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Abstract

Disk-based storage is becoming increasingly problem-
atic in meeting the needs of large-scale cloud applica-
tions. Recently RAM-based storage is proposed by ag-
gregating the RAM of thousands of commodity servers
in data center networks (DCN). These studies focus on
improving performance with low latency RPC and fast
failure recovery. RAM-based storage brings great DCN-
related challenges, e.g., false server failure detection due
to network problems, traffic congestion during failure re-
covery, and ToR switch failure handling.

This paper presentsRAMCube, a DCN-oriented de-
sign for RAM-based key-value store based on the BCube
network [9]. RAMCube exploits the properties of BCube
to restrict all failure detection and recovery traffic within
one-hop neighborhood, and leverages BCube’s multiple
paths to handle switch failures. Prototype implementa-
tion demonstrates that RAMCube is promising to achieve
high performance I/O and fast failure recovery in large-
scale DCNs.

1 Introduction

Disk-based storage is becoming more and more problem-
atic in meeting the needs of large-scale cloud systems in
terms of I/O latency and bandwidth. As a result, in re-
cent years we see an increasing trend of migration of data
from disks to random access memory (RAM) in storage
systems. For example, memcached [1] is an in-memory
key-value store that has been widely used by a number of
Web service providers, including Facebook, Twitter, and
Youtube, to offload their storage servers. PIBUS [13] ag-
gregates the RAM of huge number of nodes on the Inter-
net to act as a remote disk cache of desktop I/O-intensive
applications. Google and Microsoft keep entire search
indexes in RAM [11], and Google’s Bigtable keeps cer-
tain columns (or even entire column family) in RAM [4].

Keeping data in RAM brings great challenges to re-

liable data access. Cache-based approaches (like mem-
cached) cause difficulties for applications to effectively
utilize RAM. For example, it is the responsibility of ap-
plications to manage consistency between caches and
disk-based storage, making it vulnerable to consistency
problems. Most recently, RAMCloud [11] is proposed
as a RAM-based key-value store where data is kept en-
tirely in the RAM of thousands of servers. It achieves fast
server failure recovery by scattering backup data across
a large number of disks and reconstructing lost data in
parallel across expensive InfiniBand networks [4, 8].

RAM-based storage (like RAMCloud) has a num-
ber of benefits such as low latency and high band-
width/throughput. Moreover, the applications need no
longer manage the consistency between RAM and a sep-
arate backing store. To achieve reliable RAM-based stor-
age in data centers, however, many realistic DCN-related
issues need to be addressed. (i) It is difficult to quickly
(e.g., in 100 ms) distinguish temporary network prob-
lems (e.g., temporary network partition or packet loss at
some congested switches) from server failures across a
large-scale network, which may consequently cause in-
consistency after failure recovery. (ii) The large number
(up to thousands) of parallel unarranged recovery flows is
likely to bring traffic congestion, resulting in unexpected
recovery delay. (iii) Top-of-rack (ToR) switch failures
(with all servers in the rack still being alive) brings great
difficulty to fast failure recovery.

This work describesRAMCube, a DCN-oriented de-
sign for RAM-based key-value store that supports thou-
sands or tens of thousands of servers to offer up to
hundreds of terabytes of RAM storage. In this pa-
per, we follow the technical trend that large data cen-
ters are constructed using commodity Ethernet switches,
and use Ethernet-based BCube [9], which is a server-
centric network, as the underlying network of our RAM-
Cube. RAMCube exploits the proximity of BCube net-
work to construct a symmetricMultiRing structure, re-
stricting all failure detection and recovery traffic within



one-hop neighborhood, which addresses the aforemen-
tioned problems including false failure detection and re-
covery traffic congestion. In addition, RAMCube lever-
ages BCube’s multiple paths between any pairs of servers
to handle switch failures.

The rest of the paper is organized as follows. Sec-
tion 2 discusses background and related work. Section 3
presents RAMCube design. Section 4 introduces proto-
type implementation and experiments. Finally, Section 5
concludes the paper.

2 Background and Related Work

2.1 RAM-Based Storage

The idea of permanently storing data in RAM is not new.
For example, main-memory databases [7] keep entire
databases in the RAM of one or more servers and support
full RDBMS semantics. However, these systems cannot
survive coordinated server failures and do not provide
enough durability for large-scale systems.

