
Predicting Execution Bottlenecks in Map-Reduce Clusters

Edward Bortnikov
Yahoo! Labs
Haifa, Israel

ebortnik@yahoo-inc.com

Ari Frank∗

Affectivon Inc
Kiryat Tivon, Israel

ari@affectivon.com

Eshcar Hillel
Yahoo! Labs
Haifa, Israel

eshcar@yahoo-inc.com

Sriram Rao
Yahoo! Labs

Santa Clara, US
sriramr@yahoo-inc.com

Abstract

Extremely slow, or straggler, tasks are a major perfor-
mance bottleneck in map-reduce systems. Hadoop in-
frastructure makes an effort to both avoid them (through
minimizing remote data accesses) and handle them in
the runtime (through speculative execution). However,
the mechanisms in place neither guarantee the avoidance
of performance hotspots in task scheduling, nor pro-
vide any easy way to tune the timely detection of strag-
glers. We suggest a machine-learning approach to ad-
dress these problems, and introduce aslowdown predic-
tor – an oracle to forecast how much slower a task will
run on a given node, compared to similar tasks. Slow-
down predictors can be embedded in the map-reduce
infrastructure to improve the agility and timeliness of
scheduling decisions. We provide initial evaluation to
demonstrate the viability of our approach, and discuss
the use cases for the new paradigm.

1 Introduction

In the recent years, map-reduce (MR) platforms have
emerged as the most popular infrastructure for Web-
scale data analysis. Pioneered by Google’s proprietary
design [2] and followed by the open-source Apache
Hadoop platform [6], MR systems serve the analysis of
huge datasets for Web search, computational advertis-
ing, content optimization, etc.

The map-reduce paradigm offers a programmer a sim-
ple API for data management and computation, while
encapsulating the complexity of scalable implementa-
tion thereof. The underlying infrastructure harnesses
multiple machines, or nodes, for reliable storage and
workload execution. In this context, all data is replicated
over multiple nodes, and every data-processing program,
or job, can run on multiple nodes. Modern MR clusters
scale to many thousands of machines.

∗Research was done while the author was at Yahoo! Labs.

A single job is comprised of multipletasksshaped in
two phasesmap and reduce. A map task, ormapper,
processes a single and logically sequential data chunk
stored on the filesystem. It produces a set of key-value
pairs, which are further distributed by key to the reduc-
ers, in an all-to-all communication pattern calledshuffle.
A reduce task, orreducer, processes the received data,
key by key, and creates a permanent output that is writ-
ten to the filesystem.

A map-reduce system can simultaneously run multi-
ple jobs competing for the node’s resources and traffic
bandwidth. These conflicts cause slowdown in the exe-
cution of tasks. The duration of each phase, and hence
the duration of the job is determined by the slowest, or
straggler, task. We use theslowdownmetric – the ratio
between the task’s execution time and the median run-
ning time of a sibling task in the same job – to charac-
terize stragglers. Figure 1 depicts the straggler mappers
and reducers (slowdown above 5) observed in a produc-
tion Hadoop cluster at Yahoo! during a month of opera-
tion. It shows that there are jobs in which the slowdowns
are huge, up to many dozens. This phenomenon is most
emphasized in large-scale production jobs. For example,
among the jobs with more than 1000 mappers,5% have
stragglers, whereas among those with more than 1000
reducers, as many as50% do.

The slowdowns of individual tasks are highly corre-
lated with overall job latencies. The correlation is not
direct, since mappers and reducers are typically exe-
cuted in multiple waves. However, significant task slow-
downs tend to indicate bottlenecks in job execution as
well. Hence, reducing the straggler effect is paramount
for improving the system’s responsiveness.

The MR framework addresses straggler tasks in two
ways: avoidanceanddetection. Straggler avoidance is
part of task scheduling. The scheduler reduces network
bottlenecks, by assigning the mapper task either to a
node that stores the data replicas (local mappers), or at
least to a node sharing the same physical rack with the



Figure 1: Jobs with maximum task slowdown exceeding 5 (sample from a 1-month performance log) – distri-
bution by the number of mappers and reducers. Each data pointstands for a single job instance.

data (rack-localmappers) (e.g., [6]). Straggler detection
happens as the running task monitoring. Upon finding a
task that runs exceedingly long, the infrastructure spec-
ulatively launches aduplicate task that does the same
work, and uses the output of the task that finishes first.

