Supporting Dynamic GPU Computing Result Reuse in the Cloud

Husheng Zhou, Yangchun Fu, and Cong Liu
Department of Computer Science, The University of Texas at Dallas

Abstract

Graphics processing units (GPUs) have been adopted
by major cloud vendors, as GPUs provide orders-
of-magnitude speedup for computation-intensive data-
parallel applications. In the cloud, efficiently sharing
GPU resources among multiple virtual machines (VMs)
is not so straightforward. Recent research has been con-
ducted to develop GPU virtualization technologies, mak-
ing it feasible for VMs to share GPU resources in a reli-
able manner. This paper seeks to improve the efficiency
of sharing GPU resources in the cloud for accelerating
general-purpose workloads. Our key observation is that
redundant GPU computation requests are being seen in
many GPU-accelerated workloads in the cloud, such as
cloud gaming where multiple clients playing the same
game call GPUs to perform physics simulation. We have
measured this redundancy using a gaming case study, and
found that more than 24% (47%) of the GPU computa-
tion requests called by the same VM (multiple VMs) are
identical. To exploit this redundancy, we present GRU
(GPU Result re-Use), a GPU sharing, result memoization
and reuse ecosystem in a cloud environment. GRU trans-
parently enables VMs in the cloud to share a single GPU
efficiently, and memoizes GPU computation results for
reuse. It leverages the GPU full-virtualization technol-
ogy, which enables GPU result memoization and reuse
without modification of existing device drivers and op-
erating systems. We have implemented GRU on top of
the Xen hypervisor. Preliminary experiments show that
GRU is able to achieve a significant speedup of up to 18
times compared to the state-of-the-art GPU virtualization
framework, while adding a rather small amount of run-
time overheads.

1 Introduction

Graphics processing units (GPUs) are powerful for ac-
celerating computation-intensive data-parallel applica-
tions, due to their highly multithreaded architecture
and high-bandwidth memory. Along with the support
of various programming models and runtime environ-
ments such as the compute unified device architecture
(CUDA) [21]] from NVIDIA and OpenCL [15] from Ap-
ple, GPUs can be easily used for general-purpose com-
puting (a.k.a., GPGPU) in addition to dedicated graphics
applications. GPUs have already been widely used to

accelerate general-purpose workloads in many applica-
tion domains such as supercomputing systems. Unfor-
tunately, enterprise and cloud computing domains have
inefficient access to GPU virtualization technology be-
cause the required resource isolation of multiple vir-
tual machines (VMs) accessing the same set of GPU re-
sources cannot be efficiently guaranteed.

Efficiently utilizing GPU resources in the cloud envi-
ronment is not so straightforward. Current commercial
cloud providers (e.g., Amazon Elastic Compute Cloud—
EC2) dedicate an individual physical instance of GPUs
to a VM, which causes resource under-utilization. A fea-
sible solution to make GPU a truly shared and schedula-
ble resource in the cloud is through GPU virtualization,
which allows multiple VMs to access the same set of
GPUs simultaneously. Recent research [8} (9, [14} 20, |26}
27| implements several GPU virtualization technologies
for graphics rendering applications as well as GPGPU
computing workloads.

With GPU virtualization technologies and the corre-
sponding operating systems (OS) support, it is feasible
for multiple VMs to share underlying GPUs in a rela-
tively reliable manner. In this paper, we seek to further
improve the efficiency of sharing GPU resources in the
cloud. Our key observation is that redundancy has been
seen in many cloud applications, such as scientific com-
puting and cloud gaming where multiple clients play-
ing the same game call GPUs to perform physics sim-
ulation for the same scenes. For example, the popular
game Call of Duty: Ghosts 28] uses GPGPU to enhance
smoke particles. When two VM instances are running
the same game, the same game scenes and cutscenes will
generate redundant GPGPU computations. Moreover,
most GPGPU computation-related commercial software
and applications prefer to use libraries provided or main-
tained by NVIDIA, since such libraries are more stable
and highly-optimized. This fact increases the probabil-
ity of seeing redundant GPGPU computing requests. For
example, scientific applications use cuBLAS library for
matrix operation, cuFFTW library for fast fourier trans-
form (FFT). The standardization of GPGPU interface
unifies the kernel code of GPU computation (a piece of
GPU-accelerated code which is often relatively simple),
making input data be the only difference among GPGPU
computations.