Most recently, RAMCloud [11] is proposed as a
RAM-based key-value store in data centers, where data
(key-value pair) is kept entirely in RAM and large-scale
systems are created by aggregating the RAM of thou-
sands of commodity servers. RAMCloud realizes low-
latency RPC by using expensive InfiniBand networks and
supporting user-level applications to send/receive data
directly through the NICs (bypassing the kernel).

RAMCloud keeps only one single copy of each ob-
ject in a master server’s RAM, with redundant copies in
backup servers’ disks. RAMCloud realizes fast server
failure recovery by using aggressive data partitioning, a
distributed approach similar to Google’s Bigtable [4] and
GFS [8]. They scatter backup data across hundreds or
thousands of disks on backup servers, and reconstruct
lost data in the RAM of hundreds of servers in a short
period of time. RAMCloud employs randomized tech-
niques, mainly including random replica placement (with
refinement) for load balance and random ping for server
failure detection, to manage the system in a decentralized
and scalable fashion.

In this paper, we improve RAMCloud by addressing
several critical issues including false failure detectionof
servers due to temporary network problems, traffic con-
gestion during failure recovery, and ToR switch failure
handling, by leveraging the properties of BCube.

2.2 BCube

BCube [9] is a server-centric network architecture de-
signed for modular data centers. In BCube, servers
with multiple network ports connect to multiple lay-
ers of COTS (commodity of the-shelf) mini-switches.

Figure 1: An example of BCube(4,1) [9].

Servers act as not only end hosts, but also relay nodes for
each other. BCube supports various bandwidth-intensive
applications by speeding-up one-to-one, one-to-several,
and one-to-all traffic patterns, and exhibits graceful per-
formance degradation as the server and/or switch fail.
This property is of special importance for fast failure re-
covery in RAM-based storage systems, since once a rout-
ing component fails it is very difficult to recover all of its
connected servers in a short period of time.

BCube is a recursively defined structure. A
BCube(n,0) is simply n servers connecting to ann-
port switch. A BCube(n,1) is constructed fromn
BCube(n,0) andn n-port switches. More generically, a
BCube(n,k) (k ≥ 1) is constructed fromn BCube(n,k−
1) andnk n-port switches. Each server in a BCube(n,k)
hask+1 ports, which are numbered from level-0 to level-
k. BCube(n,k) hasN = nk+1 servers andk + 1 levels
of switches, with each level havingnk n-port switches.
Fig. 1 shows an example of BCube(4,1), which is con-
structed from four BCube(4,0) and four 4-port switches.

BCube’s software-based routing approach suffers
from high CPU overhead and processing latency. To
address this problem, most recently Lu et al. design
and implementServerSwitch [10], a programmable com-
modity switching chip that supports high-performance
BCube routing and achieves very low CPU overhead,
high throughput and low processing latency.

3 RAMCube Design

3.1 Basics

We first briefly discuss some basic choices of RAMCube
in network hardware, data model, and structure.

Network hardware. Network hardware is an impor-
tant factor that decides the performance a RAM-based
storage system can achieve. Infiniband is featured by its
high bandwidth, low latency, as well as high price. For
example, in a small-scale (60-server) InfiniBand testbed,
RAMCloud claims 400∼800 MB/s recovery bandwidth
per NIC and an RPC latency of 5∼10 µs [11]. How-
ever, our view is that high-performance Ethernet is more
promising and cost-effective than InfiniBand for large
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data centers. Recent technology trends show that Eth-
ernet switches with 40 Gbit/s bandwidth and sub-µs la-
tency are practical in the near future. We therefore design
RAMCube based on Ethernet hardwares (BCube [9] with
ServerSwitch [10] support).

Data model. The current data model in RAMCube
is a simple key-value store that supports arbitrary num-
ber of tables containing key-value pairs. A key-value
pair consists of a variable-length (up to 1 KB) key and
a variable-length (up to 1 MB) value. RAMCube pro-
vides a simple set of operations (“set key value”, “get
key”) and “delete key” for writing/updating, reading and
deleting data. In the future RAMCube will extend the
data model with support of more powerful features such
as indexes and super columns [4].

Primary-recovery-backup. RAMCube stores multi-
ple copies for each key-value pair for durability. There
are two choices, namelysymmetric replication [5] and
primary-backup [3], for RAMCube to maintain consis-
tency in normal read/write operations. In symmetric
replication all copies of a key-value pair have to be
kept in the RAM of different servers and a quorum-like
technique [6] is used for conflict resolution. In con-
trast, in primary-backup only one primary copy is needed
to be stored in RAM with redundant backup copies in
disks. All read/write operations are through the primary
copy. Clearly, for RAMCube primary-backup is pre-
ferred since it saves much of the RAM compared to sym-
metric replication.