However, these existing mechanisms fail to handle the
straggler problem effectively. Specifically, the locality
optimization is counterproductive if mappers are placed
on slow or computationally congested nodes merely to
preserve the proximity to data. Figure 2 illustrates this
phenomenon, based on a 4-month production dataset.
Each data point depicts abottleneckinstance – one of
the15%-topmost nodes by the number of straggling lo-
cal mappers that occurred in a six-hour window. The
vertical bands in the plot demonstrate that bottlenecks
persist – i.e., the tasks run consistently slower on the
same set of nodes, despite the data locality.

As stragglers emerge, the MR infrastructure often
fails to detect them and launch duplicate tasks on
time. In Hadoop, for instance, no speculative execu-
tions are considered as long as there is a backlog of
non-scheduled tasks for the job. Furthermore, the de-
tection mechanism must be fine-tuned through config-
uration parameters that are hard to adapt to particular
workloads. Our measurements on production data show
that as many as90% of speculative tasks are useless –
they are launched too late to finish before the original
stragglers, and end up being killed by the system.

Our contribution We address the above shortcomings
by introducingslowdown predictor– a novel machine-
learned oracle component that detects potential or exist-
ing bottlenecks in MR clusters based on patterns mined
from historical performance data. The oracle exposes a
simple API: given a task-node pair〈t, n〉, it produces an
estimate for the slowdown oft running onn. In this con-
text, both the task and the node are modeled as feature
vectors, assembled from MR-level and system metrics.

Slowdown prediction can serve both the scheduling

and the speculative execution scenarios. Consider, for
example, augmenting Hadoop’s capacity scheduler [6]
with a predictor oracle. The scheduler manages a pool
of executionslotsat each node, and assigns the free slots
to tasks waiting for execution. In its current form, it will
always use a slot, should a task be waiting for it. With
a predictor’s help, the scheduler can avoid creating task-
to-node assignments for which the slowdown estimate
is high. E.g., it can prevent allocating congested hard-
ware to resource-savvy tasks (despite the existence of
free slots), hence avoiding the emergence of stragglers.

The predictor abstraction generalizes the currently ex-
isting heuristics, while being far better amenable to tun-
ing for specific workloads. For example, a mapper’s lo-
cality with respect to data might be just one feature that
affects the slowdown, along with the task’s input size,
CPU load, RAM usage, network traffic, etc.

In this paper, we demonstrate a specific predictor im-
plementation, which is trained on a Hadoop performance
dataset collected at Yahoo! [4]. Our evaluation shows
that slowdown can be effectively predicted, especially
for mappers, thanks to the dominance of large periodic
jobs in production environments.

The rest of this paper is structured as follows. Sec-
tion 2 defines the slowdown prediction problem. The
features used for training a slowdown predictor for
Hadoop appear in Section 3. The machine learning tech-
nique employed by our implementation is described in
Section 4. Section 5 presents the initial evaluation re-
sults of our model. Finally, we discuss related work in
Section 6, and conclude in Section 7.

2 Problem Definition
A taskslowdownis defined as the ratio between the run-
ning time of the task on the node it is assigned to and the
median running time of similar tasks over all historical
executions. Intuitively, two similar tasks are identified
by the same “signature”. As an approximation, sibling
mappers or reducers in the same job with roughly the



Figure 2: Local mapper execution bottlenecks (4-
month performance log). Each data point stands
for one of the 15%-topmost nodes by the number of
straggling local mappers (slowdown above 5) that oc-
curred in a six-hour time frame. Note the bottle-
neck stickiness – i.e., some nodes consistently gener-
ate stragglers among local mappers.

same input and output size are considered similar. More
precisely, each task has a characterizingprofile; it can
be considered as a vector of attributes. Two tasks are
similar if their profiles are similar.

The environment in which the task is running is de-
fined by the node it is assigned to, and also by the rack
and cluster to which the node belongs. In the context
of a node-task pair, these are called thehardwarerun-
ning the task. Like a task, the hardware is characterized
by a profile. Theslowdown estimateis a mapping from
the task and hardware profiles to the slowdown value of
the task. A high estimate indicates that the task might
become a bottleneck in the job’s execution.

