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Abstract 
Conducting system operations (such as upgrade, recon-
figuration, deployment) for large-scale systems in cloud 
is error prone and complex. These operations rely heav-
ily on unreliable cloud infrastructure APIs to complete.  
The inherent uncertainties and inevitable errors cause a 
long-tail in the completion time distribution of opera-
tions. In this paper, we propose mechanisms and de-
ployment architecture tactics to tolerate the long-tail. 
We wrapped cloud provisioning API calls and imple-
mented deployment tactics at the architecture level for 
system operations. Our initial evaluation shows that the 
mechanisms and deployment tactics can effectively 
reduce the long tail. 

1. Introduction 
Conducting system operations (such as upgrade, recon-
fig, deployment) for large-scale modern distributed 
systems in cloud is error prone and complex[1]. System 
operations in a cloud are performed through cloud APIs 
provided by cloud providers. Therefore, the completion 
time and reliability of these tasks depends on the reli-
ability and performance of API calls. We previously did 
an empirical study on cloud API issues [4] and ob-
served that a large percentage of the cases reported in 
the EC2 forum [5] are related to stuck API calls and 
slow response to API calls. The majority of the API 
issues are unavoidable timing failures that cannot be 
reduced in a large-scale system and often exhibit a 
crash-recovery behavior. Those API timing failures are 
major causes of the long-tail of the timing distribution 
of operation tasks. However, existing research on sys-
tem operation focuses on reducing errors and repair 
time [2-3] rather than tolerating reduced latency issues.  

From an architecture perspective, one step of an opera-
tion either needs to touch many cloud instances in par-
allel or results in “deep hierarchical” calls, which 
means one top level call leads to another call and an-
other call. If one of these dependent calls is slow to 
respond in a large-scale system the initial operation will 
be slow to respond. Such problems are already being 
observed in typical large-scale fan-out systems. For 
example, Netflix Hystrix tries to keep timeouts short 
and to fail fast to avoid cascading timeouts [6]. Jeff 
Dean’s request hedging technique makes the same re-

quest to multiple replicas and uses the results of the first 
request to respond [7]. We argue that large-scale de-
ployment architecture in cloud is also a fan out and 
deep hierarchical system from an operational point of 
view and consequently deployment operations will also 
exhibit a long tail on their timing distribution. 

In this paper, we propose a set of mechanisms and de-
ployment architecture tactics to tolerate the long-tail. 
We implemented our mechanisms as a tail-tolerant 
wrapper around EC2 APIs which are heavily used in 
system operation of applications hosted in Amazon 
cloud. At the architecture level, we implemented the 
proposed deployment architecture tactics that also re-
duce the long tails. We evaluate our long-tail tolerant 
mechanisms and deployment tactics through a set of 
experiments on AWS infrastructure. Our initial result 
shows that the mechanisms and deployment architec-
ture tactics can effectively remove the long tail of the 
timing distribution. 

The rest of this paper is organized as follows. Section 2 
presents the tail-tolerant mechanisms and our tail-
tolerant API wrapper. Section 3 discusses the proposed 
deployment architecture tactics. Section 4 evaluates the 
proposed solutions. Section 5 covers related work. Sec-
tion 6 concludes the paper and outlines the future work.  

2. Tail-Tolerant Mechanisms and API 
Wrapper 
An operation or a set of cloud API calls can be seen as 
a process or a workflow. Our approach for dealing with 
timing failures is to adapt exception-handling patterns 
of workflows [8-9]. We first discuss the workflow ex-
ception handling and then we discuss how we wrapped 
cloud API calls to utilize these patterns. 

2.1. Tail-Tolerant Mechanisms 
The workflow patterns that we are using assume there 
are six states within the lifecycle of a workflow opera-
tion: requested, cancelled, allocated, started, failed and 
completed.  These are represented by the rectangles in 
Fig.1. The transitions between the states are a combi-
nation of the workflow patterns and our adaptations. 
Our wrapper around the cloud API calls implements 
this state diagram. 