We refer to the servers storing the primary copies in
RAM as primary servers, and the servers storing the
backup copies in the disks asbackup servers. Consid-
ering the typical bandwidth of disks (100∼200 MB/s), if
we want to recover a primary server failure in a short pe-
riod of time (1∼2 seconds), one primary server with 64
GB RAM needs at least several hundred backup disks.
Once having been read from disks of backup servers, the
backup data should be recovered to asfew as possible
healthy servers since fragmentation changes the locality
of original data and might degrade application perfor-
mance after recovery. The healthy servers that accom-
modate the recovered data are calledrecovery servers.
Considering the typical NIC bandwidth (10 Gbps), at
least tens of recovery servers are needed for recovering a
failed primary server with 64 GB RAM in 1∼2 seconds.
This “primary-recovery-backup” structure [4, 11] is de-
picted in Fig. 2(a). Note that each server symmetrically
acts as all the three roles at the same time.

3.2 RAMCube Structure

Fast failure recovery is crucial for RAMCube to improve
availability. The problem is that primary-backup is not
tolerant of false server failure recovery that may result in

two primary servers for the same key, while various tem-
porary network problems (e.g., timeout due to network
congestion) are difficult to be quickly distinguished from
real server failures in large-scale networks.

The basic idea of RAMCube for addressing this
problem is to utilize the global topology information
of BCube and leverage networkproximity to restrict
all failure detection and recovery traffic within one-
hop neighborhood. We improve the primary-recovery-
backup structure (shown in Fig. 2(a)) with adirectly con-
nected tree (shown in Fig. 2(b)), where a primary server
has multiple directly connected recovery servers, each
of which corresponding to multiple directly connected
backup servers. Clearly, Fig. 2(b) can be viewed as a
special case of Fig. 2(a).

The primary server periodically sends heartbeat mes-
sages to all its recovery servers, and once the recovery
servers detect (with certain mechanisms described in the
next subsection) the primary server fails, they will start
a recovery procedure reading backup data from their di-
rectly connected backup servers. In Fig. 2(b), since the
recovery servers directly connect to the primary server,
they can eliminate much of the possibility of false fail-
ure detection. In addition, since the recovery servers di-
rectly connect to the backup servers, the recovery traffic
is guaranteed to have little overlap or congestion.

The directly connected tree provides great benefit for
accurate failure detection and fast failure recovery. In
order to apply it to RAMCube, we need symmetrically
map the tree onto the entire network, that is, each server
equally plays all the three roles of primary server, re-
covery server and backup server. Our insight is that for
BCube if we replace each switch and itsn links with an
n× (n− 1) full mesh that directly connects the servers,
we will get a generalized Hypercube [2]. Then, we can
construct multi-layer logical rings (MultiRing for short)
for symmetric mapping as depicted in Fig. 3.

(1) The first layer ring is calledprimary ring, which is
composed of all servers in BCube. The whole key space
is mapped onto the primary ring and each primary server
is responsible for a subset of the key space.

(2) Each primary server, say serverP, has a second
layer ring calledrecovery ring that is composed of all
one-hop neighbors ofP. WhenP fails, its data should
be recovered to the RAM of the recovery servers on its
recovery ring. Fig. 3 shows an example of the recovery
ring of the primary server 00.

(3) Each recovery server, say serverR, corresponds to
a third layer ring calledbackup ring that is composed of
the servers that are one-hop toR and two-hop toP. The
backup copies of the objects ofP are stored in the disks
of backup servers on the backup rings. Fig. 3 shows an
example of six backup rings.

In Fig. 3, all the 16 primary servers have the same
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Figure 2: (a) Primary-recovery-backup structure [11]. (b)Directly connected tree in RAMCube.
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Figure 3: The primary ring of BCube(4,1), and the re-
covery ring and backup rings of server 00.

primary-recovery-backup structure with server 00. In
the symmetric MultiRing structure, if a serverA is a pri-
mary/recovery/backup server of another serverB, thenB
is also a primary/recovery/backup server ofA. Consider
a RAMCube constructed based on BCube(n,k). From
the construction of primary/recovery/backup rings, and
from the property of generalized Hypercube, we can see
that there arenk+1, (n−1)(k + 1), and(n−1)k servers
on the primary/recovery/backup ring, respectively. And

a primary server has totally(n−1)2k(k+1)
2 backup servers.