The profiles of tasks and hardware are dynamic, and
may change over time. As the task runs, the more infor-
mation becomes available about it, e.g., the output size
can be projected once a fraction of input is processed.
All the more so, during the execution attributes of the
hardware change, and with it its profile. Therefore, the
slowdown estimate during the execution of a task on a
node may differ from an earlier one from when the node
was only a candidate for hosting the task.

3 Slowdown Predictor Model
Theslowdown predictormodel is a machine-learned or-
acle for map-reduce systems forecasting execution bot-
tlenecks. Based on the profiles of the task and the hard-
ware, the predictor estimates the task’s slowdown. The
oracle can be applied either upon the task’s assignment,
or during the execution. Hence, the task and hardware
profiles are dynamic, and the predictor must be capable
of receiving wildcards instead of some feature values.

In what follows, we describe the features used for a
model designed for the Hadoop infrastructure atop the
capacity scheduler [6]. Part of these features are Hadoop

counters, whereas the others are external system metrics.

3.1 Task Features

Job-Level Features These include the number of
mappers and reducers, the input file format, the com-
pression method, etc. While these features do not distin-
guish between sibling tasks of the same job, they help in
characterizing similar tasks across multiple jobs.

Data Skew Partitioning data over a low entropy key
space might lead to a skew in the input sizes of tasks. In
turn, this imbalance can cause a skew among the output
sizes. Outlier input and output bulks are major contribu-
tors to task slowdown.

When the input size is not available at the moment of
scheduling (e.g., for reducers), an estimate of it can be
derived from a linear projection of the output produced
by map tasks that have already completed. The actual
size – and hence the data skew – becomes known at the
end of the shuffle phase. The task’s output size (which is
never known in advance) can be linearly extrapolated in
the middle of execution from the partial output produced
and the fraction of input processed.

3.2 Hardware Features

Hardware features capture the state of all resources in-
volved in distributed computation – nodes, disks, net-
work, etc. Part of these features are constant (e.g., the
node’s hardware generation, in heterogeneous clusters),
the others are fixed throughout the task’s execution (e.g.,
the mapper’s locality wrt data), and the rest are dynamic
(e.g., performance counters). The latter can be roughly
categorized into:

Node features reflect the local execution speed. They
include CPU rate, memory usage, disk busy rate, I/O
bandwidth, network bandwidth, number of TCP connec-
tions, number of JVM threads, number of local and re-
mote data accesses, etc.

Network features reflect the data transfer rates (and
possibly, interconnect bottlenecks). In this context, we
use the following indicators: (1) intra-rack traffic, per
rack; (2) cross-rack (upstream and downstream) traffic,
per rack, and (3) cumulative traffic across the backbone.

Map-reduce features capture the MR-level informa-
tion – e.g., the number of occupied slots, per node.

Alongside the instantaneous dynamic metrics, we also
employ their aggregates over time, to capture the persis-
tent trends – e.g., a sustained demand for RAM on some
node. Specifically, we aggregates over two time win-
dows – one5-minute-long, and one30-minute-long.



4 Machine Learning Technique

A predictor oracle receives a vector of task and node
features, and returns a (real-valued) slowdown esti-
mate. Our oracle implementation employs the popular
gradient-boosted decision tree(GBDT) algorithm [3].
GBDT is an additive regression model comprised of an
ensemble of binary decision trees. Each decision tree
node is a split on some feature at a specific value, with
a branch for each of the possible outcomes. Each ter-
minal (leaf) node contains a score, which corresponds to
the decision path. The resulting prediction is the sum of
scores returned by individual decision trees.

The GBDT model minimizes the raw mean-square er-
ror (RMSE) among the labeled training samples (i.e., the
historical tasks with computed slowdown values). We
configure the training with the following parameters: the
number of trees is100, the number of leaves per tree is
10, and the shrinkage (or learning rate, [3]) is0.5.

5 Empirical Evaluation

We build and evaluate separate models for mappers and
reducers, due two to very different execution patterns of
these task types.

