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Abstract

Energy consumption has become a significant fraction
of the total cost of ownership of data centers. While
much work has focused on improving power efficiency
per unit of computation, little attention has been paid to
power delivery, which currently wastes 10-20% of total
energy consumption even before any computation takes
place. A new power delivery architecture using series-
stacked servers has recently been proposed in the power
community. However, the reduction in power loss de-
pends on the difference in power consumption of the
series-stacked servers: The more balanced the computa-
tion loads, the more reduction in power conversion loss.

In this preliminary work, we implemented GreenMap,
a modified MapReduce framework that assigns tasks in
synchronization, and computed the conversion loss based
on the measured current profile. At all loads, GreenMap
achieves 81x-138x reduction in power conversion loss
from the commercial-grade high voltage converter used
by data centers, which is equivalent to 15% reduction in
total energy consumption. The average response time of
GreenMap suffers no degradation when load reaches 0.6
and above, but at loads below 0.6, the response time suf-
fers a 26-42% increase due to task synchronization. For
the low-load region, we describe the use of GreenMap
with dynamic scaling to achieve a favorable tradeoff be-
tween response time and power efficiency.

1 Introduction
As our reliance on online services continues to grow, so
have the sizes of data centers hosting these services. As
a result, energy consumption has become a significant
fraction of the total cost of ownership (TCO). Electricity
bills for large data centers are close to one million dollars
per month in 2009 [9], and the data center energy usage
in 2013 is estimated to be 91 billion kwh [16]. Conse-
quently, data centers today contribute 2-3% of the global
carbon emissions [10], and the design of environmen-

tally friendly green data centers is an important societal
need [1].

Much work on greening data centers has focused on
improving computational power efficiency, where the de-
signers strive to minimize the energy required for each
unit of computation [7, 11]. For instance, energy con-
sumption is reduced by consolidating demand onto a
small number of servers [12, 8, 13] via request redirec-
tion or virtual machine migration, or by speed gating
each server to optimize individual power usage [4].

On the other hand, today’s data centers still use a
power delivery architecture that is based on the design
developed for single server applications. This conven-
tional power delivery technique requires a very large
step-down from the grid AC voltage, typically 600 or
480V AC [15], to the final CPU load of 12V DC. With to-
day’s power delivery architectures, the high voltage con-
version efficiency is limited to 80−90% [3, 15]. That is,
10− 20% of total energy consumption is wasted before
any computation takes place.

Recently, a new power delivery architecture has been
proposed in the power community [5]. Servers are con-
nected in series to avoid the large step-down from the
grid AC voltage, and differential power converters are
used to regulate the voltage across each server. How-
ever, the differential converters incur a power conversion
loss when the computational loads are unbalanced. The
amount of loss is proportional to the difference in server
computational loads. It was demonstrated in [5] that with
all servers running the Linux “stress” utility, hence an al-
most perfectly balanced load, 99.89% power efficiency is
achieved. No realistic data center traffic has been demon-
strated with the new power delivery, and data center traf-
fic is expected to display much more variation than the
Linux “stress” utility.

In this paper, we explore the feasibility of the new
power delivery architecture for data centers. We mea-
sured the current profile of MapReduce traffic, and ob-
served the tremendous imbalance of computational loads



across servers. The imbalance is mainly due to the dif-
ferent levels of resource occupancy, and tasks at different
stages consuming different amount of power.

We implemented GreenMap, a modified MapReduce
framework that assigns tasks in synchronization. The
preliminary work only includes results on synchronizing
map tasks. The conversion losses are computed based on
the measured current profile of each server.

We evaluated GreenMap with the SWIM bench-
mark [6], and found that at all loads, GreenMap
achieves 81x-138x reduction in conversion loss from the
commercial-grade high voltage converter used by data
centers, which is equivalent to 15% reduction in total en-
ergy consumption. The amount of reduction from the
best available high voltage converter is 27x-46x, but the
best available converters are much more costly.