Motivated by this, we explore the possibility of cor-
rectly and efficiently reusing GPU computing results
among multiple VMs as well as for each individual VM.
CPU instruction reuse and memoization have been pro-
posed to make program execution on CPUs faster and
more predictable [6} [7, 25]. Compared to CPU instruc-
tion reuse, reusing results processed on GPUs may be
more viable, due to the nature of GPU processing. Em-
ploying GPU for general-purpose computing is usually
a triple-step procedure: copying input data to GPU,
launching a kernel, and acquiring output. This triple-step
procedure makes GPGPU a “blackbox”—given input
data and computation code, GPU will output the result—
which provides a more straightforward processing envi-
ronment compared to computing using CPUs. On GPUs,
computation requests with the same input data and kernel
will generate the same results. Similar to the dynamic
CPU instruction reuse technology, it is possible to dy-
namically eliminate redundant GPGPU computations by
buffering reusable results, so that future requests with the
same input (data and kernel) can directly reuse the results
without incurring redundant computations. We call this
GPU computing result reuse, which has great potential
of improving the throughput, response, and energy effi-
ciency of using cloud resources.

This paper presents GRU — a GPU sharing, result
memoization and reuse ecosystem in the cloud. GRU
extends GPUvm [26] which is an open-source GPU vir-
tualization tool built on top of Xen [4], exposing physical
GPU model to guest VMs and bridging the semantic gap
between domU (i.e., domain U) and domO (i.e., domain
0). Leveraging the GPU full-virtualization technology
implemented in GPUvm [26], GRU transparently allows
GPU result reuse and memoization without modification
of existing device drivers and operating systems. GRU
is composed of three main components: (i) Qemu-Xen
which collects the MMIO (memory mapped I/O) oper-
ations and forwards GPU commands, (ii) the aggrega-
tor which interprets the parameters of GPU requests and
manages the GPU memory, and (iii) the reuse engine
which uses LUT (look up table) to identify cached re-
sults and stores computation results in a “shadow result
memory”. Once GPU computational requests with the
same input data and kernel code are received and iden-
tified, GRU directs the results back from shadow result
memory without incurring redundant computations. Pre-
liminary experiments show that our prototype can im-
prove the throughput of GPUvm by up to 18 times, while
adding a rather small amount of runtime overheads.

2 Case Study

We conducted a measurements-based case study to mo-
tivate the necessity of GPU computing result reuse. We
choose a popular game named “Mirror’s Edge” for the

Table 1: The statistics of executed kernels on GPU, from
two execution traces of Mirror’s Edge

#Launch | Uniq Exe Redundant | Identical
R1 | 173766 24 | 22.31s 24.71% 47.12%
R2 | 123175 19 17.10s 25.63% 66.47%

case study, as it not only uses GPU to display but uti-
lizes GPU for general-purpose computing as well. Mir-
ror’s Edge is an action-adventure 3-D video game pub-
lished by Electronic Arts. It is powered by the Un-
real Engine 3 [[10] which features support for NVIDIA’s
PhysX [22]. PhysX is a physics simulation engine build
on top of CUDA, which utilizes GPU to simulate debris,
glass shard, spark effects, dynamic fog, etc.

We used NVIDIA’s command line profiling tool
nvprof [23] to monitor the game execution and collect
the GPU computation trace. We also wrote an inspection
tool employing dll injection and API hook to intercept
the parameters of each GPU-related operation. We ex-
ecuted the game twice, each for ten minutes from the
prologue chapter. For each execution, we performed ran-
dom actions for the game play. The statistics of trac-
ing these two executions are shown in Table 1. During
the first execution, we collected 173,766 CUDA kernel
launches that originate from 24 unique kernels. The total
execution time of GPGPU computing due to these kernel
launches adds up to 22.31 seconds, which implies that
for the eight-minute gaming time plus the two-minute
logo displaying and opening animation time, nearly 5%
is spent on GPGPU computing. During the second ex-
ecution, 123,175 CUDA kernel launches that originate
from 19 unique kernels are collected. The total GPGPU
computing time is 17.1 seconds.