We use a performance dataset collected from traces of
a production Hadoop cluster at Yahoo! [4]. Two sepa-
rate months of data are used for the train and test stages.
Some cleaning steps are performed before applying the
GBDT training mechanism on the data. We only learn
from jobs with robust median task duration statistics,
such that the slowdown values are meaningful. Each job
in the training set has at least20 mappers or reducers
(depending on the target model). Furthermore, we only
select jobs in which a “critical mass” of tasks has simi-
lar input sizes (unimodal distribution). Namely, at least
75% of the tasks must have input sizes varying from90%
to110% of the median size. Finally, we filter out the jobs
in which the median task input size is too small (4 MB
or less), to filter out non-data-intensive jobs that exploit
Hadoop for parallelism (e.g., CPU-bound simulations).

The refined training set contains approximately1.2M
data points (task instances). We use200K uniform sam-
ples (mapper and reducer tasks) for training the respec-
tive models, and100K samples for testing them.

We evaluated the predictor’s accuracy withcoefficient
of determination, or (R2) [5] – a statistical measure that
stands for the fraction of variability in a dataset that is
explained by the model.R2 = 1 indicates a perfect fit
(i.e., the predictor forecasts the test value without error),
whereasR2 = 0 stands for a total lack of correlation.

Figure 3 depicts the correlation between the predicted
and actual task slowdowns, in log-scale, for a uniformly-
sampled subset of tasks. A positive (resp., negative)
value means that the task is slower (resp., faster) than

the median similar task. Figure 3(a) stands for the map-
per model, whereas Figure 3(b) stands for the reducer
model. In this context, the points far above the diago-
nal are false positives (predicted slowdown too big), and
those far below it are false negatives (predicted slow-
down too small). The most valuable is the prediction
accuracy for the rightmost points (real stragglers).

The prediction for mappers is very accurate (R2 is al-
most0.8), although some “heavy” slowdowns are mis-
predicted. The reducer oracle is much weaker (R2 is
approximately0.4). Note that visually, in the former
case most of the points are clustered around the diagonal,
whereas in the latter they are more dispersed. The lower
precision of the reducer model probably stems from the
fact that we are trying to predict the overall shuffle and
execution time, which is hard to capture due to differ-
ent natures of these two processes. We conjecture that
predicting the running time of each part independently
could lead to better results.

A by-product of the learning process is the ranking
of the model’s features by their impact of the predicted
function. We observe that the unbalanced task input and
output are the primary reason for excessive slowdown
(≥ 4) for about70% of the mappers and only40% of
the reducers. Moreover, for the big jobs the big slow-
down values, the ratio of straggler instances caused by
reasons unrelated to data skew grows rapidly. The im-
plication is that it is convenient to design the scheduling
solution in a two-tiered fashion. The tasks with larger
inputs (primarily mappers) should be scheduled first, in-
dependently from the other optimizations. The rest of
the features should be handled separately, both in the
scheduling and the speculative execution scenarios.

One more interesting observation is that the node’s
hardware generation is one of the most important root
causes for slowdown. This fact that is often overlooked
in heterogeneous clusters, in which all nodes are config-
ured with the same number of map and reduce slots.

While these initial results are far from perfect, we
hope to improve the prediction quality by exploiting the
nature of workloads in production map-reduce clusters.
In these environments, many jobs run in periodic fash-
ion, often many times a day. Moreover, there is high
correlation between the jobs’ scale and recurrence – e.g.,
Table 1 shows that more than95% of mappers and reduc-
ers belong to jobs that ran at least 50 times in 4 months.

In future work, prediction can be improved by (1) us-
ing a more refined definition of the task running time,
as well as (2) employing some new relevant features. In
the extreme case, specific models can be even tailored
for the few dominant repetitive workloads.



Figure 3:The performance of slowdown predictors (predicted versus actual values), in log-scale. The predic-
tion’s quality is expressed by the statisticalR2 metric, which captures the variance explained by the model.
The prediction for mappers is significantly more accurate (R2 = 0.79) than for reducers (R2 = 0.41).

