
vCRIB: Virtualized Rule Management in the Cloud

Masoud Moshref† Minlan Yu† Abhishek Sharma†∗ Ramesh Govindan†

† University of Southern California ∗ NEC

Abstract

Cloud operators increasingly need many fine-grained
rules to better control individual network flows for var-
ious management tasks. While previous approaches
have advocated placing rules either on hypervisors or
switches, we argue that future data centers would benefit
from leveraging rule processing capabilities at both for
better scalability and performance. In this paper, we pro-
pose vCRIB, a virtualized Cloud Rule Information Base
that allows operators to freely define different manage-
ment policies without the need to consider underlying
resource constraints. The challenge in our approach is
the design of a vCRIB manager that automatically par-
titions and places rules at both hypervisors and switches
to achieve a good trade-off between resource usage and
performance.

1 Introduction

To improve cloud security, network utilization, applica-
tion performance, and fairness among tenants, operators
need increasingly manyfine-grained rules(e.g., access
control rules, rate limiting rules) to better control indi-
vidual virtual machines and flows. There can be up to
1M-1B rules for one management task in the cloud (see
Section 2). Managing these rules becomes challenging
when it involves a large number of servers, switches, ap-
plications, tenants, and a variety of network management
tasks.

Recently, there has been significant research on sup-
porting individual management task by proposing new
types of rules and new ways to handle these rules. These
solutions are designed either exclusively for hypervi-
sors (e.g., Open vSwitch [4, 3], Seawall for rate lim-
iting [21], CloudPolice for access control [20]) or ex-
clusively for switches (e.g., BigSwitch [1], Hedera for
traffic engineering [6], FairCloud [19] for fair sharing).
However, rule processing in hypervisors can require ded-

Figure 1:Virtualized Cloud Rule Information Base (vCRIB)

icated CPU resources and switches have limited TCAM
memory, so we do not see either approach being used
exclusively as the need for fine-grained rules increases.

Instead, we argue that future data centers would bene-
fit from a unifiedrule management system across multi-
ple tasks that automatically places rules on switches and
hypervisors as necessary and as dictated by the configu-
ration of the data center. The unified rule management
system not only allows operators to freely define differ-
ent management policies without considering underlying
resource constraints, but also enables more efficient re-
source usage by managing different sets of rules together.

Inspired by the virtual memory concept in operating
system which allows applications to freely claim and
use memory independent of the physical memory size,
we propose avirtualized Cloud Rule Information Base
(vCRIB) that provides operators or a network manage-
ment system with the abstraction of an unbounded priori-
tized list of rules (Figure 1). We design avCRIB manager
thatjointly considers the resource, cost, and performance
constraints in the hypervisors and switches, and automat-
ically installs rules at the right location to optimize the
packet processing performance while minimizing the re-
source usage and cost. There are three key challenges
in designing thevCRIB manager: (i) A large number



Policy # rules Where
Bw alloc. [21, 19] O(m)-O(β ) [100K-1M] Hypervisors

Access control [20] O(β ) [> 1M] Hypervisors
Flow Measurement O(f) Hypervisors

for TE [6, 12, 8] [10M–1B] or switches
VLAN-based traffic O(kn) Hypervisors
management [18] [>1M] or switches

Table 1:# Rules in the Cloud depending on # VMs (m), #pairs
of communicating VMs (β ), # active flows (f ), # servers (n),
and # VLANs (k)

of rules that are defined on different fields (e.g., IP ad-
dresses, ports) and may overlap with each other, (ii) lim-
ited memory in cheap switches (especially top-of-rack
switches), limited CPU resources in hypervisors, and
limited bandwidth in data centers, and (iii) some rules
may be better handled in hypervisors, while others may
be better suited for switches, depending on the rule func-
tions and the traffic that matches the rules. Moreover, the
vCRIB manager must also dynamically adjust the rep-
resentation and placement of the rules in response to the
network dynamics such as virtual machine migration and
traffic changes.

Our initial approach to the design of the vCRIB man-
ager contains two modules: the partition module sepa-
rates the placement decisions for overlapping rules by
partitioning the rule space and splitting those rules across
the partitions; the placement module places partitions
of rules instead of individual rules by considering the
performance of rule processing, the CPU and memory
constraints at hypervisors and switches, and data center
topology and routing paths. Our preliminary evaluation
of realistic rules shows encouraging results of our parti-
tion and placement algorithms.