We use a hash table to store the combination of ker-
nel and its parameters, which include the input data and
kernel configuration. For each individual execution, if a
kernel launch can find a tuple with the same input (kernel
and parameters) in the hash table, then it is considered
as a redundant launch; otherwise this launch is stored in
the hash table as a new tuple. As shown in Table 1, the
percentage of redundant launches for the two executions
reaches up to 24.71% and 25.63%, respectively. More-
over, the identical launch percentage shown in Table 1
indicates the percentage of kernel launches in both exe-
cutions with the same kernel and data. The number of
identical launches is 81,879, accounting for 47.12% and
66.47% of the kernel launches in the first and second ex-
ecution, respectively.

Through this case study of running real-world games,
we observe a large percentage of redundant kernel
launches, either within a VM or among multiple VMs
running the same game. This observation can be ex-
ploited in the cloud gaming scenario, where thousands of
VM instances run the same game program. We thus seek

QEMU-Xen
Emulated
GPU
Model

Emulated Driver
GPU

Model 1

Domain 0

Aggregator

Domain U| |Domain U
Reuse

Driver
Engine

T - Xen

Figure 1: Ecosystem of sharing and reusing framework

to eliminate redundant GPU computations by reusing
previous results, which leads to faster execution, higher
throughput and energy efficiency.

3 Prototype Implementation

In this section, we present the design and implementation
details of the GRU ecosystem.

3.1 GRU Ecosystem Overview

GRU is built on top of GPUvm [26]. GPUvm is an open
source Xen-based GPU virtualization software providing
virtualization approaches by exposing host GPU device
model to guest device drivers. The ecosystem of GRU is
described in Fig. [I] which is composed of an extended
Qemu-Xen, an aggregator, and a reuse engine. We ex-
tend the Qemu-Xen emulator and GPUvm’s aggregator
to intercept GPU memory-copy and computation opera-
tions, i.e., kernel code and the corresponding input data.
To enable result reuse, we implement a reuse engine in
dom0, which closely interacts with the aggregator.

The extended Qemu-Xen component emulates GPU
device models and exposes them to domU, as shown in
Fig.[I] Currently, discrete GPUs are treated as I/O de-
vices by the operating system. Therefore, all commu-
nications between GPU and operating system are via
MMIO. All write- and read-related operations on vir-
tual MMIO are intercepted and forwarded to the aggre-
gator through inter process communication (IPC). Sim-
ilar to the original aggregator implementation presented
in GPUvm, GRU’s extended aggregator is still in charge
of GPU scheduling and memory management. The dif-
ference is that our aggregator also needs to identify and
interpret high-level behaviors (data transfer or kernel
launch) and related parameters (input memory address,
size, kernel configuration, efc.) from received GPU op-
erations. The interpreted information is then sent to the
reuse engine which lies in dom0 bridging the aggregator
and GPU. The reuse engine maintains a LUT to index
previous GPU computation results. It also selectively
caches results in a “shadow result memory”, acting as
an in-memory database. After receiving aggregated re-
quests from the aggregator and querying cached results
from its LUT, the reuse engine decides whether to issue

Input requests Output response

Update LUT

A4
GPU cmd parser R
& Hash Function

GPU status parser

& Result Management
Hit! Return results »
& skip computation

Probe LUT
A 4 v

Raw GPU
status trans

Tag | LRU |Kernel|Inputs |Results|

Miss! Issue requests
to physical GPU R
> GPU

Figure 2: Workflow of memoization and reuse system.

requests to GPU; or if it is a redundant request, the reuse
engine directly returns the results that are stored in the
shadow result memory.

3.2 Bridging Semantic Gap

GPU is controlled by the CPU using GPU commands
that are architecture-specific. A single GPU command is
an atomicity operation, which is essentially a value writ-
ten by CPU and fetched by GPU at a specific address.
A series of such commands combine together to per-
form a high-level GPU operation, such as host-to-device
memory-copy or kernel launch. However, interpreting
high-level operations from GPU commands is very chal-
lenging, particularly given that current NVIDIA GPU
drivers and hardware architectures are close-source. This
is the semantic gap we need to bridge at the hypervisor
level when implementing GRU.

