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Abstract

Since energy-related costs make up an increasingly sig-
nificant component of overall costs for data centers run
by cloud providers, it is important that these costs be
propagated to their tenants in ways that are fair and pro-
mote workload modulation that is aligned with overall
cost-efficacy. We argue that there exists a big gap in how
electric utilities charge data centers for their energy con-
sumption (on the one hand) and the pricing interface ex-
posed by cloud providers to their tenants (on the other).
Whereas electric utilities employ complex features such
as peak-based, time-varying, or tiered (load-dependent)
pricing schemes, cloud providers charge tenants based
on IT abstractions. This gap can create shortcomings
such as unfairness in how tenants are charged and may
also hinder overall cost-effective resource allocation. To
overcome these shortcomings, we propose a novel idea
of a virtual electric utility (VEU) that cloud providers
should expose to individual tenants (in addition to their
existing I'T-based offerings). We discuss initial ideas un-
derlying VEUs and challenges that must be addressed to
turn them into a practical idea whose merits can be sys-
tematically explored.

1 Introduction and Motivation

The energy consumption of data centers is an importan-
t contributor to their overall costs, with large data cen-
ters spending millions of dollars per year on their elec-
tric utility bills [19, 3]. Figure 1 presents a comparison
of these power-related costs for a state-of-the-art large
data center based on the amortized monthly costs un-
der Duke electric company’s pricing scheme [12]. As
shown, a 10MW data center with roughly 20K servers
incurs a monthly electric bill of around $730K - compa-
rable to the amortized monthly costs for procuring the
IT resources (such as servers, storage, and networking
switches/routers).
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tion) [20] !. Reducing data
center energy costs is, therefore, widely recognized as an
important problem by cloud providers.

Since these energy costs are eventually recouped from
the consumers (tenants) of cloud platforms, one expects
any improvements in these costs to trickle down to the
tenants. More importantly, given how significant a con-
tributor energy-related costs are to overall data center
costs, one expects that the cloud provider recoups these
in a “fair” manner. >

Unfortunately, as we argue in this paper, current cloud-
s and their tenants may fail to achieve this intuitively de-
sirable behavior. The root cause behind this shortcoming
is the big gap that exists today between how electric util-
ity companies charge data centers for their energy usage
(on the one hand) and how these costs are passed on to
cloud tenants (on the other). In what follows, we first
elaborate upon this gap and then upon shortcomings it
may create.

Gap between utility and cloud pricing: Real-
world electric utility companies employ pricing schemes
wherein large consumers like cloud-scale data centers are

'Predicting the overall trend would likely require more sophisticat-
ed arguments since certain sources of energy “wastage” have continu-
ously improved both in IT hardware and others such as cooling. To our
knowledge, such analysis is lacking.

2We are using the term “fair” somewhat informally here and are not
proposing a specific definition/measure. We will discuss an initial idea
for formalizing it in Section 2.



charged not just based on their aggregate energy con-
sumption over the billing cycle, but in much more com-
plex ways that may incorporate load-dependent and/or
time-varying pricing. There are three main examples of
such complexity, and real-world schemes often employ
hybrids of these.

First, in peak-based pricing, in addition to energy-
based charges, the utility bill also has a component based
on the peak power drawn over the billing cycle. As
a simplified example, Duke electric utility imposes a
peak charge of about 12-15 $/kW/month on its larg-
er consumers in addition to an energy charge of 5-10
¢/kWh [12]. This amounts to a peak charge that is up
to 600 times higher than the energy charge over a typi-
cal time window of 30 minutes. Second, in time-varying
pricing the per-unit electricity price changes over time
and the utility bill is a weighted sum of the consump-
tion time-series. A variety of schemes of this kind are
found with price variations at different time granulari-
ty and different kinds of lookahead/predictability (e.g.,
“day vs. night” pricing vs. prices changing every few
minutes, hour-ahead vs. day-ahead prices, etc.) An im-
portant example within this class is that of “coincident
peak” pricing [10] wherein the electric utility imposes
a high per-unit energy price during periods where many
consumers simultaneously impose high loads causing an
overall high demand. Finally, in tiered pricing some de-
mand thresholds define different per unit prices for elec-
tricity; a special case has only one threshold, upon ex-
ceeding which a high rate (or additionally a “penalty”) is
imposed [27].

