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Abstract
High availability and performance of a web service is
key, amongst other factors, to the overall user experience
(which in turn directly impacts the bottom-line). Exo-
genic and/or endogenic factors often give rise to anoma-
lies that make maintaining high availability and deliver-
ing high performance very challenging. Although there
exists a large body of prior research in anomaly detec-
tion, existing techniques are not suitable for detecting
long-term anomalies owing to a predominant underlying
trend component in the time series data.

To this end, we developed a novel statistical tech-
nique to automatically detect long-term anomalies in
cloud data. Specifically, the technique employs statistical
learning to detect anomalies in both application as well
as system metrics. Further, the technique uses robust sta-
tistical metrics, viz., median, and median absolute de-
viation (MAD), and piecewise approximation of the un-
derlying long-term trend to accurately detect anomalies
even in the presence of intra-day and/or weekly season-
ality. We demonstrate the efficacy of the proposed tech-
nique using production data and report Precision, Recall,
and F-measure measure. Multiple teams at Twitter are
currently using the proposed technique on a daily basis.

1 Introduction
Cloud computing is increasingly becoming ubiquitous.
In a recent report, IHS projected that, by 2017, enter-
prise spending on the cloud will amount to a projected
$235.1 billion, triple the $78.2 billion in 2011 [3]. In
order to maximally leverage the cloud, high availability
and performance are of utmost importance. To this end,
startups such as Netuitive [1] and Stackdriver [2] have
sprung up recently to facilitate cloud infrastructure mon-
itoring and analytics. At Twitter, one of the problems we
face is how to automatically detect long-term anomalies
in the cloud. Although there exists a large body of prior
research in anomaly detection, we learned, based on ex-
periments using production data, that existing techniques
are not suitable for detecting long-term anomalies owing
to a predominant underlying trend component in the time
series data. To this end, we propose a novel technique for
the same.
The main contributions of the paper are as follows:

r First, we propose a novel statistical learning based
technique to detect anomalies in long-term cloud
data. In particular,

z We build upon generalized Extreme Studen-
tized Deviate test (ESD) [13, 14] and employ
time series decomposition and robust statistics
for detecting anomalies.

z We employ piecewise approximation of the
underlying long-term trend to minimize the
number of false positives.

z We account for both intra-day and/or weekly
seasonalities to minimize the number of false
positives.

The proposed technique can be used to automati-
cally detect anomalies in time series data of both
application metrics such as Tweets Per Sec (TPS)
and system metrics such as CPU utilization etc.

r Second, we present a detailed evaluation of the pro-
posed technique using production data. Specifi-
cally, the efficacy with respect to detecting anoma-
lies and the run-time performance is presented.

Given the velocity, volume, and real-time nature of
cloud data, it is not practical to obtain time series
data with “true” anomalies labeled. To address this
limitation, we injected anomalies in a randomized
fashion. We evaluated the efficacy of the proposed
techniques with respect to detection of the injected
anomalies.

The remainder of the paper is organized as follows: Sec-
tion 2 presents a brief background. Section 3 details the
proposed technique for detecting anomalies in long-term
cloud data. Section 4 presents an evaluation of the pro-
posed technique. Lastly, conclusions and future work are
presented in Section 5.

2 Background
In this section, we present a brief background for com-
pleteness and for better understanding of the rest of the
paper. Let xt denote the observation at time t, where
t = 0,1,2, . . ., and let X denote the set of all the obser-
vations constituting the time series. Time series decom-
position is a technique that decomposes a time series (X)
into three components, e.g., seasonal (SX ), trend (TX ),
and residual (RX ). The seasonal component describes the
periodic variation of the time series, whereas the trend
component describes the “secular variation” of the time
series, i.e., the long-term non-periodic variation. The
residual component is defined as the remainder of the
time series once the seasonality and trend have been re-
moved, or formally, RX = X - SX - TX . In the case of
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Figure 1: STL (a) vs. STL Variant (b) Decomposition

long-term anomaly detection, one must take care in de-
termining the trend component; otherwise, the trend may
introduce artificial anomalies into the time series. We
discuss this issue in detail in Section 3.