Recurrence Fraction of Fraction of Fraction of
(4 months) jobs mappers reducers

1 3.3% 0.1% ¡0.1%
2 2% 0.2% 0.1%

3-5 11.4% 0.3% 0.5%
6-10 6.2% 0.8% 0.5%
11-20 7.9% 1.1% 1.0%
21-50 10.9% 2.6% 2.7%
51-100 11% 2.9% 7.2%
101-200 32.9% 6.2% 9.2%
201-500 4.5% 9.8% 5.2%
501-1000 1.3% 5.6% 2.0%
> 1000 8.6% 68.5% 71.5%

Table 1: Recurrence of workload in a production
Hadoop cluster (4-month performance log). The vast
majority of mappers and reducers belong to highly
recurrent jobs.

6 Related Work

Straggler task handling has been identified as a key
issue in MR systems since the latter started matur-
ing. The data-locality and speculative execution heuris-
tics have been first implemented in Google’s Map-
Reduce [2]. The Hadoop infrastructure [6] introduced
rack-awareness in placing data replicas and map tasks.
These techniques reduced the straggler effect but failed
to eliminate it. The Mantri research [1], which was used
to optimize Microsoft’s MR system, suggested new opti-
mizations, e.g., network-aware task placement and early
detection of stragglers, reporting a significant reduction
in job latencies. However, the heuristic nature of these
methods complicates tuning for diverse workloads.

Zaharia et. al. [7, 8] studied fairness issues in Hadoop
scheduling that arise in heterogeneous environments,

and showed the tension between fairness and locality.
They evaluated improvements to Hadoop’s scheduling
policies in relatively small clusters. While these works
are mostly orthogonal to ours, their results are in concert
with our claim that over-optimizing data locality in MR
systems might be counterproductive.

To the best of our knowledge, Kavulya et. al. [4] were
the first to apply machine-learning methods to Hadoop
logs. Their study presented multiple statistics about
the utilization and workload in production MR clus-
ters. They experimented with machine learning to pre-
dict the job execution times. However, the job-level
granularity is too high to produce meaningful results for
practical scheduling optimizations. We improve their
ideas by introducing the task slowdown metric, which is
amenable for applied use. Similarly to our work, Zhang
et. al. [9] characterize production workloads in Web-
scale MR clusters. They propose a simple way for gen-
erating synthetic map-reduce benchmarks, which can be
used for evaluating our approach in practice.

7 Conclusions and Future Work

We presentedslowdown predictor– a novel machine-
learned component for bottleneck avoidance and detec-
tion in map-reduce (MR) systems. Slowdown predic-
tion models can be integrated in scheduling and mon-
itoring mechanisms of MR infrastructure implementa-
tions. These models can be trained on system perfor-
mance traces that are routinely collected in production
clusters. We believe that similarly to other domains, they
can be tuned to specific workloads and hardware config-
urations faster and better than heuristic code.

Our initial evaluation shows that the new approach is
viable, especially for mapper slowdown prediction. Yet,
the prediction quality must be improved. In future work,



we will focus on better identifying the outlier slowdown
instances (which affect the job latency most), rather than
simply minimizing the average-case error metric.

We are working on a prototype implementation of a
slowdown predictor for Apache Hadoop, to evaluate the
new paradigm’s benefits in practice.

Acknowlegement
We thank Ronny Lempel, Sriguru Chakravarthi, Amar
Kamat and Mahadevan Iyer for stimulating discussions.

References
[1] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-

ica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers
in map-reduce clusters using mantri. InACM OSDI, 2010.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters.Commun. ACM, 51:107–113,
Jan. 2008.

[3] J. H. Friedman. Greedy function approximation: A gradi-
ent boosting machine.The Annals of Statistics, 29:1189–
1232, 2001.

[4] S. Kavulya, J. Tany, R. Gandhi, and P. Narasimhan. An
analysis of traces from a production mapreduce cluster. In
IEEE/ACM CCGrid, 2010.

[5] R. G. D. Steel and J. H. Torrie.Principles and Procedures
of Statistics. McGraw-Hill, 1960.

[6] T. White. Hadoop: The Definitive Guide. O’Reilly Media
/ Yahoo Press, 2 edition, 2010.

[7] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A sim-
ple technique for achieving locality and fairness in cluster
scheduling. InEurosys, 2010.

[8] M. Zaharia, A. Kowinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in hetero-
geneous environments. InACM OSDI, 2008.

[9] Q. Zhang, J. Hellerstein, and R. Boutaba. Characterizing
task usage shapes in google compute clusters. InLADIS,
2011.


