
The Importance of Features for Statistical Anomaly Detection

David Goldberg
eBay

Yinan Shan
eBay

Abstract

The theme of this paper is that anomaly detection splits
into two parts: developing the right features, and then
feeding these features into a statistical system that detects
anomalies in the features. Most literature on anomaly de-
tection focuses on the second part. Our goal is to illus-
trate the importance of the first part. We do this with two
real-life examples of anomaly detectors in use at eBay.

1 Introduction

eBay has a very large number of servers, running a lay-
ered set of software. The hardware and software layers
of these servers are monitored, logging cpu load, mem-
ory usage, and many other monitored signals at frequent
intervals. Like every large cloud-based system, eBay has
occasionally suffered disruptions, where some of its ser-
vices were degraded or even completely unavailable to
customers. A post-mortem analysis of these disruptions
has always revealed that at least one monitored signal ex-
hibited unusual behavior before the disruption began to
significantly affect end-users, but these anomalies failed
to be detected.

Thus the problem addressed by this paper: how to
monitor signals in way that can detect disruptions before
they affect users, and do so with few false positives. We
need to decide when a signal is exhibiting anomalous be-
havior that is likely to indicate a site disruption. Then
we can scan all the monitored signals, and raise an alert
when we detect an anomaly

Summarizing the terminology, our goal is to define
properties of monitored signals that are highly likely to
indicate a site disruption. We call such properties an
anomaly, and when we see one we raise an alert.

To illustrate our approach, it helps to compare with
the methodology developed for machine learning prob-
lems. It is well established that many learning problems
can best be tackled by splitting them into two parts: de-
veloping features, and then finding a function that maps
features to a target. For example, suppose the problem is
to recognize the scanned image of a digit, and produce
a target that is a numeral from 0 to 9. It will be very
difficult to get a high recognition rate if the raw bitmap
is fed directly into a machine learning algorithm. The
problem becomes much easier using good features, for
example normalize the image and take each pixel as a

feature. This is a straightforward set of features, other
problems require more ingenuity. (For deep learning, see
the Discussion Topics section).

Back to anomaly detection. The theme of this paper is
that detecting disruptions also splits into two parts: de-
veloping the right features, and then feeding these fea-
tures into a statistical system that detects anomalies in the
features. If done correctly, the detected anomalies will
have a high correlation with site disruptions and can be
used to create alerts with a low false positive rate. Most
literature on anomaly detection focuses on the statisti-
cal part (for example [1], [4], [3]). However, it is well-
known that feature selection is key in real-life applica-
tions (e. g. [2]). Our goal is to illustrate this importance
in the context of anomaly detection.

2 A Warm-up Problem (Muninn)

As a warm-up problem, consider a signal from the high-
est software layer: the number of searches done on the
US site ebay.com. This is part of a system called Muninn.
The number of searches (srp) is recorded every 2 min-
utes. Figure 1 shows the value of srp on Mar 25. The hor-
izontal axis ranges from midnight to midnight, PDT. Cir-
cled in blue are two suspicious blips, occurring around
4:00 am and 10:30 pm. Even the most sophisticated sta-
tistical method can not reliably determine if these should
be considered anomalies, that is, if they indicate a site
disruption.

But now consider Figure 2 which shows the values of
srp on two additional days. Based on this data it seems
likely that the blip at 4:00 am on Mar 25 should be cate-
gorized as an anomaly, but not the blip at 10:30 pm.

One approach to distinguish these cases would be to
use a long-term time series and check for a periodic pat-
tern, which is the method of Vallis et. al. [4]. But to
illustrate our method, consider another way of thinking
about this problem.

Construct a simple feature, a vector containing the cur-
rent value of srp with its value 24 hours ago, 48 hours
ago, 72 hours ago, etc. Using this feature the circled
value on the left in Figure 1 will show up as an anomaly
because the vector will have one entry that is out-of-
whack, but the circled on the right will have a feature
that appears quite ordinary.

Figure 1: The y-axis is the number of searches/2 minutes. The x-axis covers a 24 hour period on Mar 25. The circled
regions look suspicious.

Figure 2: The y-axis is the number of searches/2 minutes. The x-axis covers a 24 hour period. The three curves
represent three different days: Mar 25, Mar 26, and Mar 28.

Figure 3: Data for the query htc hd2. The y-axis is the value of the metric median sale price. The x axis is the time
the query was issued. The leftmost point is 12:00 pm Nov 11, the rightmost point is 4:00 am Nov 28. The dots are 4
hours apart.

2

3 A more Complex Feature (Atlas)

Here is a more interesting example of monitored signals
where the time-series approach does not easily apply, and
a feature based approach is more natural. It again con-
cerns searching on eBay. eBay has a monitoring system
that periodically issues a query and reports metrics on
the resulting item set, such as the number of items re-
turned, the average list price, the fraction of items that
are auctions, etc. The monitoring system repeatedly cy-
cles through a fixed set of 3000 queries. This is part of
the Atlas system. As mentioned in the previous section,
the goal is to detect a problem with the search software
(a disruption) before users do. In this case the signal is
identical to what users see, so the system can’t literally
find the disruption before a user. But it can detect and
report the problem much more quickly than waiting for
a user to phone customer support, having customer sup-
port recognize the call as a site problem, and report it to
engineering.