A typical contemporary cloud provider, on the other
hand, charges its tenants based on virtualized IT abstrac-
tions. Specifically, this pricing interface consists of a va-
riety of options for (usually virtualized) IT resources -
machines/instances, storage, networking, etc., (as in I-
aaS public clouds or many private clouds) or even soft-
ware abstractions (as in SaaS clouds) with different price
vs. performance vs. availability trade-offs. The prices
within these interfaces may be exposed explicitly (as is
the case with public clouds [!, 2, 30, 16]) or they may
be more indirect (as in certain private clouds). Regard-
less, these pricing schemes, in effect, bundle the energy-
related costs incurred by the data center into prices of the
IT abstractions that are offered to the tenants. Where-
as this way of propagating energy costs onto the tenants
may work fine if energy costs were based only on ag-
gregate/raw energy consumed, it fails to do so given the
complexities of electric utility pricing discussed above.

Shortcomings this gap may cause: Whereas the IT-
centric pricing interface exposed by cloud providers has
the merit of being simple for a tenant to understand
and use, this simplification may come at a heavy price.
To keep the discussion concrete, we consider a cloud
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Figure 2: An example illustrating unfairness in how tenants
with different demand variances are charged under a peak-
based electricity pricing scheme. (V: VM cost charged by the
cloud.)

provider with a single data center whose electric utili-
ty employs a peak-based pricing scheme with its energy
charge and peak power charge parameters denoted by o
and f3, respectively. We will use this peak-based pric-
ing in our discussions throughout the rest of the paper as
well. Our arguments, however, easily extend for other
kinds of electric utility pricing schemes. The gap we i-
dentified above can result in shortcomings related to the
following aspects:

Fairness: Consider the example shown in Figure 2,
wherein two tenants procure resources from an laaS
cloud in the form of virtual machines (VMs). Ignoring
complexities such as the diversity in the types of VMs
offered by most cloud providers [ 1, 2, 30, 16], “reserved”
or “spot-priced” VMs, etc., each tenant employs a profit
optimizing VM allocation algorithm (e.g., several recen-
t papers present such algorithms [42, 43, 45]) based on
its predicted workload. Let us consider a thought exper-
iment wherein tenant 1 and tenant 2 have the same total
VM demand (and hence create the same raw energy de-
mand under the simplified assumption that energy con-
sumption is in proportion to number of VMs used) over
a given period of time. However, tenant 1 has a higher
demand variation than tenant 2. Suppose that the cloud
is charged C$ by the electric utility and that the other
(non-energy such as IT costs) costs that the cloud needs
to recoup from the tenants amount to V. The cloud would
charge both these VMs equally (%). This example is
consistent with existing cloud pricing. However, this is
obviously unfair to tenant 2 - tenant 1, who has the higher
consumption variation, is contributing more to the peak
power consumption (and hence to the electric utility bill)
of the cloud than tenant 2. Furthermore, this unfairness
will only become worse as the relative share of energy-
related costs becomes higher. Additionally, workloads
can exhibit great diversity in the energy consumption of
the VMs, making matters even more complex.

Cost-efficacy: Due to the gap described above, any
demand-response (DR) carried out by the data center
for optimizing its energy-related costs may end up being
done without effective participation of tenants since they
are not aware of the electricity pricing schemes imposed



on data centers and thus cannot react to the electricity
price changes by the utility via modulating their own de-
mand locally (as proposed in [38]). The tenants cost
objectives are not aligned with those of the data center, a-
gain because of the gap in pricing schemes. For example,
as in Figure 2, tenant 1 will focus on minimizing its own
VM usage regardless of the aggregate peak power con-
sumption experienced by the data center. Consequently,
the data center’s DR, which might place a high emphasis
on reducing the aggregate peak power, may suppress its
power demand in ways or at times that are not the best
choices for tenant 1.

Sustainability: Finally, the larger energy consumption
and higher peak power may be incurred because of this
gap, with negative implications for the sustainability of
both the data center and the grid. By removing the gap
between cloud pricing and electric utility pricing, the da-
ta center and the tenants can collaborate and modulate
their demands together to achieve better sustainability.