It is well known that the sample mean x̄ and standard
deviation (elemental in anomaly detection tests such as
ESD) are inherently sensitive to presence of anomalies
in the input data [10, 9]. The distortion of the sample
mean increases as xt → ±∞. The proposed technique
uses robust statistics, such as the median, which is ro-
bust against such anomalies (the sample median can tol-
erate up to 50% of the data being anomalous [7, 6]).
In addition, the proposed technique uses median abso-
lute deviation (MAD), as opposed to standard deviation,
as it too is robust in the presence anomalies in the in-
put data [8, 10]. MAD is defined as the median of the
absolute deviations from the sample median. Formally,
MAD = mediani(

∣∣Xi−median j(X j)
∣∣).

3 Proposed Technique
This section details the novel statistical learning-based
technique to detect anomalies in long-term data in the
cloud. The proposed technique is integrated in the Chif-
fchaff framework [12, 11] and is currently used by a
large number of teams at Twitter to automatically detect
anomalies in time series data of both application metrics
such as Tweets Per Sec (TPS), and system metrics such
as CPU utilization.

Twitter data exhibits both seasonality and an underly-
ing trend that adversely affect, in the form of false pos-
itives, the efficacy of anomaly detection. In the rest of
this section, we walk the reader through how we mitigate
the above.

3.1 Underlying Trend
In Twitter production data, we observed that the underly-
ing trend often becomes prominent if the time span of a
time series is greater than two weeks. In such cases, the
trend induces a change in mean from one (daily/weekly)
cycle to another. This limits holistic detection of anoma-
lies in long-term time series.

Time series decomposition facilitates filtering the
trend from the raw data. However, deriving the trend,
using either the Classical [15] or STL [4] time series de-
composition algorithms, is highly susceptible to presence
of anomalies in the input data and most likely introduce
artificial anomalies in the residual component after de-
composition – this is illustrated by the negative anomaly
in the residual, highlighted by red box, in Figure 1 (a).
Replacing the decomposed trend component with the
median of the raw time series data mitigates the above.
This eliminates the introduction of phantom anomalies
mentioned above, as illustrated by the green box in Fig-
ure 1 (b). While the use of the median as a trend substi-
tution works well where the observed trend component
is relatively flat, we learned from our experiments that
the above performs poorly in the case of long-term time
series wherein the underlying trend is very pronounced.
To this end, we explored two alternative approaches to
extract the trend component of a long-term time series
– (1) STL Trend; (2) Quantile Regression. Neither of
the above two served the purpose in the current context.
Thus, we developed a novel technique, called Piecewise
Median, for the same. The following subsections walk
the reader through our experience with using STL Trend,
Quantile Regression, and detail Piecewise Median.

3.2 STL Trend
STL [4] removes an estimated trend component from the
time series, and then splits the data into sub-cycle series
defined as:

Definition 1 A sub-cycle series comprises of values at
each position of a seasonal cycle. For example, if the se-
ries is monthly with a yearly periodicity, then the first
sub-cycle series comprised of the January values, the
second sub-cycle series comprised of the February val-
ues, and so forth.

LOESS smooths each sub-cycle series [5] in order to
derive the seasonality. This use of sub-cycle series allows
the decomposition to fit more complex functions than the
classical additive or the multiplicative approaches. The
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Figure 2: An illustration of the trends obtained using different approaches

estimated seasonal component is then subtracted from
the original time series data; the remaining difference is
smoothed using LOESS, resulting in the estimated trend
component. STL repeats this process, using the most re-
cent estimated trend, until it converges on the decompo-
sition, or until the difference in iterations is smaller then
some specified threshold. The purple line in Figure 2
exemplifies the trend obtained using STL for a data set
obtained from production.