According to the full-virtualization implementation of
GPUvm, the device driver in domU considers the emu-
lated GPU model as an ordinary physical GPU instance
and write GPU commands to it. Qemu-Xen can intercept
all the commands related to I/O and forward them to the
aggregator. GPUvm has implemented data structures in
its aggregator to parse GPU commands. Unfortunately,
this is not enough for implementing our reuse frame-
work. Different from GPUvm, our reuse framework not
only parses and forwards the GPU commands, but also
need to interpret what operations these commands will
perform. For example, when we capture a series of mem-
ory write operations, we need to identify which combi-
nation of operations indicates a host-to-device data trans-
fer operation, and trace the addresses of source and des-
tination together with its size. Each of these steps is
quite challenging because NVDIA makes its device de-
tails closed to public. Thanks to the reverse engineering
work on GPU device and drivers [[18, 11} [17], we bor-
rowed and implemented their data structures at GRU’s
aggregator to trace all the needed information (e.g., in-
put data address and size). After the aggregator gets the
information, it sends the interpreted requests to the reuse
engine in dom0.

3.3 Result Memoization and Reuse

The reuse engine is a user process in dom(, which re-
ceives requests from the aggregator, checks reuse possi-
bility, and then returns the reusable computation results
to the aggregator. Fig.2]depicts a detailed block diagram
of the various components implemented in the reuse en-
gine and how they operate in general. Specifically, an
input request is first parsed by the command parser to
check whether it is a computation-related request. If it is
a host-to-device memory transfer request, the reuse en-
gine delays issuing it to the physical GPU device till the
reusability of the corresponding kernel launch request
has been checked. The kernel code together with the
input data of a kernel launch request are hashed by the
hashing function. The LUT uses the corresponding hash
value to identify a redundant computation request. Each
entry of the LUT contains the address of a reusable result
in shadow result memory. We employ pseudo LRU [1]]
as the replacement policy.

A hit occurs in the LUT probing when we have a mem-
oized result, in which case we skip the actual computa-
tion on GPU and generate a faked interrupt to the em-
ulated GPU model to notify the completion of compu-
tation. Address of the cached result in shadow result
memory is returned to the result manager, which locates
the cached result and prepares the data transfer to domU.
When the result manager receives the followed GPU re-
quest of transferring back the result, it performs the ac-
tual result transfer. The GPU status parser is in charge of
all the faking work for the status change in the emulated
GPU model to notify the completion of computations.

On the contrary, a miss in LUT indicates that re-
sult of the current computation request is not available.
Such computation requests are then issued to the phys-
ical GPU. A new entry is reserved for this computation
in LUT, replacing a previous entry according to pseudo-
LRU if there is not enough space. After the actual com-
putation on GPU completes, the result will be stored in
the shadow result memory and the corresponding tuple
in LUT will be updated accordingly.

4 Preliminary Evaluation

We have conducted a preliminary set of experiments
to evaluate: 1) the overhead incurred by GRU; 2) the
speedup in terms of throughput under different scenar-
ios. These experiments are conducted on a desktop ma-
chine with i7-4790K 4.0 GHz processor, 16 GB mem-
ory, and NVIDIA Quadro 6000 GPU. The tool stack of
Xen is extended from GPUvm for better supporting ad-
dress translation and GPU command interpretation. In
both dom0O and domU, Linux 3.6.5 is running as the
operating system with Nouveau (an open-source device
driver for NVIDIA GPUs) as the GPU device driver,

Table 2: Benchmarks used in evaluation

NAME Description

chess Chinese Chess game with naive Al
madd Matrix addition

mmul Matrix multiplication

srad Speckle reducing anisotropic diffusion

srad2 Another version of srad with pseudo-inputs
backprop | Back propagation

hotspot Physics simulation

Iud LU Decomposition

(0] 1.4 T T T T T T T T T T
g EEz@GPUvm - GRU
= 1.2
o 1F 58 1
ai 0.8 | 1
B 06 1
T 041 R W 1
£ s K I §§§ &
Al B i ‘NN
pz4 0 o o5 2 K B £
Dy D My D S S S G By 4, O
o, o, 2, M, Yo S Vo p, o, X g
o o @ &4 PR O N, e
N0, 0N 0 Novo, % ¢ %
Y B % B % %

Figure 3: Normalized execution time.

and Gdev [17], which is an open-source GPGPU run-
time and driver software, is running as the CUDA engine.
GPU full-virtualization with optimizations provided by
GPUvm is employed as the GPU sharing framework. In
the experiments, we start two domU instances, assigning
1GB of memory to each domU and 8GB to domO.