2 Why Cloud Rule Management is Hard

Increasingly, cloud operators needfine-grainedrules to
better control individual flows. Processing and place-
ment of these rules significantly affect both network per-
formance and resource usage. These two factors make
rule management difficult and motivate the need for a
virtualized cloud rule information base.

Many Fine-grained Rules. As data centers evolve, op-
erators will specifyhigh-level policiesfor different man-
agement tasks such as access control, policy routing, traf-
fic isolation, and QoS. Although there is a wide range of
policies, these policies can, in general, be translated into
a large number oflow-level rulesthat are installed on
devices in the data center. We define therulesas match-
ing on various packet header fields (e.g., IP addresses,
MAC addresses, ports, VLAN tags) and performing var-
ious actions on the packets (e.g., drop, rate limit, count)1.

1The definition of the rules is a generalization of OpenFlow rules
and their extensions [3].

Most policies can be expressed in the general rule format
as summarized in Table 1. For example, to ensure each
tenant gets a fair share of the bandwidth, Seawall [21]
installs rules that match the source VM address and per-
form rate limiting on the corresponding flows. To enable
customized routing for traffic engineering [6, 8] and en-
ergy efficiency [12], an operator may need to get traffic
statistics using rules that match each flow (defined by five
tuples) and count its number of bytes or packets.

A simple policy can result in a large number of fine-
grained rules, especially when it is defined on the number
of VMs and servers and the number of active flows. To
provide fair bandwidth allocation per source-destination
pair [19], we needβ = 1M rules, when there are 100K
VMs where 1% of VMs each communicating with an-
other 1% of VMs. To measure the per flow statistics for
traffic engineering, we need 10M to 1B rules in data cen-
ters with 10K-100K servers and 1K to 10K active flows
per server [14]. For a data center with 10K-100K servers
and up to 4K VLANs, we may need up to 400M rules for
NetLord [18], which uses multiple VLANs to provide
high end-to-end bandwidth for multiple tenants. More
examples are summarized in Table 1. In the future, op-
erators will need even more rules for new policies with
finer-grained control on individual flows and virtual ma-
chines. A combination of these policies would lead to
even more rules if we manage them separately. The diffi-
culty of rule management will also be exacerbated by dy-
namics: as services are reconfigured or as traffic changes,
rules may need to be dynamically updated (e.g., the rout-
ing rules in [8] change every 1.5 to 5 seconds due to traf-
fic changes).

Hypervisors or Switches? No Silver Bullet. Broadly
speaking, two camps have emerged on the question of
whereto place rule processing functionality. One camp,
exemplified by some research proposals [21, 20] and in-
dustrial solutions [4, 3] advocates placing rules in hyper-
visors at servers. The other, exemplified by [1, 17, 2],
chooses to place rules in the TCAMs at switches inside
the network. We take the position that neither camp is
likely to be entirely correctand future data centers will
process rulesbothat the hypervisors and switches.

Software-based hypervisors at servers can support
complex operations of the rules (e.g., dynamically cal-
culating rates of each flow [21]). However, processing
the rules may require committing an entire core or a sub-
stantial fraction of a core at each server in the data center.
Data center operators would prefer to allocate as much
CPU as possible to client VMs to maximize their rev-
enue. (e.g., RackSpace operators prefer not to dedicate
even a portion of a server core for rule processing [5].)
We use Open vSwitch, the software switch running in
hypervisors, to evaluate the data plane rule processing
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Figure 2: Open vSwitch data plane performance (Evaluated
on a six 2.8 MHz core machine with 6 GB RAM using flows
generated by the Open vSwitch benchmark [4].)

performance with different CPU allocation. When we
allocate 25% of a core to rule processing, Open vSwitch
can only handle 3K new flows/sec with 60K rules (Fig-
ure 2(a)). This is because, for each new flow, it should go
to the user space to find the match rules. The CPU usage
and performance of rule processing also depend on the
types of rules. Often, the rules have wildcard patterns
(e.g., the IP prefixes with different lengths 10.2.0.0/24
and 10.2.0.0/16 are two wildcard patterns). Figure 2(b)
shows that to process 60K rules with 256 wildcard pat-
terns with an entire core, the throughput drops from 20K
to 16K when there are more wildcard patterns (W in-
creases from 1 to 256). The reason is that Open vSwitch
classifier creates a hashset for each wildcard pattern and
goes through them linearly. Therefore, we should care-
fully consider the allocated CPU for rule processing and
the types of rules when we place rules in hypervisors.