Figure 3 is a plot of a (metric, query) pair. The hor-
izontal axis is time, with the right-hand side the most
recent data point. The vertical axis is the value of the
metric median sale price on the query htc hd2 (this is
the name of a smartphone). The signal is very noisy,
but it appears to have unusual behavior in the region
95 ≤ t ≤ 100. But this should not be considered an
anomaly because there’s no disruption: this type of be-
havior is perfectly normal, as we now show. Although
the points near t = 100 are not an anomaly, they are sur-
prising, and we quantify the surprise by fitting all the
points to a line (shown in red), and computing the (un-
signed) deviation of each point from the line. The sur-
prise of a point is its deviation divided by the median de-
viation of all the points. For the most recent value (right-
most point at t = 100), this is 97.9/13.4≈ 7.30.

Should a surprise value of 7.3 be considered an
anomaly? Figure 4 shows a histogram of surprise val-
ues of median sale price for 2300 queries. A surprise of
7 is not unusual. Because the histogram is so bunched
up, a histogram of log(surprise) is also shown. Since
log(7.3)≈ 2, it is more clear that this value of surprise is
not all that unusual. Quantitatively, the percentile of the
surprise for the query htc hd2 is about 96%.

Incidentally, this example shows the difficulty in get-
ting a low false positive rate. There are about 3000
queries, 40 metrics, and 6 collection periods per day. So
there are 3000× 40× 6 = 720,000 graphs just like Fig-
ure 3 each day. To drop as low as one false positive per
day would require only triggering on graphs with a sur-
prise so high that it happens 0.00014% of the time. Such
a stringent cutoff is likely to overlook many real disrup-
tions.

The way around this is aggregation. Since there will

always be a few queries with a high surprise, we con-
struct a feature that captures the number of queries with
a high surprise. A sudden change might be a good in-
dicator of a disruption. This is done separately for each
metric. To make this quantitative, instead of counting
the number of queries with a high surprise, we examine
a quantile (specifically 0.9) of the surprise values of all
the queries of a metric. Heres how it works.

The surprise of the most recent value, as computed in
Figure 3, depends on three things: the metric, the query
and the 4-hour collection window of the latest value. The
quantile is computed by picking a metric and collection
window, gathering up the surprise of all the queries, and
then taking the 90% quantile of those numbers. So there
is a quantile for each (metric, collection-period) pair. Ev-
ery four hours the following process is performed for
each metric M: recompute the surprise in M for each
query and determine the 90% quantile of these numbers.
This gives a new value for the 90% quantile for M. The
quantiles when M is median sale price over a two-week
period are shown in Figure 5.

On the left is a histogram of their values, showing they
are clustered near 3.6, with a range from 3.0 to 4.6. The
right hand displays the same data in a time series, sug-
gesting there’s no strong correlation. This shows the fea-
ture is fairly smooth, and might be candidate for anomaly
detection. But is it too smooth? Will it actually show an
anomaly during a disruption? We went back over histori-
cal data and discovered that for each known disruption at
least one metric had an anomaly using this feature. And
there was only one anomaly that did not correspond to a
known disruption (although we never determined if this
was an unknown disruption or a false positive).

Here is an example of an anomaly that corresponds
to a genuine disruption. While Figure 5 shows the data
from up to 07:00 on Nov 28, Figure 6 adds four more
time points. Now this is clearly an anomaly. Figure 5 is
vaguely normal with a mean of 3.7 and a standard devi-
ation of 0.3. The anomaly in Figure 6 is 29.6, which is
|29.63.7|/0.3 ≈ 86 standard deviations from the mean.
So the historical value of the quantile appears to be a
great feature.

4 The Statistical Test

As we said in the introduction, we split anomaly detec-
tion into two parts. We’ve just discussed feature con-
struction, what about part two, the statistical test? Com-
bined with good features, even ultra-simple statistical
tests already give excellent results.

For the warm-up problem (Muninn), the feature was a
vector containing the value of srp 24 hours ago, 48 hours
ago, 72 hours, etc. The statistical test is a robust ver-
sion of |x−mean|/sd applied to the vector. The mean is

3

Figure 4: Histograms of surprise values for 2300 queries. Because the histogram is so bunched up near 0, a histogram
of log(surprise+1) is also shown.

Figure 5: 90th quantile of surprise for median sale price from Nov 14 to Nov 28. The 100 values of the quantile are
shown as a histogram on the left, and plotted individually in time-sorted order as a time-series on the right

Figure 6: 90% quantile of surprise from Nov 14 to Nov 28, but going 16 additional hours (4 collection times) past
Figure 5. Shown as a histogram on the left, and a time series on the right

4

replaced by the median, and the standard deviation is re-
place by the median absolute deviation (MAD). MAD is
computed just like it sounds: compute the median, then
for each value compute the absolute value of distance
to the median, and then take the median of these dis-
tances. Summarizing: every two minutes when a new
value of srp is recorded, set x to be the latest srp, com-
pute the median and MAD over the past 30 srps (not
including the most recent) and declare an anomaly if
|x−median|/MAD is large.