Our Proposal: Virtualize the Electric Utility: To
bridge this gap between cloud and electric utility pric-
ing, we propose to enhance the interface exposed to the
tenant to also include (in addition to the virtualized IT
resources it already contains) a virtual electric utility
(VEU). Our focus is on “big”/long-lasting tenants (e.g.,
a large e-commerce site hosted on a public cloud that has
its own clients that are effectively “fleeting”’/short-lived
tenants of the cloud) of the cloud. The cloud provider
would create the VEU for its tenants with the dual goal-
s of (i) providing enough information to tenants about
the actual energy-related costs and their own contribu-
tion to it, and (ii) letting the tenants play a part in con-
trolling their own energy-related costs via incorporating
information offered by the VEU into their own decision-
making. Evaluating the efficacy of this idea would re-
quire us to investigate two main areas. The first area,
which we discuss in Section 2, is concerned with how
a cloud provider might construct an effective VEU ab-
straction and involves issues such as: what kind of pric-
ing design would achieve fairness and other desirable be-
haviors, how should the VEU design be informed by the
cloud provider’s understanding of the tenants’ workload-
s and modulation behavior, how should a VEU meter be
designed to help the tenants understand their individual
VEU and make proper decisions, and what role should
the tenants have in negotiating the pricing scheme to be
used by their VEU? The second area, which we explore
in Section 3, is concerned with tenant operation in a data
center that exposes the VEU interface.

Figure 3 demonstrates the key ideas in a cloud expos-
ing the VEU interface to its tenants. Different from Fig-
ure 2 wherein the tenants are only exposed an IT-based
interface (possibly combined with energy charge implic-
itly), here the tenants are offered a combination of IT-
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Figure 3: An overview of the key ideas in a cloud exposing
VEUs to its tenants. (p(VEU;): VEU cost associated with ten-
ant i.)
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based and VEU-based interfaces and apply appropriate
control knobs to optimize total costs. With the help of
VEUSs, the DR done by the cloud along with the partic-
ipation of tenants may improve the cost-efficacy of both
the cloud and the tenants. This is the central hypothesis
underlying our work.

2 Designing Effective VEUs
In this section, we discuss two main issues related to a
cloud provider’s design of VEUs for its tenants. First,
what kind of pricing design for VEUs might allow the
provider to harmonize its charging of tenants with the
electric utility costs it incurs? Second, what kind of sys-
tems infrastructure and tools might the provider need to
effectively implement VEUs?

A Preliminary VEU Pricing Design: We present
a simple game-based® VEU pricing mechanism design
which improves the “unfairness” described in Section 1.
Let x; and s; be the expected energy consumption and
the standard deviation of consumption of tenant i over a
given interval of time, respectively. Denote as k and s
vectors of k; and s;. Define $2 = Y, slg as the variance
of the aggregate energy consumption of the data center.
Consider per-unit pricing policies of the form

o+ B+ B2k g(kisi)/ Y, 8(K;.5)
J

pi(k) =

wherein  g(k,s) = (KLZX)Y(H"““) , % > Smax >
max; maxy, s;(k;), e > Kmax > max; k; and y > 0.
In this game, tenant i will optimize net utility

mxeilxvi(g) =

ui(K;) — pi(K) %, (D

where the utility u; is increasing, concave and bounded.
For example, u(k) = tmax (1 — (1+k/a) ") where a > 0.

As a special case illustrating the merits of the proposed
pricing design, consider two identical tenants (as in Fig-
ure 3) i € {1,2} except fixed s; > s2. Solving the first
order necessary conditions gives (for Vi)

W (k) — o — B 2BSYI;8(x5,s) (k) 7!
(Si_smax)Kik (ng(’(;vsj))z

3For simplicity we omit the proof for existence and uniqueness of
Nash equilibrium.




To see the impact of this proposed pricing design on
the “unfairness” pointed our earlier, consider the case
where 51 =~ 5o (but 51 > s7), and that the parameter a
is taken sufficiently small so that xu'(x) and k(u'(x) —
o — f) are decreasing in k. In this case, k] < k3 when
s1 > s and s1 =~ s, which achieves “fairness” since ten-
ant 1 who contributes more to the aggregate peak (be-
cause of higher s1) will be charged more when the game
converges to the Nash equilibrium and therefore has to
modulate its own demand to a lower level (i)*.

Note that here p; is increasing w.r.t. s; at the Nash e-
quilibrium, which is desirable since the tenant with high-
er demand variance will experience a higher price.