In contrast, switches leverage custom silicon to pro-
vide more scalable rule processing than hypervisors.
However, since TCAMs are expensive and power hun-
gry, switches can support at most thousands of rules [10],
and cheaper ToR switches support even fewer.

Moreover, some rule processing functions can be per-
formed more efficiently either in the hypervisor or inside

the network, and some are best accomplished by a com-
bination of the two. For instance, placing access control
rules in the hypervisor (or at least at the ToR switches)
can avoid injecting unwanted traffic into the network.
In contrast, operations on the aggregates of traffic (e.g.,
measuring the traffic traversing the same link) can be eas-
ily performed at switches inside the network. Similarly,
operations on inbound traffic from the Internet (e.g., load
balancing) should be performed at the core/aggregate
routers. Rate control is a task that can require cooper-
ation between the hypervisors and the switches. Hyper-
visors can achieve end-to-end rate control by throttling
individual flows or VMs [21], but in-network rate control
can directly avoid buffer overflow at switches. Even for
data centers where only switches (or hypervisors) have
rule processing functionality, vCRIB is still useful, since
it can reduce operators’ burden by automatically manag-
ing the placement of a large number of fine-grain rules.

Virtualizing Cloud Rule Management. The need for
large numbers of fine-grain rules which support a variety
of management tasks, the dynamics of data centers, and
the resource costs of rule processing suggest that future
data centers will require careful rule management that
partitionsrules andplacesthem both in hypervisors and
switches to achieve the desired functionality while care-
fully balancing cost and performance.Given the com-
plexity of this endeavor, we argue that future data center
management systems should modularize rule manage-
ment into a separable module or service that exports a
simple abstraction to the rest of the management system,
hiding the details of rule partitioning and placement.

3 Virtualized Cloud Rule Management

Our cloud rule management system exports a central-
ized abstraction called vCRIB,Virtualized Cloud Rule
Information Base. It simply consists of a potentially un-
bounded list of rules. Each rule describes the flow fields
to match and an associated action to be performed on
flows matching it. An operator, or other (distributed) net-
work management modules, can insert new rules, delete
or re-prioritize existing rules in vCRIB. We design a
vCRIB manager to install the rules in hypervisors and
switches to handle traffic forwarded from sources based
on their CPU and memory resources, the data center
topology, and routing information.

Challenges of designing vCRIB manager. The key
challenge of designing vCRIB Manager is how to man-
age and place a large number of overlapping rules with
resource and performance concerns.

Many fine-grained rules for different management
tasks may overlap with each other. For example, the rate-
limiting rules at the sourceA overlaps with the access
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(a) Rules in flow space (b) Partitions

Figure 3:Partition a flow space

control rule that blocks traffic to destinationB because
the packet from sourceA and destinationB matches both
rules. In general, the flow space usually has seven or
more dimensions (source/destination IP addresses, MAC
addresses, ports, the protocol) and each rule is described
as actions on a hypercube (a multi-dimensional gener-
alization of a rectangle) in these dimensions. For flows
falling in the intersection of two hypercubes, the action
corresponding to the higher priority rule must be per-
formed. Figure 3(a) shows a two-dimensional flow space
(F1, F2). There are five rules in the flow space with dif-
ferent actions (as indicated by their colors) and different
priorities (e.g.,R1> R2> R3> R4> R0).2

When rules overlap, we cannot simply place a rule at
one switch independent of other rules, since that would
result in an incorrect action. For example, in Figure 3(a),
sinceR3 has higher priority thanR4, we cannot place
rule R4 without placingR3. Otherwise, the packets that
match bothR3 andR4 will take R4’s action instead of
R3’s. Similarly, we cannot placeR3 without placingR2
and thenR1. On the other hand, if we relocateR1, then
R2 should be moved to the same location to preserve
matching correctness, sinceR2 overlaps withR1.

Making placement decisions for many rules and many
locations becomes even more challenging when we have
performance and resource concerns. For example, mem-
ory constraints in a switch or hypervisor may force rout-
ing rules to be placed in a way that increases path length,
or deny rules to be placed upstream of the sources. These
choices cause traffic to traverse over more links than they
otherwise might have.