 
Figure 1. Failure/fault tolerance workflow patterns. 

In general, the transitions represent calls to the original 
cloud APIs and the states represent either decision 
points or final states. The failed, completed, and cancel 
states represent final states and the other three represent 
decision points. The flow through this state diagram 
begins with an API call request that is intercepted by 
our wrapper which enters the Requested state.  The 
Requested state may choose to make a normal request 
or a hedged request.  For example, a hedged-request 
may issue one or more original EC2 API calls to launch 
instances. The wrapper then goes to the Allocated state. 
From the Allocated state, the wrapper may also force a 
complete or a failure depending on the state of opera-
tion. The solid arrows depict the state transition of an 
original EC2 API call during normal execution. The 
dashed arrows show the mechanisms of dealing a tim-
ing failure in a given state. Below we describe how we 
utilize these patterns in detail. 

When an API call is being requested: The hedge-
request pattern is similar to “hedges requests” idea in 
Jeff Dean’s paper [7]. For certain operations (e.g. 
launching multiple VMs), we will issue more requests 
than we need (e.g. launching/scaling out 12 instead of 
the 10 we need) and then cancel the remaining immedi-
ately after the required number is successfully 
reached. In alternative-request pattern, an alternative 
API is requested at the same time at the same time as 
the original API is requested.  

When resources are being allocated to one or more 
original EC2 API calls: Continue-allocate pattern, 
reallocate pattern, force-fail-a pattern, and force-
complete-a pattern can be used when an API request 
sent to an instance (i.e. a Virtual Machine) fails or is 
unresponsive. The continue-allocate pattern schedules 
the request to be sent to the same instance at a future 
time if the API request fails or there is no response 
from the cloud infrastructure within a certain time. For 
example, in our disaster recovery product Yuruware 
Bolt, we need to move data from one region to another 
region for backup. One of the steps is to create an EBS 
volume from a snapshot. If the first “ec2-create-
volume” call is failed or stuck, the application sends 

another “ec2-create-volume” request when a timeout 
occurs. The reallocate pattern, on the other hand, re-
sends the request to other instances. For example, in 
Yuruware Bolt, we need two data mover instances in 
two regions for backup.  The EBS volume created from 
the snapshot is required to be attached to an instance. If 
the EBS volume is not able to be attached to the in-
stance, the application can attempt to attach the EBS 
volume to the instance again after several seconds using 
continue-allocate pattern or attach the EBS volume to 
the other available instances. The cancel-allocate pat-
tern is used to cancel the volume allocation for the 
original instance. 

Both force-fail-a pattern and force-complete-a pattern 
can be used when an API call has been retried for sev-
eral times and continues to fail. A default fallback can 
be used by marking the call a failure or completion. 
Force-complete-a is useful when the output of the API 
call can be known from other operations. For example, 
after an instance is started, in the case that the com-
mand ec2-describe-instances does not return any output, 
the user could try to connect to the instance host. If the 
instance is accessible, it means the instance is running. 
Thus, the request to ec2-describe-instances can be 
force-completed and all subsequent API calls can be 
triggered. These patterns can be used to deal with unre-
sponsive API calls and slow API responses. 

After an API call is started: There are three patterns 
that can be used when an API call is stuck at a state, 
including reallocate-s pattern cancel-start pattern, and 
force-fail pattern. As we described earlier, an API call 
being stuck is a common complaint. In reallocate-s 
pattern, the application gives up the current request and 
restarts the API request again in another instance. For 
example, if an EBS volume cannot be attached to one 
instance, the application can try to attach it to a differ-
ent instance within the same availability zone, and can-
cel the stuck attaching API call at the same time (can-
cel-start pattern). Another example is that, the applica-
tion can ignore the current request and resend the API 
request again to cloud infrastructure. For example, if an 
instance is stuck at initializing, the application can re-
launch an instance. In force-fail pattern, if an API call 
is stuck at the state for a certain time, it is regarded as a 
failed API call and no subsequent calls are triggered. 
This pattern is similar to force-fail-r. 

