted. Row 2 is
based on a predicted leakage analysis briefly discussed
in Section 4. given ∆u/u = 0.025, while row 3 lists the
actual average leakage measured during the experiment
for all the VMs. The Bloom filter setting is based on
∆u/u = 0.025. After 9 snapshot deletions, the actual
leakage ratio reaches 0.0015 and this means that there
is only 1.5MB space leaked for every 1GB of stored
data. The actual leakage can reach 4.1% after 245 snap-
shot deletions for all VMs. This experiment shows that
the leakage of our approximate snapshot deletion is very
small, below the estimated number.

6 Concluding Remarks
The contribution of this work is a scalable solution
with multi-round source-side deduplication and approx-
imated deletion for frequent VM snapshot backup. For
the tested dataset, the network cost is reduced by 4x
and storage cost is reduced by 4.55x compared to a
pure dirty-bit-based method. The multi-round dedupli-
cation is an order of magnitude faster than a synchronous
scheme, when some machines are very slow or have a
skewed load. Approximate snapshot deletion only re-
quires 15MB per machine within 1 minute in the tested
cases, which is over 3114x faster than the grouped mark-
and-sweep method. Leakage repair is 53x faster with
35% to 96% less memory usage. If we were handling
the case mentioned in Section 1 with 100,000 VMs using
4000 machines, the size of all VM snapshots sent could
be reduced from 0.96 petabyte with a dirty-bit method
to 196 terabytes while each physical machine uses about
90MB memory, 10GB disk space, and less than 1% of
CPU and sends about 6.6GB metadata for low-profile
duplication in less than 3 hours.

Acknowledgments. We thank the anonymous referees for
their comments. This work is supported in part by NSF IIS-
1528041 and IIS-1118106. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
NSF.



References
[1] Alibaba Aliyun. http://www.aliyun.com.

[2] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lil-
libridge. Extreme Binning: Scalable, parallel
deduplication for chunk-based file backup. In
IEEE MASCOTS ’09, pages 1–9.

[3] F. C. Botelho, P. Shilane, N. Garg, and W. Hsu.
Memory efficient sanitization of a deduplicated
storage system. In FAST’13, pages 81–94.
USENIX.

[4] A. T. Clements, I. Ahmad, M. Vilayannur, and
J. Li. Decentralized deduplication in san cluster
file systems. In ATC’09. USENIX.

[5] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,
and P. Shilane. Tradeoffs in scalable data routing
for deduplication clusters. In FAST’11, pages 2–2.
USENIX.

[6] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
Y. Zhang, and Y. Tan. Design tradeoffs for data
deduplication performance in backup workloads.
In Proc. of USENIX FAST 2015, pages 331–344,
2015.

[7] Y. Fu, H. Jiang, N. Xiao, L. Tian, F. Liu, and L. Xu.
Application-aware local-global source deduplica-
tion for cloud backup services of personal storage.
IEEE Trans. Parallel Distrib. Syst., 25(5):1155–
1165, 2014.

[8] F. Guo and P. Efstathopoulos. Building a high-
performance deduplication system. In ATC’11,
pages 25–25. USENIX.

[9] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deo-
lalikar, G. Trezis, and P. Camble. Sparse Index-
ing: Large Scale, Inline Deduplication Using Sam-
pling and Locality. In FAST’09, pages 111–123.
USENIX.

[10] S. Quinlan and S. Dorward. Venti: A New Ap-
proach to Archival Storage. In FAST’02, pages 89–
101. USENIX.

[11] M. O. Rabin et al. Fingerprinting by random
polynomials. Center for Research in Comput-
ing Techn., Aiken Computation Laboratory, Univ.,
1981.

[12] K. Srinivasan, T. Bisson, G. Goodson, and K. Voru-
ganti. idedup: latency-aware, inline data dedupli-
cation for primary storage. In FAST’12, pages 24–
24. USENIX.

[13] P. Strzelczak, E. Adamczyk, U. Herman-Izycka,
J. Sakowicz, L. Slusarczyk, J. Wrona, and C. Dub-
nicki. Concurrent deletion in a distributed content-
addressable storage system with global deduplica-
tion. In FAST, pages 161–174, 2013.

[14] Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan, and
G. Zhou. SAM: A semantic-aware multi-tiered
source de-duplication framework for cloud backup.
In 39th International Conference on Parallel Pro-
cessing, ICPP 2010, San Diego, California, USA,
13-16 September 2010, pages 614–623, 2010.

[15] M. Vrable, S. Savage, and G. M. Voelker. Cumu-
lus: Filesystem backup to the cloud. In FAST’09,
pages 225–238. USENIX.

[16] W. Zhang, D. Agun, T. Yang, R. Wolski, and
H. Tang. Vm-centric snapshot deduplication for
cloud data backup. In Proc. of 31st Int. Conf. on
Massive Storage Systems and Technologies, 2015.

[17] W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and
Y. Zeng. Multi-level selective deduplication for vm
snapshots in cloud storage. In IEEE CLOUD’12,
pages 550–557.

[18] W. Zhang, T. Yang, G. Narayanasamy, and
H. Tang. Low-cost data deduplication for virtual
machine backup in cloud storage. In HotStor-
age’13. USENIX.

[19] B. Zhu, K. Li, and H. Patterson. Avoiding the
disk bottleneck in the data domain deduplication
file system. In FAST’08, pages 1–14. USENIX.