To overcome these challenges, our proposed vCRIB
manager has two key modules (Figure 4): thepartition
module to separate the placement decisions for overlap-
ping rules and theplacementmodule to consider the re-
source constraints. In this paper, we focus on the algo-
rithmic challenges and the benefits of managing rules in
vCRIB, and defer the question of how to dynamically
adapt to vCRIB insertions and deletions to future work.

2These rules cover the entire flow space with a default rule (e.g.,
R0) covering the rest of the flow space that the other rules do not cover.

R0

R2

R1

R0

R3

R2

R0

R4

R3

Figure 4:Architecture of vCRIB manager

Handling overlapping rules with partitions. A parti-
tion is a hypercube containing a group of rules, which is
the basic unit we use for placement decisions. Rules in
a partition should be placed at the same location (a hy-
pervisor or a switch). Multiple partitions may be placed
at the same location. To ensure that we can make inde-
pendent decisions for placing each partition, when a rule
breaches a partition boundary, we split the rule into two
hypercubes at the partition boundary. Figure 3(b) shows
an example of three partitions, where we splitR2 andR3
into two parts each. Within a single partition, however,
rules may overlap: for example,R1 and the fragment of
R2 overlap in the first partition.

However, partitioning increases the total number of
rules in the flow space because of rule splitting. For ex-
ample, in Figure 3(b), the total number of rules grows
from five to nine after the partition. We defineN as the
increase of the number of rules (N = 4 in the example).
The key algorithmic challenge in partitioning is to nav-
igate the trade-offs in finding the right size (number of
rules) S(p) for each partitionp. More partitions with
smallerS(p) increase the number of rules. However, it
is easier to place smaller partitions than larger ones on
hypervisors and switches in order to satisfy CPU, mem-
ory and bandwidth constraints. We address this trade-off
by minimizingF = α ×maxpS(p)+(1−α)×N, where
α is a configurable parameter. A largerα leads to more
flexibility in placing the rules while a smallerα reduces
the total number of rules.

In our initial design, we have explored a top-down ap-
proach to partition the flow space. We construct a Bi-
nary Space Partition (BSP) tree, whose root represents
the entire flow space. At each node in the tree, we cre-
ate two children of nodes as partitions by picking a di-
mension and dividing the value range in that dimension
into two parts. We do this recursively while attempt-
ing to minimize the objective functionF. The way we
pick the dimension and divide each dimension is based
on related work in the computational geometry litera-
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ture [11], which defines an objective function similar to
F and proves that the BSP approach can achieve an opti-
mal solution.

Placing partitions with resource constraints. The
placement module of the vCRIB manager must match
partitions to locations (i.e., hypervisors and switches)
that jointly respect two resource constraints. First,
switches may not be able to handle too many rules be-
cause of limited TCAM size and servers may incur CPU
overhead for rule matching in hypervisors. Second,
given these constraints, rule placement may cause flows
to be redirected in a way that consumes additional band-
width resources, and a key algorithmic challenge is to
find a placement that minimizes the additional bandwidth
resulting from traffic indirection.

Among the many possible placement formulations, we
have explored the objective of minimizing the additional
bandwidth usage of traffic indirection while constrain-
ing the number of rules at different locations.3 Our for-
mulation can be modeled as theGeneralized Assignment
problem, which is NP-hard. We use a depth-first search
(DFS) branch-and-bound approach to search through all
the possible mappings between the partitions and the lo-
cations. To improve the efficiency of the DFS algorithm,
we rank the partitions and locations in specific orders.
We sort the partitions in the decreasing order of the num-
ber of rules: placing larger partitions first can signifi-
cantly reduce the search space. For each partition, we
identify all the locations that can support the types of
rules in the partition. We sort the locations based on the
bandwidth overhead: to avoid the extra bandwidth us-
age, we try to place the rules on the routes of the packets.
Moreover, if the action of a rule is to drop the packet, we
place the rules as near to the source of the traffic match-
ing the rules as possible.