As GreenMap delays tasks until they can be assigned
in synchronization, the average response time below 0.6
load increases by 26− 42%. However, as load reaches
0.6 and above, no degradation in response time is ob-
served. For the low-load region, we also describe the use
of GreenMap together with dynamic scaling of data cen-
ter clusters so that the load is kept around 0.6. This offers
a favorable tradeoff between response time and power
efficiency, while at the same time saving the energy con-
sumption and conversion loss of idle servers.

2 Background
In data centers, the utility power has to go through sev-
eral power conversion and storage elements before it
reaches the servers. In a conventional power delivery
architecture, the grid voltage of 600V or 480V AC is
stepped down to 208V or 120V AC for distribution to
racks, followed by a further conversion to DC. A DC-
DC converter is installed on each server to process the
full server power and to convert the high rectified volt-
age, typically at 208V or 120V, to a lower voltage for
servers, typically 12V DC.

The large voltage step down and the need to process
the full server power result in limited system-level effi-
ciency and large converter size. The typical efficiency of
a high-voltage converter used in data centers is 80−90%,
so the conversion loss will be 10− 20% of the total en-
ergy consumption. The peak efficiency of the best avail-
able high-voltage converters is 95%, but they are much
more costly and even larger in size [5].

Let Lconv denote the conversion loss in conventional
converters, P the total power consumption, E the con-
verter efficiency, V the server voltage, Ii the current in
server i, and n the total number of servers, we have

Lconv = (1−E)P = (1−E)V
n

∑
i=1

Ii (1)

where V = 12V,

E =

{
0.8−0.9 for converters in data centers,
0.95 for best available converters.

Recently, a new power delivery architecture has been
proposed in [5]. Instead of employing a high-voltage
step-down for each server, a set of n servers are con-
nected in series to equally share the rectified grid voltage.
For a suitable choice of n, the series-stacked architecture
provides an inherent step-down, where each server’s in-
put voltage is 1/n fraction of the grid voltage.

However, as the series-connected servers conduct the
same current, this leads to a variation in server voltage
even if there is only a small mismatch in power consump-
tion between servers. Regulated voltage of all servers in
the series stack can be achieved through the use of differ-
ential power converters, one for each of the servers. In-
stead of processing the full server power, the differential
power converters only process the difference between the
power of each server and the average power in the series
stack. As a result, the efficiency of the power converter
can be made as high as the best available converter, that
is, 95%, at a reasonable cost, and the differential power
converters are of a much smaller size.

Let Ldiff denote the conversion loss in differential
converters. The server voltage V can be considered con-
stant at 12V due to voltage regulation, we have

Ldiff = 1.5(1−E)V
n

∑
i=1

(Ii − Iavg) (2)

where V = 12V, E = 0.95,

Iavg =
1
n

n

∑
i=1

Ii.

The extra factor of 1.5 is due to the specific topol-
ogy of the server-to-virtual-bus differential power con-
verter [5], where the secondary side of the differential
converter is connected to a virtual bus. As shown by
the term (Ii − Iavg), the more balanced the computa-
tional loads are (hence the server currents), the smaller
the power conversion loss will be.

3 Load Balancing
The series stack can be integrated into data center racks
as illustrated in Figure 1. As servers are added to
data center in racks, a rack can consist of more than
one series stacks. This facilitates the installation of a
series-connected stack and provides proper ground isola-
tion [5]. The server hosting the resource manager (RM)
is not in a series stack, as its computational load is very
different from the other servers.

The number of servers in a series-stack is upper
bounded by the ratio of rectified grid voltage to the server
voltage. Apart from the rectified grid voltage of 600V
or 480V, we can also use intermediate DC voltages uti-
lized in many data center implementations. For instance,
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Figure 1: Data center with series-connected stacks.

48V is a standard telecom supply voltage. In this paper,
we will compute power conversion loss based on a se-
ries stack of 4 servers, as this is the experimental setup
in [5]. This corresponds to a voltage of 48V across the
series-stack.