Challenges and Ideas: We identify the following ar-
eas of work related to VEU pricing design:

e In addition to our desire that the VEU pricing design
help alleviate the unfairness problem that we identified
in Section 1, we may also want it to offer certain oth-
er appealing characteristics. One example is that the
price per unit demand is decreasing in consumption
(i.e., pi(x,s) is decreasing in k;), which may be valu-
able in capturing volume discounts (similar to those
offered for IT resources to consumers with large de-
mands - either explicitly by cloud providers [!] or re-
alized implicitly by such consumers via using cheaper
“reserved” instances [2]).

e A key simplification inherent in the above model is
that it deals with decision-making during a single time
interval. One key direction along which the VEU pric-
ing design must be enhanced concerns capturing the
tenants’ ability to modulate their workloads over mul-
tiple time slots. One useful idea would be to extend
our game-based formulation to accommodate tenant
workload modulation as developed in Section 3.

e A fundamental question concerns the “structure” of
the VEU pricing scheme: Instead of the scalar VEU
price explored above, should VEU prices resemble
those exposed by the (actual) electric utility? For ex-
ample, might a data center subjected to peak pricing
design its VEUs to also expose peak pricing to the ten-
ants? If this were to be the case, might the data center
then offer choices for energy demand charge and peak
power charge that tenants could select from? For our
running example of two tenants with identical average
demands but different variances, it is intuitively clear
that the tenant with a lower variance would be willing
to pay a higher charge for peak power if that allowed
it to choose a lower energy demand charge.

Systems Software and Tools: The key enabling fa-
cility a cloud provider would need to actually imple-

4Here we choose to modulate power demand via load-shedding;
other control knobs based on load-shifting will be considered in our
future work.

ment VEUs (spanning various choices represented by
the discussion above), is similar to what has been called
“energy accounting” in the literature [5, 21]. The da-
ta center may want to provide its tenants with facili-
ties (a.k.a. VEU meter) that can be used to infer their
local power consumption and estimate the individual
VEU, which can be done based on inference techniques
that can translate easily to measure numbers like utiliza-
tion into accurate power consumption employing well-
designed models. One particular challenge is attributing
the energy consumed by shared components and indi-
rectly exercised components. We will build upon related
work as well as our own prior experience on vPath for
this [33, 34].

3 Tenant Operation with a VEU
Next, we consider the following question: how might
tenants operate with this newer interface?

Novel Resource Allocation Problems: With a VEU
interface exposed by the data center, tenants will face
fundamentally novel resource allocation problems com-
pared to those addressed in the current literature because
they will optimize costs that are summations of IT costs
and VEU bills. Figure 4 shows a simple example of how
the control problems with VEU become different from
and more challenging than existing ones in the literature.

VM VM
Demand Demand
Peak m, On-demand On-demand
power VMs VMs
Reserved Reserved
VMs VMs
0 t 0 t

(a (W]
Figure 4: A simple example of how the control problems be-
come different from existing ones.)

Suppose one tenant wants to procure VMs from
a cloud provider which exposes the options of both
on-demand and reservation-based VM pricing schemes
(e.g., Amazon EC2 [1]) to tenants. As in Figure 4(a),
the typical decision making (without VEU) involves
finding a threshold based on the cost-benefit trade-offs
between on-demand and reservation prices: any VM de-
mand below the threshold can be fulfilled by reserved
VM, the rest will be obtained as on-demand instances.

However, if the same tenant is charged by the cloud
based on both VEU and IT resource (VMs in this ex-
ample) prices, it might find completely different control
decisions to be cost-optimal. Suppose that the VEU in-
terface is designed to be the same as the peak-based elec-
tricity pricing. For example, besides the VM costs, the
tenant might also be charged for its peak power and to-
tal energy consumption. Assume that the tenant’s power
consumption is proportional to the number of VMs be-



ing used. If this tenant is running batch workload that
can tolerate delay to some extent, it might want to post-
pone part of its VM procurement during the peak time
and smooth the power peak, as shown in Figure 4(b).

Whereas consumers solving such problems will likely
enable better DR for the data center (assuming appropri-
ate pricing design and VEU implementation), they will
require additional complexity at the tenant: (i) solving
more complex stochastic optimization problems and (i-
i) having to reason about predicting/converting resource
allocations into power consumption.