2.2. API Wrapper 
We implemented some of our mechanisms discussed in 
the previous section as a tail-tolerant API wrapper 
around Amazon EC2 APIs. The initial API wrapper 
only wraps around five API calls: launch an instance, 
start an instance, stop an instance, attach a volume and 



detach a volume. These five EC2 API are the most fre-
quently used and having significant latency issues ac-
cording to our own experience and early empirical 
study of AWS developer forum [5]. We built a timing 
profile for each API call and resort to other means im-
mediately after waiting time reaching a configurable 90 
percentile of historical return time. 

Launch-instance: The API wrapper implements the 
hedge-request pattern, which launches two instances 
through making two launch-instance API calls simulta-
neously when it receives a request. If one instance is 
launched within the time specified in the time profile of 
launch-instance, the API wrapper will kill the other one 
when it is launched. If neither of them launches, then 
the API wrapper implements continue-request-s pat-
tern, which re-launches another two instances.  

Start-instance: The API wrapper implements the al-
ternative-request pattern, which starts an instance and 
launches a new instance using the same image simulta-
neously, and cancel the one with longer return time. 

Stop-instance: The API wrapper launches a call to the 
stop-instance API, waits for the time specified in the 
time profile of stop instance. If the call is not com-
pleted, the API wrapper forces the instance to stop us-
ing the API of “force stop”, which implements the 
force-complete-s pattern. 

Attach volume: The API wrapper attaches volume to 
an instance and launches a new instance at the same 
time by using the alternative-request pattern. The 
wrapper waits for the time specified in the time profile 
of attach volume. If the call is not completed, it re-
attaches the volume to the newly launched instance. 

Detach volume: The API wrapper waits for the time 
specified in the time profile of detach-volume. If not 
completed, then the API wrapper implements the force-
complete pattern, which force-detaches the volume.  

 
3. Deployment Architecture Tactics 
Large-scale deployment architecture in cloud can be 
seen as a fan out and deep hierarchical system from an 
operation point of view. Deployment architectures tac-
tics can remove the long-tail of operation tasks in cloud. 
Three industry best practices are adapted in our work to 
reduce the long-tail of operations in cloud.  

Immutable server: During the provisioning of a serv-
ice, an instance is first provisioned by launching a vir-
tual machine image and then deployment tools are used 
to deploy software and configure the service in an on-
demand fashion. A significant source of latency issues 
during a system operation comes from the on-demand 

phase after the server launches. Also, the longer a VM 
has been provisioned and running the more likely it is 
in an unknown state. Immutable server tactics means 
that operators make an image which contains every-
thing a new version of an application needs. After the 
image is launched, nothing more is added or allowed to 
be changed. This can help reduce the tail latency issues 
during the on-demand phase.  

Micro services: We break down an application stack or 
an application into smaller or even micro-services and 
make each service run on different VMs or lightweight 
containers. There are a number benefits in terms of re-
ducing tail-latency. First, it significantly reduces the 
latency-causing-variability among the instances to be 
operated on. Instances belonging to a group to be oper-
ated on are essentially the same. Second, each instance 
is more lightweight. Third, there is less performance 
interference due to co-location. For example, tradition-
ally, a single instance may have some 3 stateless ser-
vices or a single service with the functionality of 3 web 
services. If operators want to upgrade something in one 
of the three web services, operators potentially intro-
duce long tail because they have to touch a number of 
instances (say 100) and some of them will be slow stat-
istically. With micro services, operators can have 100 
instances for service 1, 100 instances for service 2 and 
100 instances for service 3. For upgrade something, 
administrators touch 100 instances only and reduce the 
long tail probability. 

Redundancy: Redundancy means administrator can 
run more than the required number of VMs to avoid 
long-tail operations. For example, if administrators 
want to upgrade 100 instances, to reduce long tail, dur-
ing upgrade, administrators launch 103 instances as 
they expect at least 3 will be slow and unavoidable. 