3.1 Current Profiling
We start by profiling the power consumption of a word-
count job containing one map task and one reduce task
on a server with conventional power supply. The server
voltage is fixed to 12V. We measure the current consump-
tion of the server using a Yokogawa wt310 digital power
meter. Figure 2 shows the current consumption at differ-
ent stages of a word-count job.

Figure 2: Current consumption of a word-count job with one
map task and one reduce task.

The idle current is around 2.8A. The setup task ini-
tializes the job and creates temporary output directories,
consuming close-to-peak current at 5.5A for 2.5s. The
server goes idle for another 2.5s before launching the
map task. The beginning of the map task consumes
close-to-peak current as a new thread is initialized and
data are read into memory. However, the bulk of the map
task experiences an oscillation of current around 4.8A,
as it generates <key,value> pairs and outputs them to
the intermediate directory. The alternating computation-
intensive and I/O-intensive operations cause the current
to oscillate. The beginning of the reduce task also con-

sumes close-to-peak current as a new thread is initial-
ized, followed by 4 seconds of low current at 2.8A, as
<key,value> pairs are copied from intermediate directo-
ries on other servers. The later stage of the reduce task
is characterized by large oscillations between 2.8A and
5.5A as the high-current computation-intensive opera-
tions intersperse among the low-current I/O operations.
The cleanup task after the job’s completion causes an-
other short period of close-to-peak current consumption.

In general, a MapReduce job always has a setup task
and a cleanup task. It can have multiple map tasks and
reduce tasks, whose current consumption can vary de-
pending on user-defined functions, although map tasks
(or reduce tasks) of the same job will still have similar
current profiles.

3.2 Synchronized Task Assignment
We built GreenMap to balance the computational loads
in a series-stack by synchronizing map task assignment.
There are three main modifications to the default MapRe-
duce scheduler.

First, the setup and cleanup tasks are moved to the
server where the RM resides. As each setup task (and
cleanup task) is executed only once per job, and it con-
sumes close-to-peak power, it is inherently unsuitable
for parallelization and balancing across a series-stack of
servers. Although we co-locate setup and cleanup tasks
with the RM in this experiment, in a more scalable im-
plementation, they can be assigned to any server outside
series-stacks. A data center can consist of series-stacks
on which parallelized tasks run, and conventional servers
for tasks unsuitable for parallelization.

Second, we minimize load imbalance by assigning the
same number of map tasks to each server, and whenever
possible, assigning map tasks of the same job in synchro-
nization. This is achieved by delaying task assignment
until the number of outstanding tasks is at least that of
the servers with idle slots. In particular, when there ex-
ist outstanding jobs, a server with an idle slot will be
assigned a task immediately, in accordance with the as-
signment by the default FIFO scheduler based on data
locality. When there exist no outstanding jobs, the num-
ber of servers with idle slots increases over time. At a
new job arrival, if the number of outstanding tasks ex-
ceeds that of idle servers, a batch of tasks are assigned
in synchronization. If the tasks are insufficient to fill all
idle servers, they are delayed till further jobs arrive.

Third, to prevent the system from delaying tasks for
too long, a timer is set to zero whenever tasks are as-
signed in synchronization or a new job has arrived. In
the absence of neither, when the timer reaches a thresh-
old value, all outstanding tasks are assigned. The thresh-
old is set to be the time period during which a new job
will arrive with 90% probability at the current load. The

3



exact value of the threshold is not important and has not
been optimized for this experiment. A larger value for
the threshold will further reduce power conversion loss
and increase response time, while a smaller value will
increase power loss and reduce response time.

(a) Imbalanced loads with no task synchronization

(b) Balanced loads with task synchronization

Figure 3: Current profiles of four servers.

To demonstrate the effect of task synchronization, we
ran a small trace on four servers with conventional power
delivery, and compared the measured current profiles.
The trace consists of two jobs of 1 map task, one job
of 2 map tasks and one job of 8 map tasks, arriving at
random intervals. Figure 3(a) shows the measured cur-
rent profiles of the four servers respectively, with no task
synchronization. Not surprisingly, we observe large dif-
ference in currents consumed at each server. Figure 3(b)
shows the current profiles of the same four servers with
synchronized task assignment. We observe that the map
tasks are indeed synchronized, and the difference in cur-
rents consumed at different servers becomes small and
only occurs at sporadic moments.