For BCube(16,2), for example, there are 4096 pri-
mary servers, each of which has 45 recovery servers and
675 backup servers. Note that it is not mandatory for a
primary server to employ all its recovery/backup servers.
For example, a primary server in BCube(16,2) may em-
ploy 30 (instead of 45) recovery servers on its recovery
ring to reduce fragmentation, at the cost of longer recov-
ery time and lower throughput.

For durability each object has multiple backup copies
distributed in the backup servers’ disks. Several factors
should be considered for the placement of the backup
copies. E.g., the copies should reside in different racks in
case of rack power failure, and different disk I/O band-
widths should also be considered for balancing the load.
In current RAMCube, the data of a primary server is
partitioned and each partition is assigned to a recovery

server, and the partition of a recovery server is divided
into b sub-partitions each being assigned to itsf backup
servers, whereb and f are respectively the number of
servers on the backup ring and the replication factor.

3.3 Failure Detection and Recovery

Server failure. A primary server periodically sends
heartbeats to each of its recovery servers. If a recovery
server (sayR) does not receive heartbeats from its pri-
mary server (sayP) for a certain period, thenR would
confirm the failure ofP by using BCube source routing
(BSR) [9] to issue additional pings throughk switches
directly connected toP other than the one betweenR and
P. E.g., in the network depicted in Fig. 1, if server 01
suspects server 00 fails since it cannot receive heartbeats
from 00, it would send a ping message to 00 through
switch〈1,0〉 with a specified path 01→ 11→ 10→ 00.

If the additional pings also fail thenR would indepen-
dently start the recovery. In case of false failure detec-
tion due to rare conditions, e.g., allk + 1 paths between
P andR aresimultaneously temporarily congested, rel-
evant backup servers directly connected toR would re-
ject any further backup requests fromP and indicateP to
stop servicing the corresponding sub key space. There-
fore, in RAMCube false failure detection is NOT fatal
but “expensive”. Our local detection mechanism elimi-
nates much of the possibility of false positive induced by
network problems and thus reduces unnecessary recov-
eries.

During the recovery of a server failure, three cases
have to be considered corresponding to the three roles
of the failed server. For simplicity here we assume a pri-
mary server employs all its recovery servers.

(1) Primary server failure: Among multiple backup
copies of each object, we assign one copy as thedomi-
nant copy. During recovery, the relevant recovery servers
fetch dominant copies to their RAM from directly con-
nected backup servers. Since the backup servers have
exactly two digits different from their primary servers,
each backup server servicestwo recovery servers. E.g.,
if a primary server (say 00) fails in the network depicted
in Fig. 1, a backup server (11) services two recovery
servers (01 and 10). Given the normal configuration with
24∼64 GB data per primary server, 10 Gbps network
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Figure 4: Processing a write request in RAMCube.

bandwidth and 100 MB/s disk bandwidth, a RAMCube
constructed based on BCube(16,2) can easily recover a
primary server failure in 1∼2 seconds.

(2) Recovery server failure: For each involved primary
server, the affected backup servers first register to the
other heathy recovery server . Then, RAMCube moves
backup data to other backup servers connecting to the
registered healthy recovery servers. For example, in the
network depicted in Fig. 1, if the recovery server (01) of a
primary server (00) fails, RAMCube first registers a new
recovery server for each affected backup server (10 for
11, 20 for 21, and 30 for 31); and then moves backup data
to the newly chosen backup servers on the same backup
rings (11→(12,13), 21→(22,23), and 31→(32,33)).

(3) Backup server failure: RAMCube simply copies
affected data to healthy servers on the same backup ring.

Switch failure. RAMCube can easily handle switch fail-
ures. For example, in the network depicted in Fig. 1,
if servers 01, 02, 03 all find server 00 is unreachable
through switch〈0,0〉 but they can receive ping acknowl-
edgements through switch〈1,0〉, then RAMCube con-
siders switch〈0,0〉 failed. Since a switch failure in
BCube results in only graceful performance degrada-
tion [9] but no data loss or unavailability, it is not critical
and we can replace the failed switch in a relatively longer
period of time (compared to server failures).