3.3 Quantile Regression
While least squares regression attempts to fit the mean
of the response variable, quantile regression attempts to
fit the median or other quantiles. This provides statisti-
cal robustness against the presence of anomalies in the
data. Marrying this with a B-spline proved to be an ef-
fective method for estimating non-linear trends in Twit-
ter production data that are longer then two weeks. This
extracts the underlying trend well for long-term time se-
ries data. However, we observed that it would overfit the
trend once the data was two weeks or less in length. This
meant that large blocks of anomalies would distort the
spline and yield a large number of both False Negatives
(FN) and False Positives (FP). The aforementioned pit-
fall (meaning, overfitting) on two-week windows means
that Quantile B-spline is not applicable in a piecewise
manner, and as such, provided further motivation for a
piecewise median approach. Additionally, from the fig-
ure we note that Quantile Linear, the line in green, also
poorly fits the long-term trend.

3.4 Piecewise Median
In order to alleviate the limitations mentioned in previ-
ous subsections, we propose to approximate the under-
lying trend in a long-term time series using a piecewise
method. Specifically, the trend computed as a piecewise
combination of short-term medians. Based on experi-
mentation using production data, we observed that sta-
ble metrics typically exhibit little change in the median
over 2 week windows. These two week medians provide

enough data points to decompose the seasonality, while
also acting as a usable baseline from which to test for
anomalies. The red line in Figure 2 exemplifies the trend
obtained using the piecewise approach.

We now present a formal description the proposed
technique. Algorithm 1 has two inputs: the time series
X and maximum number of anomalies k.

Algorithm 1 Piecewise Median Anomaly Detection
1. Determine periodicity/seasonality
2. Split X into non-overlapping windows WX (t) con-
taining at least 2 weeks

for all WX (t) do
Require:
nW = number of observations in WX (t)
k ≤ (nW × .49)
3. Extract seasonal SX component using STL
4. Compute median X̃
5. Compute residual RX = X−SX − X̃
/* Run ESD / detect anomalies vector XA with X̃ and
MAD in the calculation of the test statistic */
6. XA = ESD(RX ,k)
7. v = v+XA

end for
return v

It is important to note that the length of the windows in
the piecewise approach should be chosen such that the
windows encompasses at least 2 periods of any larger
seasonality (e.g., weekly seasonality owing to, for exam-
ple, weekend effects). This is discussed further in Sec-
tion 4.1

4 Evaluation
The use of different trend approximations yields different
sets of long-term anomalies. First, we compare the effi-
cacy of the proposed Piecewise Median approach with
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Figure 3: Anomalies found using STL (top), Quantile B-spline (middle), and Piecewise Median (bottom)

Figure 5: Intersection and Difference between anomalies detected using two-week piecewise windows containing
partial weekend periods (A) and full weekend periods (B)

STL and Quantile Regression B-Spline. Second, we re-
port the run-time performance of each. Lastly, we com-
pare how the proposed technique fared against ground
truth (via anomaly injection).

4.1 Efficacy
We evaluated the efficacy of the proposed Piecewise Me-
dian approach using production data. In the absence of
classification labels, i.e., whether a data point is anoma-
lous or not, we worked closely with the service teams
at Twitter to assess false positives and false negatives.
Figure 3 exemplifies how STL, Quantile Regression B-
Spline, and Piecewise Median fare in the context of
anomaly detection in quarterly data. The solid blue lines
show the underlying trend derived by each approach.
From the figure, we note that all the three methods are
able to detect the most egregious anomalies; however,
we observe that the overall anomaly sets detected by
the three techniques are very different. Based on our
conversation with the corresponding service teams, we
learned that STL and Quantile Regression B-Spline yield
many false positives. The Quantile Regression B-Spline
appears to be more conservative, but misses anomalies
in the intra-day troughs. By comparison, STL detects
some of these intra-day anomalies, but it becomes overly

aggressive towards the end of the time series, yielding
many false positives. In contrast, Piecewise Median de-
tects the majority of the intra-day anomalies, and has
a much lower false positive rate than STL. These in-
sights also mirror Figure 4, wherein we note that roughly
45% of the anomalies found by Piecewise Median are the
same as STL and B-spline, with B-spline being the more
conservative.