4 Evaluation
Our test bed includes five Dell Optiplex SX775 Core 2
Duo workstations. One server hosts the Resource Man-
ager (RM) and is not in a series-stack. The remaining
four servers simulate a series-stack of 48V.

GreenMap is implemented in Hadoop1 for this prelim-
inary work as the centralized design of Hadoop1 sched-
uler is amenable to task synchronization. Each server

has 2 map slots. We do not consider reduce tasks in this
experiment.

We generate traces by selecting jobs from the SWIM
benchmark [6] so that we achieve a good representation
of the Pareto job size distribution [2], and the length of
the trace and the number of files are appropriately scaled
for the capacity of one series-stack. Job arrivals are gen-
erated as a Poisson process, and each job does not con-
tain any reduce tasks. The data block size is set to 32
MB, and each map task takes an average of 70 seconds.
Hence for each load point, the trace takes 1.5− 6 hours
on our cluster. After scaling, our trace contains 447 tasks
and 50 jobs. Table 1 shows the job size distribution.

Bins 1 2 3 4 5 6
Job count 25 9 6 4 3 3

Map count per job 1 2 4 8 16 100

Table 1: Job size distribution.

We connect the 4 servers with a conventional power
delivery architecture, and measure the current consump-
tion of each server using a Yokogawa wt310 digital
power meter with 10 samples per second per server. We
compute the power conversion loss using equations (1)
and (2). The advantage of this setup is that it allows us
to compare the conventional conversion loss and the dif-
ferential conversion loss in the exact same setting, with
the same run of a trace. Note that the conventional con-
version loss depends on the sum of the current, whereas
the differential conversion loss depends on the deviation
of each current from the average current in the stack.

Figure 4: GreenMap reduces power conversion loss from the
conventional architecture by two orders of magnitude.

Figure 4 shows that at all loads, GreenMap achieves
81x-138x reduction in conversion loss from the conven-
tional power delivery with a commercial-grade high volt-
age converter of 85% efficiency, which is typical of con-
verters used in data centers today. The power conversion
loss is reduced by two orders of magnitude, from an av-
erage of 31.4W to 0.3W. This is equivalent to 14.999%
reduction in total energy consumption, almost eliminat-
ing the 15% conversion loss altogether.
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Figure 5: GreenMap achieves comparable response time as
Hadoop FIFO scheduler at load 0.6 and above, while increasing
response time at lower loads.

Figure 4 also shows the conversion loss of the conven-
tional power delivery with the best available high-voltage
converter of 95% efficiency. GreenMap achieves 27x-
46x reduction in power conversion loss, from an average
of 10.45W to 0.3W.

Figure 5 shows the average job response time of the
default Hadoop FIFO scheduler versus that of Green-
Map. As GreenMap delays task assignment until tasks
can be assigned in synchronization, the average response
time below 0.6 load increases by 26− 42%. However,
when the load reaches 0.6 and above, no degradation in
response time is observed. This is because there are an
abundance of outstanding tasks at high loads, and tasks
are seldom delayed, whereas the sparse arrivals of tasks
at low loads result in more tasks being delayed.

4.1 GreenMap with Dynamic Scaling

The above results show that GreenMap suffers a degrada-
tion in response time when the load is below 0.6. In fact,
GreenMap delays tasks in order to emulate a higher load,
at which there are an abundance of outstanding tasks,
hence facilitating assignment in synchronization. We ob-
serve that higher loads can be more efficiently achieved
by turning off a fraction of stacks in a large cluster with
multiple series-stacks.