The benchmarks used in this evaluation include Ro-
dinia benchmarks [5] and one synthesized CUDA game,
as listed in Table 2l First we evaluated the runtime
overhead incurred by GRU, compared to the origi-
nal GPUvm. The overhead mainly comes from three
sources: (i) data movement between domU and domO,
(ii) hashing and probing in LUT, and (iii) storing results
in the shadow result memory. Fig. [3] depicts the nor-
malized execution time under GPUvm and GRU when
executing each benchmark once. The x-axis of Fig. [3]
represents the benchmark with a specific configuration.
For example, madd_1024 means the input data size of
the matrix addition kernel is 1024 x 1024. We observe
that the overheads incurred under GRU cause a less than
16% increase in execution times for all benchmarks. For
a majority of the considered benchmarks (9 out of 11),
the overheads cause a less than 7% increase in execu-
tion times. As seen in Fig.[3] the madd_2048 benchmark
yields the highest overhead (16%), which is because the
relatively large input data of the madd benchmark cause
more overheads in LUT hashing and data movement.

In the second set of experiments, we evaluated
the throughput performance under GRU compared to
GPUvm. We synthesize each benchmark to execute
(both memory-copy and kernel launch operations) re-

3 20% EXXX 50% E=m 80% mmmm 100%

T T T T T

n
o

-
o

(&)

Normalized Troughput

0

madd_2048 mmul_2048 srad backprop lud_40

Figure 4: Normalized throughput

peatedly for 10 times after CUDA context initialization.
We configure the benchmarks to execute in four scenar-
ios with two (five, eight, and ten, respectively) times of
LUT hit, which implies 20% (50%, 80%, and 100%, re-
spectively) of the executions will benefit from reusing
the cached results. For the chess game, we simulated
game play against a chess Al for ten moves, where 20%
(50%, 80%, 100%, respectively) of the Al computations
are previously cached. We define throughput as the re-
ciprocal of execution time.

Fig. [] depicts the normalized throughput of bench-
marks in four configurations, where GPUvm is used
as the baseline. We observe that the throughput of
two benchmarks (madd and backprop) are lower than
GPUvm when the hit rate is 20%. This is because the
overheads GRU introduces negate the benefits of result
reuse. When the hit rate is greater than 20%, GRU out-
performs GPUvm for all benchmarks, sometimes by a
wide margin. For example, when the hit rate equals
80% (100%), GRU is able to achieve a speedup of 4.5
(18.01) and 3.6 (12.15) for mmul 2048 and lud_4096,
respectively. The performance improvement for these
two benchmarks is the most significant due to their
computation-intensive nature. That is, they both have
relatively small input data size but rather heavy compu-
tation workloads.

The above-discussed experimental evaluation, al-
though in its preliminary form, show that GRU is promis-
ing in achieving significant performance improvement,
particularly when the redundancy seen in GPU compu-
tation requests increases, while adding a rather small
amount of runtime overheads to the current GPU virtual-
ization framework.

5 Related Work

Using GPUs in the cloud. Current approaches to uti-
lize GPUs in the cloud are classified into I/O pass-
through [2], API remoting [9, [13| [16] [19, 24]], para-
virtualization [8, (14}, 26] and full-virtualization [26} 27]].
I/O pass-through, which dedicates an individual physi-
cal instance of GPUs to an VM, does not allow GPU
sharing among VMs. API remoting, in which GPU calls

are forwarded from the guest VMs to the host, needs to
change the software stack in both guest and host. The
para-virtualization approach provides multiplexing ac-
cess to GPU through an ideal device model, with the
drawback of modifying the device drivers in guest VMs.
The full-virtualization approach is able to support GPU
sharing among VMs without modification of existing de-
vice drivers and operating systems. However, all these
aforementioned work does not exploit the idea of GPU
computing result reuse. Our framework leverages the
GPU full-virtualization approach and implements GPU
computing result reuse to further improve the efficiency
of sharing GPU resources in the cloud.

Computing result reuse. Result reuse for CPU compu-
tation has been proposed for decades. Sodani et al. [23]]
proposed dynamic instruction reuse to eliminate redun-
dant execution of instruction groups with same inputs.
Connors et al. proposed a compiler-directed computa-
tion reuse approach [6] and explored the hardware sup-
port model [[7]]. Fu et al. proposed VMST [12] that reuses
large blob of binary code to achieve virtual machine in-
trospection. The similarity of computation between CPU
and GPU (instructions and inputs) makes result reuse ap-
plicable to GPU. Recently, Arnau et al. [3] presented a
hardware memoization approach to eliminate redundant
fragment shader executions on a mobile GPU. Different
from these work, we focus on realizing GPU computing
result reuse in a cloud computing environment.