For the second problem (Atlas), the feature was the
historical values of the 90th quantile of the surprise
values of all the queries. We noted this is a fairly
smooth signal, so in this case rather than the robust test
using median and MAD, we use the more traditional
|x−mean|/sd to test for anomalies.

5 Results

The second example (Atlas) has been implemented and
replaces an earlier rule-based system. After running for
several weeks, Atlas raised its first alert, which identified
a real disruption that was not detected by the rule based
system. It was subtle: it appeared that only 102 out of
3K queries were affected. But Atlas easily detected this
disruption. 28 metrics had more than a 5-sigma deviation
of the 0.9 quantile feature. In fact the median value of
|x−mean|/sd over all 28 metrics was 85. This shows the
power of well-constructed features.

In 2014, there were 50 Atlas alerts, of which 35 were
traced to a site change or bug, and 15 could not be ex-
plained. In other words, about 70% of Atlas alerts are
meaningful, which we find to be a very satisfactory hit
rate.

6 Systems Aspects

There is a systems aspect of statistical anomaly detec-
tion. One of the alerts from the Atlas system described
in the last section was caused by a regular update to a
system table that affects search results. This was not a
disruption. On the other hand, the update did cause a
large site change and it is a good sign that Atlas detected
it. This suggests that statistical alerting should be part of
a larger system that knows about site changes and other
external events, and can suppress the alerts they cause.
Related is the question of Christmas. Many people’s re-
action to statistical alerting on an e-commerce site is to
ask how the system will learn about unusual shopping
days like Christmas. Ideally signals will be archived for
several years and so a feature using history would auto-
matically accommodate a yearly pattern like Christmas.
However, this is probably not possible for all signals, and

so the best system design for this is not to tweak the fea-
tures and statistics to handle this very special case, but
rather to embed it into the larger system. Even if all sig-
nals had archived values going back several years, there
would still be 1-off events like the British Royal wedding
(which caused a large decrease in srp) that would need to
handled at a higher level.

7 Summary

To be effective, an alerting system must catch most alerts,
and do it with very few false positives. We argue that pro-
cessing monitored signals into features is a more fruitful
way to build such systems than devising ever more com-
plex statistical tests. This is in contrast to the traditional
approaches that presume a specific type of feature (e.g.
points in the k-space for [3] and time series for [4]) and
build sophisticated methods for detecting outliers in this
feature.

Our experience with Atlas supports the importance of
features. A subtle disruption that was not detected by
an earlier rule-based system was easily spotted by Atlas,
even though it uses an extremely simple statistical test:
|x−mean|/sd.

8 Acknowledgments

Thanks to Jing Hua who helped coordinate this project,
and Tim Converse for comments on the writeup.

9 Discussion Topics

Our primary claim is that high-quality alerting sys-
tems (meaning low-false positive rate) require domain-
specific knowledge of the signals being monitored, and
the construction of features that exploit this knowledge.
In contrast, academic papers often imply that there is a
very general technique that works almost out-of-the box
for most problems. We are hoping for feedback from au-
dience members who have grappled with building low-
false positive alert systems. Does our proposal for focus-
ing on feature construction resonate?

It’s possible that most people will report great success
with standard statistical methods, in which case our idea
becomes less interesting.

The main unaddressed issue is whether our technique
generalizes, since we presented a single case study. This
splits into three parts. Are there other alerting problems
amenable to feature construction? Is building custom
features a requirement for low-false positive features?
And even if good features exist in principle, is it prac-
tical to discover them?

5

Another possible objection is that building features is
just building a statistical procedure in disguise. We don’t
agree with that, and think the features is a more natural
way to get alerts that are very high true-positive and very
low false-positive rates. It is also something that can be
done by domain experts who do not have deep statistical
expertise.

Finally, what about deep learning, which promises to
automate the process of feature engineering. Our view
is that deep learning works well, but only for a subset of
problems. However, if you have monitoring data where
neural nets can automatically discover good features for
alerting, then we would consider that an exciting further
step in the approach advocated in this paper.

If nothing else, we hope to get a sense of the types of
anomaly problems out there.

References
[1] CHANDOLA, V., BANERJEE, A., AND KUMAR, V. Anomaly de-

tection: A survey. Computing Surveys 41, 3 (2009).

[2] KANDEL, S., PAEPCKE, A., HELLERSTEIN, J. M., AND HEER,
J. Enterprise Data Analysis and Visualization: An Interview
Study. IEEE Transactions on Visualization and Computer Graph-
ics 18, 12 (Dec. 2012).

[3] PAPADIMITRIOU, S., KITAGAWA, H., GIBBONS, P. B., AND
FALOUTSOS, C. Loci: Fast outlier detection using the local cor-
relation integral. U. Dayal, K. Ramamritham, and T. M. Vijayara-
man, Eds., IEEE Computer Society.

[4] VALLIS, O., HOCHENBAUM, J., AND KEJARIWAL, A. A novel
technique for long-term anomaly detection in the cloud. M. A.
Kozuch and M. Yu, Eds., USENIX Association.

6