For instance, assume that we have 10 series-stacks
running at 0.4 load. From Figure 4, the total power
consumption in each series-stack of 4 servers is 192.2W
(=V ∑4

i=1 Ii) at 0.4 load, and the conversion loss in each
series-stack is 0.29W with GreenMap. With dynamic
scaling, we can turn off 3 series-stacks, resulting in 0.57
load for each of the remaining series-stack. The corre-
sponding power consumption in each series-stack is now
215.4W, and the conversion loss is 0.33W with Green-
Map. Hence, with GreenMap but not dynamic scaling,

total power = (192.2+0.29)×10 = 1924.9W,

whereas with GreenMap and dynamic scaling,

total power = (215.4+0.33)×6 = 1294.4W,

which is a 32.8% reduction. The reduction in total en-
ergy consumption is similar as the servers are mostly
idle at 0.4 and 0.57 load, and the trace takes a similar
amount of time to finish. The average job response time
with GreenMap will increase by only 15% as the load
increases from 0.4 to 0.57, yielding a favorable tradeoff
between power efficiency and response time.

5 Related Work
A new DC-DC power delivery architecture was proposed
in [15]. Instead of the conventional step-down of 600V
or 480V AC to 208V or 120V AC for distribution to
racks, followed by a further conversion to DC for energy
storage, the DC-DC architecture uses a single rectifica-
tion stage. It boosts the efficiency of the best-in-class
AC-DC power supply from 90% to 92%. However, the
power conversion loss is still directly proportional to the
total energy consumption in the entire data center, while
GreenMap’s conversion loss only depends on the differ-
ence in power consumption, which makes it possible to
achieve an ultra-high efficiency of 99%.

Another power delivery architecture also using differ-
ential power converters is proposed in [14]. Instead of
connecting each server in a series-stack to a virtual bus,
this architecture connects neighboring pairs of servers in
the series-stack. While this architecture achieves compa-
rable conversion efficiency as the architecture proposed
in [5], the conversion loss depends on the difference in
power consumption of neighboring servers, instead of
the difference between each server and the average. This
makes the load balancing problem much more difficult
as finding the optimal assignment becomes a combina-
torial problem involving the location of a server in the
series-stack.

6 Conclusion
We explored the feasibility of series-connected stacks
in data centers by implementing GreenMap, a modified
MapReduce framework that assigns tasks in synchro-
nization. We found that with task synchronization, the
conversion loss in data centers can potentially be reduced
by two orders of magnitude, which is equivalent to about
15% of total energy consumption. Future work includes
implementing GreenMap with multiple series-stacks and
heterogeneous jobs, and evaluating the system on actual
series-connected stacks.
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Discussion Topics

The most important feedback we seek to receive from
this community is the relative priority of energy sav-
ing, performance and ease of implementation of future
scheduling software.

For instance, how much performance are we willing
to sacrifice for 15% reduction of total energy consump-
tion? The sacrifice is in relative terms rather than in abso-
lute terms: The same logic applies to utilization. While
appropriate packing algorithms can increase utilization
without degrading performance, beyond a certain thresh-
old, utilization of a cluster is tied with response times due
to the stochastic nature of job arrivals. Do we want to run
an almost empty cluster at 0.2 load and achieve the best
possible response time? Or do we rather run the cluster
at 0.7 load with a 10% increase in response time? What
if we have a clever scheduling algorithm that will reduce
the response time at all loads? With a clever algorithm,
the absolute sacrifice might disappear. However, the rel-
ative sacrifice always exists because the performance of
the clever algorithm will always be better at 0.2 load than
at 0.7 load.

With this in mind, it might be even more important to
consider whether the 15% energy saving is worth the ad-
ditional constraint imposed on the design of scheduling
algorithms. GreenMap will require computational loads
to be balanced in each series-stack in order to minimize
power conversion loss. For instance, it might not be easy
to implement the YARN architecture on series-stacks, as
map and reduce tasks co-locate with application man-
agers (AM), whose loads might be very different from
one another.

Another related question will be how many servers a
series-stack should contain, as it determines the granular-
ity at which batches of tasks are assigned. In an environ-
ment with heterogeneous applications, a small granular-
ity will lessen the constraint on scheduling algorithms,
while potentially introducing a higher power loss. A
larger granularity, on the other hand, will make it more
difficult to balance computational loads on all servers in
the series-stack.
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