6 Conclusion and Future Work

Redundant GPU computation requests exist in many
GPU-accelerated workloads in the cloud. This observa-
tion motivates us to explore the possibility of correctly
and efficiently reusing GPU computing results among
multiple VMs as well as for an individual VM. We pro-
pose GRU, a GPU sharing, result memoization and reuse
ecosystem for cloud computing. Preliminary experi-
ments show that GRU is able to improve the through-
put of eleven GPGPU benchmarks, often by a wide mar-
gin, compared to a state-of-art GPU virtualization frame-
work.

The GRU system framework is still at its initial stage.
In the near future, we plan to complete and optimize
the implementation of GRU by performing the following
tasks: (i) implementing the framework in a more stabi-
lized and generalized manner, which can reliably support
more complicated kernels (e.g., those with data depen-
dencies) and applications (e.g., cloud gaming). (ii) in-
troducing reuse-measuring metrics or compiler-assisted
technique to identify partially reusable results. (iii) for
result-resilient computation or approximate computation
where results do not need to be exactly accurate, ex-
ploring methods to enlarge the reusability or introducing
signature-based match.

Discussion Topics

We hope to receive the reviewers’ comments on the idea,
design, and implementation of the GRU ecosystem pre-
sented in this paper. Any suggestions in particular on
improving the efficiency and reliability of our current de-
sign and implementation would be greatly appreciated.
The controversial point of this paper mainly lies in the
efficiency of the current GPU full-virtualization system
framework on top of which our work builds upon. Since
current GPU virtualization techniques are not yet mature
enough, the overhead and latency caused by virtualizing
GPUs could be large under certain circumstances.

This paper may generate interesting discussions about
how to utilize and share GPUs in a cloud environment in
a more feasible and efficient manner. Researchers from
related domains, including GPU architecture, GPGPU
computing, operating systems, data/computing reuse,
high performance computing, cloud gaming, and cloud
computing in general, may be interested in and inspired
by this work.

We would like to point out to the reviewers that our
system currently only supports the reuse of computa-
tions with the exact same kernel codes and input data.
We are currently working on supporting partial result
reuse. Also, our current GRU implementation does not
support graphics-related rendering and multiplexing ap-
plications. As seen in the preliminary experiments, for
scenarios where little redundancy is seen in GPU com-
putation requests, the benefits brought by GRU could
be trivial (even if the GRU-incurred overheads are rea-
sonably small). Thus, it is important to explore poten-
tial techniques that can improve the result reusability un-
der different scenarios. Finally, if the efficiency (w.r.t.
overheads) and reliability of current GPU virtualization
technologies do not improve to reach a mature stage, the
whole ideal of GPU computing result reuse might fall
apart.

References

[1] AL-ZOUBI, H., MILENKOVIC, A., AND MILENKOVIC, M. Per-
formance evaluation of cache replacement policies for the spec
cpu2000 benchmark suite. In ACM-SE (2004), ACM, pp. 267—
272.

[2] AMAZON.COM. Amazon elastic compute cloud (amazon ec2).

[3] ARNAU, J.-M., PARCERISA, J.-M., AND XEKALAKIS, P. Elim-
inating redundant fragment shader executions on a mobile gpu via
hardware memoization. In ISCA (2014), IEEE, pp. 529-540.

[4] BARHAM, P., DrRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP (2003),
ACM, pp. 164-177.

[5] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER,
J. W., LEE, S.-H., AND SKADRON, K. Rodinia: A benchmark
suite for heterogeneous computing. In ZISWC (2009), pp. 44-54.

[6] CONNERS, D., AND HWU, W.-M. Compiler-directed dynamic
computation reuse: rationale and initial results. In MICRO
(1999), IEEE, pp. 158-169.

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

CONNORS, D. A., HUNTER, H. C., CHENG, B.-C., AND HWU,
W.-M. W. Hardware support for dynamic activation of compiler-
directed computation reuse. In ASPLOS (2000), ACM, pp. 222—
233.

DowTy, M., AND SUGERMAN, J. Gpu virtualization on
vmware’s hosted i/o architecture. ACM SIGOPS Operating Sys-
tems Review 43, 3 (2009), 73-82.