4 Preliminary Evaluation

We find the results from a preliminary evaluation of
our partition and placement algorithms with different re-
source availability scenarios encouraging. Specifically,
we model resource constraints on hypervisors by bound-
ing the number of rules allowed on each hypervisor; this
indirectly models CPU commitments on each hypervi-
sor for rule processing. We evaluate vCRIB’s solution
for managing 4K-16K rules on a data center topology
(Figure 1) with space for 1K rules on each switch and
2.5K, 5K, 7.5K, and 10K rules on each hypervisor. We

3We have deferred other objective functions, and examining par-
tition replication, to future work. We only consider placing a single
copy of each partition because short flows have a large share in data
centers (e.g., 80% of flows last less than 10s [14]). Hence, weexpect
the benefits of rule placement at multiple locations to be limited, but
have deferred an exploration of this.

2.5 5 7.5 10
10

0

10
1

10
2

10
3

Hypervisor Rule Capacity (K)

M
ax

 P
ar

tit
io

n 
S

iz
e

 

 4K
8K
16K
32K

(a) Size of partitions

2.5 5 7.5 10
0

200

400

600

800

Hypervisor Rule Capacity (K)

N
et

w
or

k 
T

ra
ffi

c 
(M

B
)

 

 

Rnd−4K
Rnd−16K
Agg−4K
Agg−16K

(b) Traffic overhead of placement

Figure 5: Rule partition and placement with different hyper-
visor capacities

generate the rules and flows using the ClassBench bench-
mark [22] and the flow sizes as per [14].

With space for more rules in the hypervisors, our parti-
tion module chooses smaller partitions (Figure 5(a)). As
a result the placement algorithm has more flexibility in
placing rules, and it can achieve lower traffic overhead
by putting more rules at the source hypervisors (Fig-
ure 5(b)).

The efficiency of rule placement also relies on the
ways VM IP addresses are assigned. There are two cases:
The IP addresses of VMs on the same server are cho-
sen contiguously (Agg), which makes it easy to aggre-
gate rules for these VMs as one; and the IP addresses
of VMs are not contiguous (Rnd) allowing VMs to keep
their IP addresses after migration, but the rules for VMs
on the same server are not aggregatable. As shown in
Figure 5(b), the contiguous address allocation has lower
traffic overheads, because aggregating source IPs helps
the placement algorithm.

5 Related Work

Data center management systems. As discussed in
Section 2, there have been many proposals forindivid-
ual management tasks that manage their specific rules on
either hypervisors [4, 9, 21, 20]) or switches [1, 6, 19].
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vCRIB is complementary to these systems and provides
a single abstraction for all types of rules, decoupling rule
definition from rule partitioning and placement. vCRIB
frees these systems from the complexity inherent in the
rule management and enables better resource usage by
considering rules from different tasks together.

Rule partition and placement solutions. The prob-
lem of partitioning and placing multi-dimensional data at
different locations also appears in software defined net-
working [23], distributed databases and systems [16, 15],
and computational geometry [11]. The key difference
is that vCRIB should consider theinteractionsof parti-
tion and placement modules in thedata center context
(e.g., hypervisors vs switches, multi-rooted tree topol-
ogy, many short flows). Compared with DIFANE [23],
which randomlyplacesa singlepartition of rules at each
switch, vCRIB optimizes partitions’ placement to re-
duce bandwidth usage by dividing the flow space into
many small partitions and placingmultiple partitions at
each location. The systems in [16, 15] focus on multi-
dimensional data, and use R-tree and its extensions to
reduce the number of hypercubes after partitioning, but
optimize the placement of partitions for load balancing
only. In contrast, vCRIB considers network topology
and where the packets come from. vCRIB borrows ideas
from computational geometry [11], but also considers
placement efficiency during partitioning.

Distributed Firewall. Distributed firewalls [7, 13], of-
ten used in enterprises, leverage a centralized manager to
deploy security policies on edge machines. vCRIB man-
ages more fine-grained rules on individual flows and vir-
tual machines for various policies including firewalls in
the cloud. Rather than placing these rules at the edge ma-
chines, vCRIB places these rules given the limited rule
processing resources at both hypervisors and switches
while minimizing traffic overhead.

6 Conclusion and Future Work

vCRIB provides data center operators an abstraction for
specifying and managing various rules. vCRIB auto-
matically partitions and places the rules on hypervisors
and switches to achieve the best trade-off of performance
and cost. For future work, we will study better combi-
nations of partition and placement modules, understand
the implementation constraints on network state infor-
mation accuracy, and design online algorithms to handle
network and rule dynamics.
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