4. Evaluation 
In this section, we evaluate our long-tail tolerant 
mechanisms and deployment architecture tactics 
through experiment.  

4.1. Evaluation of Tail-Tolerant Mechanisms and API 
Wrapper 
First we evaluate the API wrapper implementing the 
proposed API tail-tolerant mechanisms. Our experi-
ments ran on AWS EC2. We selected the results of five 
API calls to report, including launch-instance, start-
instance, stop–instance, attach-volume and detach-
volume. For each API we wrapped, we measured the 
return time 1000 times respectively. Since the focus of 
this paper is long-tail, we removed the API calls that 
failed with error messages. The calculation of the per-
centage is still based on 1000 calls.  



 
Figure 2. Measurement results of “start instance”. 

  
Figure 3. Measurement results of “stop instance”. 

We report the measurement result of start-instance and 
stop-instance in Fig. 2-Fig. 3. We omit the measure-
ment result of the other three due to length limit. In Fig. 
2-Fig. 3, the horizontal axis represents the return time 
of an API call while the vertical axis represents the per-
centage of the corresponding return time value among 
the return time of the total 1000 API calls. We observe 
that introducing tolerant mechanisms in our API wrap-
per significantly reduces the long-tail failure rate. 

The longest return time of our API wrapper is 49s. The 
measurement result shows that the API wrapper and the 
original EC2 API have similar distribution of the return 
time when the return time is less than 49s. However, the 
original EC2 API has a long tail of the return time till 
185s. API wrapper avoids 1.8% original EC2 API calls 
viewed as long tail (longer than 49s).  

In Fig 3, 90.0% of original EC2 stop-instance API calls 
and 96.0% of stop-instance API wrapper return within 
21s. 3.7% of stop-instance wrapper distributes from 22s 
to 59s. While there is 6.9% calls of the original EC2 
API calls distributing from 22s to 59s, and the remain-
ing 1.0% original EC2 API calls are long-tail till 176s 
as the longest return time.  

4.2. Evaluation of Deployment Tactics 

In this section, we evaluate the deployment tactics 
through automatically upgrading 50 AMP (Apache + 
MySQL + PHP) stacks by shell scripts. This experiment 
is running on AWS platform as well. We use Ubuntu 
Server 12.04.3 LTS as the operation system. The ex-
periment upgrades the AMP stack from Apache 2.0.65, 
MySQL 5.1.73, and PHP 5.2.17 to Apache 2.2.22, 
MySQL 5.5.35, and PHP 5.3.10 respectively. 

We implemented the three deployment tactics, and 
compared the number of the successful upgraded VMs 
using different deployment tactic with a baseline, which 
represents upgrade without any deployment tactics. 
Below are the detailed four cases in this experiment. 1) 
Baseline: we upgraded AMP running on 50 VMs to the 
recent versions directly on the original VMs.  2) Immu-
table server: we created an image of VM which runs the 
second version of AMP and launched 50 VMs using the 
image. Then we terminate the VMs running old ver-
sions of AMP. 3) Micro services: we ran Apache and 
PHP on 50 VMs and ran MySQL on another 50 VMs, 
then we upgraded them on the original VMs directly. 4) 
Redundancy: we launched 3 extra VMs with AMPs. 
After the 3 extra VMs are successfully launched, we 
started upgrading the 53 VMs with AMPs. 

We ran each test cases 100 times. We compared the 4 
test cases and observed the test results as shown in Fig. 
4. The horizontal axis represents the number of VMs 
being successfully upgraded while the vertical axis rep-
resents the percentile of the corresponding VM number. 
Fig. 4 shows that all the deployment tactics could re-
duce the failure rate of upgrade. The reduction led by 
“micro services” and “redundancy” is not as much as 
the reduction led by “immutable servers”.  

 

Figure 4. Measurement results of deployment tactics. 