Duarto, J., PENA, A. J., SILLA, F, MAYOo, R., AND
QUINTANA-ORTI, E. S. rcuda: Reducing the number of gpu-
based accelerators in high performance clusters. In HPCS (2010),
IEEE, pp. 224-231.

Epic GAMES, INC. Unreal Engine.
unrealengine.com, 2004.
FREEDESKTOP. Nouveau Open-Source Driver.
nouveau.freedesktop.org,

https://www.
http://

Fu, Y., AND LIN, Z. Space traveling across vm: Automatically
bridging the semantic gap in virtual machine introspection via
online kernel data redirection. In SP (2012), IEEE, pp. 586—600.

GIUNTA, G., MONTELLA, R., AGRILLO, G., AND COVIELLO,
G. A gpgpu transparent virtualization component for high perfor-
mance computing clouds. In Euro-Par (2010), Springer, pp. 379—
391.

GOTTSCHLAG, M., HILLENBRAND, M., KEHNE, J., STOESS,
J., AND BELLOSA, F. Logv: Low-overhead gpgpu virtualization.
In FHC (2013), IEEE.

GROUP, K. O. W. OpenCL-The open standard for parallel pro-
gramming of heterogeneous systems. https://www.khronos.
org/opencl, 2008.

GUPTA, V., GAVRILOVSKA, A., SCHWAN, K., KHARCHE, H.,
TOLIA, N., TALWAR, V., AND RANGANATHAN, P. Gvim: Gpu-
accelerated virtual machines. In HPCVirt (2009), ACM, pp. 17—
24.

KATO, S., MCTHROW, M., MALTZAHN, C., AND BRANDT,
S. A. Gdev: First-Class GPU Resource Management in the Oper-
ating System. In Proc. of USENIX Annual Technical Conference
(2012), pp. 401-412.

KOSCIELNICKI, M. envytools.|git://0x04.net/envytools.
git} 2012.

LAGAR-CAVILLA, H. A., TOLIA, N., SATYANARAYANAN, M.,
AND DE LARA, E. Vmm-independent graphics acceleration. In
VEE (2007), ACM, pp. 33-43.

MOSIX. VirtualCL Cluster Platform. http://www.mosix.
org/txt_vcl.html.

NVIDIA. Compute unified device architecture programming
guide.

NVIDIA. PhysX. |http://www.geforce.com/hardware/
technology/physx, 2004.

NVIDIA. CUDA Toolkit Documentation. http://docs.
nvidia.com/cuda/profiler-users-guide, 2013.

SHI, L., CHEN, H., SUN, J., AND LI, K. vcuda: Gpu-
accelerated high-performance computing in virtual machines.
IEEE Transactions on Computers 61, 6 (2012), 804-816.
SODANI, A., AND SOHI, G. S. Dynamic instruction reuse. In
ISCA (1997), ACM, pp. 194-205.

SUZUKI, Y., KATO, S., YAMADA, H., AND KoNoO, K. Gpuvm:
Why not virtualizing gpus at the hypervisor? In ATC (2014),
USENIX, pp. 109-120.

TIAN, K., DONG, Y., AND COWPERTHWAITE, D. A full
gpu virtualization solution with mediated pass-through. In ATC
(2014), USENIX, pp. 121-132.

WARD, 1. Call of Duty: Ghosts. http://en.wikipedia.org/
wiki/Call_of_Duty:_Ghosts, 2013.

https://www.unrealengine.com
https://www.unrealengine.com
http://nouveau.freedesktop.org
http://nouveau.freedesktop.org
https://www.khronos.org/opencl
https://www.khronos.org/opencl
git://0x04.net/envytools.git
git://0x04.net/envytools.git
http://www.mosix.org/txt_vcl.html
http://www.mosix.org/txt_vcl.html
http://www.geforce.com/hardware/technology/physx
http://www.geforce.com/hardware/technology/physx
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/profiler-users-guide
http://en.wikipedia.org/wiki/Call_of_Duty:_Ghosts
http://en.wikipedia.org/wiki/Call_of_Duty:_Ghosts

	Introduction
	Case Study
	Prototype Implementation
	GRU Ecosystem Overview
	Bridging Semantic Gap
	Result Memoization and Reuse

	Preliminary Evaluation
	Related Work
	Conclusion and Future Work