28.47 46.15 25.37 45.33 44.46 10.21

PIECEWISE
MEDIAN

PIECEWISE
MEDIAN

STL
TREND

QUANTILE B-SPLINE
REGRESSION

Figure 4: Intersection and set difference of anomalies
found in STL and Quantile B-spline vs. Piecewise Me-
dian

In production data, we observed that there might be
multiple seasonal components at play, for example daily
and weekly (e.g., increased weekend usage). In light of
this, the Piecewise Median assumes that each window
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captures at least one period of each seasonal pattern. The
implication of this is illustrated in Figure 5 which shows
intersection and differences between the set of anomalies
obtained using the Piecewise Median approach using the
same data set but “phase-shifted” to contain partial (set
A) and full (set B) weekend periods. From the figure we
note that anomalies detected using set A contains all the
anomalies detected using set B; however, the former had
a high percentage of false positives owing to the fact that
set A contained only the partial weekend period.

4.2 Run-time Performance
Real-time detection of anomalies is key to minimize im-
pact on user experience. To this end, we evaluated the
runtime performance of the three techniques. Piece-
wise Median took roughly four minutes to analyze three
months of minutely production data, while STL and
Quantile B-spline took over thirteen minutes. Table 1
summarizes the slowdown factors. From the table we
note a slow down of > 3× which becomes prohibitive
when analyzing annual data.

Avg
Minutes

Slowdown
Percentage
Anomalies

STL Trend 13.48 3.19x 8.6%
Quantile B-Spline 13.62 3.22x 5.7%
Piecewise Median 4.23 1x 9.5%

Table 1: Run time performance

4.3 Injection based analysis
Given the velocity, volume, and real-time nature of cloud
infrastructure data, it is not practical to obtain time series
data with the “true” anomalies labeled. Consequently,
we employed an injection-based approach to assess the
efficacy of the proposed technique in a supervised fash-
ion. We first smoothed production data using time series
decomposition, resulting in a filtered approximation of
the time series. Anomaly injection was then randomized
along two dimensions – time of injection, and magnitude
of the anomaly. Each injected data set was used to create
nine different test sets (time series), with 30, 40, and 50%
of the days in the time series injected with an anomaly at
1.5, 3, and 4.5σ (standard deviation). The 1σ value was
derived from the smoothed times series data.

As with the actual production data, STL and Quantile
B-Spline exhibit a 4× slowdown (see Table 2). The faster

Avg Minutes Slowdown

STL Trend 21.59 4.49x
Quantile B-Spline 21.48 4.78x
Piecewise Median 4.49 1x

Table 2: Run time performance in case of anomaly injec-
tion

Figure 6: Precision, Recall, and F-Measure

run-time of Piecewise Median analyzes larger time series
in a shorter period. This might prove useful where the
detection of anomalies in historical production data can
provide insight into a time sensitive issue. Additionally,
from Figure 6 we note that Piecewise Median performs
almost as well as Quantile B-spline, while STL has very
low precision.

From the results presented in this section, it is evi-
dent that Piecewise Median is a robust way (has high
F-measure) for detecting anomalies in long term cloud
data. Further, Piecewise Median is > 4× faster!

5 Conclusion
We proposed a novel approach, which builds on ESD, for
the detection of anomalies in long-term time series data.
This approach requires the detection of the trend compo-
nent, with this paper presenting three different methods.
Using production data, we reported Precision, Recall,
and F-measure, and demonstrated the efficacy of using
Piecewise Median versus STL, and Quantile Regression
B-Spline. Additionally, we reported a significantly faster
run-time for the piecewise approach. In both instances
(efficacy and run-time performance), the anomaly detec-
tion resulting from Piecewise Median trend performs as
well, or better then, STL and Quantile Regression B-
Spline. The technique is currently used on a daily ba-
sis. As future work, we plan to use the proposed ap-
proach to mitigate the affect of mean shifts in time series
on anomaly detection.
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