4.3. Discussion 
Our experiments conducted in Section 4.1 show that 
our API wrapper with API tail-tolerant mechanisms can 



largely reduce the long-tail of the original EC2 API. 
Although the probability of long-tail return time is very 
low, the time of long tail is very long. Sometimes it 
could be as long as 10 times of most of the return time. 
Our solutions can significantly reduce the impact of 
API issues on operations long-tail and improve the reli-
ability of operations in cloud.  

The experiment results discussed in Section 4.2 show 
that the proposed deployment tactics could reduce the 
failure rate of operation tasks in cloud both in parallel 
and in hierarchical. Through investigating the log pro-
duced during upgrade, we found that network problem 
causes most of the failures. Among the three deploy-
ment tactics, “immutable servers” has the largest impact 
on reducing the failure rate because launching instance 
prevents the VM failure due to the problem of network 
connection. “Micro services” reduce the failure rate 
because each service runs independently and perform-
ance inference can be avoided to a certain degree.  

Users need to be aware: 1) some mechanisms/tactics 
will incur cost (e.g. micro resources in splitting AMP) 
which is clear from the configuration about percentage 
over provisioning or estimated tail-latency size; 2) ef-
fectiveness of our solution does depend on how the 
current operation is designed in terms of parallelism 
and VM dependency but we are agonistic to it by pro-
viding an API-level wrapper and optimization; 3) our 
solution is at the API wrapper level without requiring 
users to change their code calling the API. For support-
ing multiple cloud, we will have separate wrappers for 
different cloud providers. Our solution is not about a 
standardized API across cloud, which requires users to 
change their code. However, it is possible our mecha-
nisms can be across cloud behind the scene.  

5. Related Work 
In cloud systems, runtime operation failures are due to 
different reasons [14-15], e.g. availability zone outages, 
hardware errors, overloaded database, operating system 
crashes [10], software bugs. Cloud infrastructure pro-
viders may not fully disclose the causes of outages or 
cloud infrastructure design for competitive reasons, 
which makes the study of API issues more important.  

Microsoft researchers analysed cloud hardware failure 
and faults [11]: hard disks are the most frequent failed 
hardware due to its frequent usage and unreliability; 8% 
of servers in the data center can experience at least one 
hardware incident a year; if a failure happens, the oc-
currence rate of another failure in the same server is 
high. Gill et. al. [12] found that networks in data centers 
are highly reliable. However, load balancers experience 
many software faults and network redundancy is not 

entirely effective. Many of these failures are reflected 
differently at the API level where the users may not 
know the underlying causes.  

A significant portion of the API issues is related to slow 
API responses. Dean from Google summarized the rea-
sons of slow response API responses [7]: 1) different 
applications may reside upon one machine and share 
resources; 2) applications running on different ma-
chines may share global resources; 3) background pro-
grams may generate latency; 4) various queuing in net-
work switches and intermediate servers may cause la-
tency. Dean believes that resource over-provisioning, 
real-time engineering of software, and improved reli-
ability can help reduce the causes of API call latency. 
However, it is impossible to eliminate all API call la-
tency. Therefore, Google proposes two techniques to 
deal with API call latency [7]: 1) Within-request imme-
diate-response technique that is to issue the request to 
multiple replicas and use the first responded results; 2) 
cross-request long-term adaptation technique that is to 
issue different requests to different partitioned data.  

At the application deployment level, approaches like 
[13] were proposed to optimize reliability, latency and 
energy when application components are deployed onto 
physical machines. However, the deployment platform 
involves physical machines where one has full con-
trol/visibility rather than infrastructures with specific 
auto-scaling facilities and failures ranging from indi-
vidual nodes to entire region.  

6. Conclusions 
In this paper, we proposed tail-tolerant mechanisms and 
deployment architecture tactics to tolerate long-tail is-
sues of operations in cloud. We implemented our 
mechanisms as a tail-tolerant wrapper around Amazon 
cloud APIs which are heavily used in system operations 
of applications hosted in Amazon cloud. Our initial 
evaluation shows that the mechanisms and deployment 
architecture tactics can remove the long tail. 
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