4 Prototype Implementation & Evaluation

We have prototyped RAMCube by implementing a user-
level service in Windows Server 2008 R2, which con-
tains aconnection manager and amemory manager. The
connection manager maintains the status of directly con-
nected neighbors and handles network events includ-
ing receiving data from clients and sending/receiving
backup/recovery data. Thememory manager uses a slab-
based mechanism and handlesset/get/delete requests in-
side a server. It also uses a simple log-structured ap-
proach similar to previous logging file systems [12, 11]
for asynchronously writing backup data (divided into 8
MB segments) into the disks of backup servers.

When the primary server receives a key-value pair, it
stores the data in its RAM (handled by thememory man-

01 0 0 0 02 0 0 0 03 0 0 0 0
1 0 2 5 5 0 1 0 0 1 5 0 2 0 0N umR equest sperS ec

N u m C l i e n t s
Figure 5: RAMCube server throughput.

ager) and sends a copy to each of the relevant backup
servers simultaneously. The backup servers return an ac-
knowledgement after the copies are written to the RAM
(not disks), and then the primary server acknowledges
to its client that the write operation is successful. This
approach provides efficiency as well as simplicity both
in normal read/write operations and in failure recovery.
This procedure is depicted in Fig. 4.

We have built a RAMCube testbed with 16 Dell R610
servers and 8 8-port DLink Gigabit Ethernet switches
constructing a BCube(4,1) network. Each server has one
Intel Xeon 2.27 GHz quad core CPU and 16 GB RAM,
and installs one Seagate ST9500430SS 7200 RPM, 1 TB
disk. Since the ServerSwitch 10 Gbps NIC is still under
development, we install one ServerSwitch 1 Gbps NIC
[10] on each server.

For simplicity, the RAMCube benchmark is a single-
threaded busy loop (running on a client machine) where
many clients asynchronously communicate with the
RAMCube server, which is also single-threaded.

Our first experiment evaluates the throughput of
RAMCube, measured by the number of requests han-
dled by a primary server per secend. The client performs
write operations with the form of “set key value” and
the primary server indicates the success of each write
with an acknowledgement. The object size is 100 bytes.
We measure the number ofset requests finished per sec-
ond as a function of the number of clients in the busy
loop. The result (depicted in Fig. 5) shows the maximum
throughput of RAMCube on one core is about 26,000
writes/sec. Currently the throughput of RAMCube is
affected by a series of factors such as the overhead of
memory manager and connection manager at primary
servers and the logging performance at backup servers.
We can improve this by using more cores at primary
servers and installing more disks at backup servers. We
also measures the throughput of memcached. Its maxi-
mum throughput is about 40,000 writes/sec.

In our second experiment we first fill a primary server
with 2 GB data (each object having 100 bytes), and then

5



00 . 511 . 52
0 1 2 3 4 5 6 7 8 9A ggregat eR ecoveredD at a(GB)

T i m e ( S e c )
Figure 6: RAMCube recovery time.
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Figure 7: RAMCube throughput with a single switch
failure.

cause a failure of that server and measure the aggregate
recovered data size (of all six recovery servers) over time.
The heartbeat timeout is set to 300 ms. The result is de-
picted in Fig. 6. The minimum and maximum recov-
ery time of six recovery servers are respectively 3.5 and
8.3 seconds. This difference shows that although RAM-
Cube removes the congestion of multi-hop traffic in re-
covery, we still have a lot of work to do for scheduling
the one-hop burst recovery traffic. The maximum ag-
gregate recovery bandwidth is about 456 MB/sec, which
is limited by the NIC bandwidth and the number of re-
covery servers. We can expect a much faster recovery
speed by using ServerSwitch 10G NIC and more recov-
ery/backup servers in a larger RAMCube with more lev-
els (NIC ports).

Previous designs, e.g., RAMCloud [11], cannot han-
dle switch failures well due to overwhelming recovery
traffic congestion. This is a critical problem that pre-
vents RAM-based storage systems from being practical.
We evaluate the throughput of RAMCube with a single
switch failure. Results (depicted in Fig. 7) show RAM-
Cube has a graceful performance degradation during sin-
gle switch failures.

5 Conclusion

We have presented the design of RAMCube as a novel
RAM-based key-value store for high-performance I/O in
data center networks. By exploiting the proximity of
BCube network, RAMCube restricts all failure detection
and recovery traffic within one-hop neighborhood.
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