Implementation Considerations and Enabling Sys-
tems Software: We believe that (i) can be addressed us-
ing approaches similar to those we have been pursuing.
In our prior work [38], given the computational complex-
ity of optimizing power cost with various existing control
knobs all together, we propose to modulate the power de-
mand via abstract knobs: demand dropping and demand
delaying, based on the observation that many of the real
knobs are either dropping demand or delaying demand
or both. This abstraction can be combined together with
the existing IT resource-based control techniques for the
tenants to make better decisions under the VEU inter-
face. For example, as in Figure 4(b), a tenant running de-
lay tolerant MapReduce workload could employ demand
delaying; whereas a tenant running delay sensitive web
search engine might exploit demand dropping to shave
the peak power (e.g., partial execution [44]).

Regarding (ii), we can leverage variety of related
work. One such example is “vPower” [39], a software
system which allows applications to specify their pow-
er needs and dynamically monitors power usage. Other
related work that might help in converting resource al-
location into power consumption can be found in Sec-
tion 4. However, these works cannot provide sufficient
VEU-related information to tenants to help them make
cost-effective decisions as discussed in Section 4.

4 Related Work and Other Discussion

Reducing Energy-related Costs: A large body of work
exists on reducing data center energy costs and we may
view it as being of two types. The “first line of attack”
on these costs has been based on techniques to reduce the
(raw) energy consumption of the data centers by improv-
ing the power proportionality [35] of hardware/software
or reducing sources of energy wastage in IT or non-
IT infrastructure (thereby improving the data center’s
“PUE” [6]). Some salient examples of such work include
the use of IT equipment capacity modulation/shutdown
(e.g., CPU [14], memory and disks [4], 37], entire
servers [13, 22], software re-design [7], improvements
in the design and operation of the cooling system [23],
and combinations of these options [31]. Since these
approaches are based on reducing energy consumption,
their positive impact on sustainability is straightforward

to appreciate.

A second (and more indirect/subtle) line of work in-
volves employing more general DR within data center-
s in response to pricing complexities discussed in Sec-
tion 1 (e.g., coincident peaks [25], peak pricing [38],
time-varying prices [36], etc.) and also to avail of cost
benefits offered by such “supply-side” options as local
generation (including renewables) [11, 32, 15] or such
offerings from the grid as ancillary services [9], carbon
credits [32], etc. This body of work has explored the
use of a variety of demand-side control knobs such as
DVES [8], geographical load balancing [24, 29], par-
tial execution [44], energy storage within the data cen-
ter [40, 17], etc.

We consider VEUs to be complimentary to this en-
tire body of work: VEUs can serve as a mechanism for
propagating the energy/cost benefits offered by the above
techniques to individual tenants fairly. Furthermore, as
described in Section 3, many optimization and control
techniques developed in these works can be serve as s-
tarting points for a tenant using a VEU for devising its
own cost-aware resource allocation.

Alternate Approaches based on Work that ““Virtu-
alizes” Power: One line of work in the literature worth
comparing our VEU-based approach against is based on
some recent proposals for “virtualizing power” in the da-
ta center. This idea of virtualizing power in the data cen-
ter is not new. Briefly, these proposals argue for treating
energy as a first-class resource (at par with IT resources
such as the CPU or entire servers, etc.) which can be
directly/explicitly controlled by individual application-
s. Data centers based on these proposals track/estimate
the power consumed by individual applications, make
this information available to them via software calls, and
even let applications control their energy usage. Salien-
t examples of such proposals are “VirtualPower” [26],
“energy containers” [5], and “palloc” [39].

Given this line of work, one might ask if replacing the
current IT-based interface/pricing offered to tenants with
a completely (virtual) energy-based interface would be
a good idea. The key distinction between our work and
these ideas is that we propose to virtualize not just power
but the electric utility itself. By allowing a tenant to inter-
act with (what it sees as) its own electric utility, we allow
it to negotiate its own energy pricing with the cloud and
carry out subsequent resource allocation that is aware of
the energy-related costs it will incur (as dictated by this
negotiated pricing scheme). In fact, these techniques are
complimentary to VEUs because our implementation can
benefit from their ideas related to application-level ener-
gy consumption monitoring and accounting. However,
they do not focus on bridging the gap between electric
utility pricing and cloud pricing, and the fairness and ef-
ficiency related problems resulting from it.
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